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Abstract— Diabetic retinopathy (DR) is one of the common
causes of blindness, and hard exudates (HEs) are the
primary and early clinical signs of DR. Thus, a reliable
detection of HEs is significant for clinical diagnosis and
preventing vision loss of patients. In this paper, a novel
method is presented to detect HEs automatically in color
retinal images. The method consists of two stages: coarse
level and fine level. In coarse level, we extract HEs can-
didate regions by combining histogram segmentation with
morphological reconstruction. While in fine level, we define
44 representative features for each candidate region, and
train a support vector machine (SVM) model to classify
HEs and non-HEs. We evaluate the proposed method on
the public DIARETDB1 database and yield a sensitivity of
94.7% and a positive predictive value of 90.0%. Experiment
results show that our method can detect HEs efficiently.

Index Terms— diabetic retinopathy, hard exudates, his-
togram segmentation, morphological reconstruction, SVM

I. INTRODUCTION

D IABETIC retinopathy is one of the leading causes
of vision impairment and blindness throughout the

world, and has the steady growth in the prevalence [1].
Hard exudates have been known as the specific marker of
DR [2], which are the lipid residues of serous leakage
from damaged capillaries. The clinical examination of
HEs is essential to the early diagnosis and treatment of
DR. The traditional detection of HEs is accomplished
manually and is a laborious and time-consuming work.
Meanwhile, with population of DR increase, the work-
load of ophthalmologist aggravate notably and the defi-
ciency of manually check becomes significantly serious,
which prevent many patients from receiving an effective
treatment in time. Therefore, an automatic and reliable
detection of HEs is a significant task in computer aided
diagnosis of DR.

HEs appear as yellow-white regions with sharp mar-
gins in color retinal images, and often are circinate-
like objects, see Fig. 1. However, HEs detection is still
an open issue in medical image processing, and the
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Figure 1. Illustration of hard exudates. (a) Color retinal image with
             HEs and (b) enlarge image with parts of HEs marked.

main difficulties for HEs detection are the interference of
similar color objects such as cotton wool spots (CWS),
optic disk (OD) and circular scars left after pan-retinal
photocoagulation treatment (PRP) for DR, and the noise
caused by normal macular reflection.

To solve these problems, we hereby present an hierar-
chical framework for exudate detection in color retinal
images. As shown in Fig. 2, this method employs the
coarse-to-fine strategy which has two main stages: (a)
Coarse level: extraction of the exudates candidate regions
with histogram segmentation and morphological recon-
struction; and (b) Fine level: final HEs classification by
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Figure 2. The flow chart of proposed method.

means of SVM based on a set of significant features of
HEs.

II. RELATED WORKS

Many techniques have been employed to the exudate
detection and can be roughly divided into four categories:
thresholding based, clustering based, morphology based
and learning based methods.

Thresholding based methods dedicate to select a grey
level threshold which can be used to segment the HEs
from retinal images directly [3], but the automatic se-
lection of proper threshold is difficult due to the uneven
illumination of the image [4]. Consequently, the local
dynamic thresholding method [5] is proposed to segment
HEs automatically which calculates every pixel’s thresh-
old according to its local histogram. Another dynamic
thresholding is designed in [4] which select the thresh-
old based on the robust estimation of the histogram of
the whole image by using a mixture model. Soares et
al. proposed an innovative threshold computation method
based curvature extremes detection in the Gaussian scale
space [6] for the localization of exudates.

Clustering based methods segment retinal images based
on the spacial contiguity, illumination homogeneity and
texture similarity of the HEs. Sinthanayothin et al. present
a region growing scheme based on these clustering crite-
rion [7]. Dynamic clustering techniques have been used
in [8] to automatically and accurately group HEs clusters
without prior thresholds and input parameters because
there are only two clusters, lesions versus non-lesions.

Morphology based methods as the simple and highly
efficient image processing approaches have been widely
used in retinal image analysis. After applying some grey-
scale morphological operators to remove uninterested
structures, such as vessels network and optic disk, Walter
et al. [9] first segment HEs roughly and then locate the
contour of HEs by using morphological reconstruction
and some post-processing. Welfer et al. [10] also advocate
an integrated framework to segment HEs by combining
the morphological reconstruction and threshold process-
ing.

Learing based methods are always used to classify the
HEs and non HEs as the refined process in the detection
procedure. This results from the existing of interference
such as other light lesion regions that have same inten-
sities as HEs. After defining some inherent features such

as geometry, color, contrast and texture features, many
machine learning methods such as k-nearest neighbor
classifier and linear discriminant classifier [11], statistical
classification [12], neural network [13], [14], Bayesian
classifiers [15] and SVM [16] can used to classify the
true HEs.

In the light of previous works, our proposed method
combine the histogram segmentation, morphology recon-
struction and supervised SVM model in a hierarchical
framework. The organization of the remaining part of this
paper is as follows: Section III and IV contain the details
of the proposed HEs detection scheme. Experimental
results is described and discussed in Section V, and in
Section VI we conclude the paper.

III. COARSE LEVEL: CANDIDATE DETECTION

A. Preprocessing

The fundus image captured in a clinical environment
always have an uneven illumination and a local weak
contrast, which will degrade the accuracy of candidates
detection, especially for some small exudate regions. In
order to eliminate these unfavourable imperfections, the
preprocessing scheme is advocated before HEs candidate
detection.

We first normalize the image illumination as follows,
given an input color retinal image Irgb and its illumination
component Iic in the HSI colorspace, an illumination
normalized image Ieq can be calculated according to:

Ieq = Iic +M − Ibg (1)

with
Ibg = Iic ∗ fm

where M is a constant matrice in which all element are
set as an empirical value of 0.4. Ibg is an estimation
of the background illumination which is obtained by
using a 30 × 50 mean filter fm to smooth Iic, “∗” is
convolution operator. Let Ieq as the new illumination
component in HSI colorspace, the color image Irgbeq in
RGB colorspace is finally acquired which also has the
nomalized illumination.

We next adopted the method proposed in [17] to
enhance the contrast between exudate regions and back-
ground in Irgbeq. The input image is first smoothed to
suppress background noises while preserving HEs edge.
Given a lightness channel Ilc of Irbgeq in the CIELAB
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color space. We expect to find a new image Ieps which
is as close as possible to Ilc, meanwhile, is as smooth as
possible everywhere except across the edge in Ilc. Hereby
we use the edge-preserving smoothing (EPS) which is
modeled based on a weighted least squares (WLS) op-
timization framework, and compute the new lightness
image Ieps by minimizing the following quadratic func-
tional:

F =
∑
q

(
((Ieps)q − (Ilc)q)2+

λ

(
αx

(
∂Ieps
∂x

)2

q

+ αy

(
∂Ieps
∂y

)2

q

)) (2)

where q denotes the coordinate of a pixel. The goal of the
first term is to minimize the distance between Ieps and
Ilc, while the second term is to smooth Ieps. Parameters
αx and αy are smoothness weights which depend on Ilc,
while λ is used to balance the effects achieve by the two
terms.

The multi-scale edge-preserving decomposition is then
constructed in a same manner as [17] by using EPS. Let
I1
eps, I

2
eps, . . . , I

n
eps denote the smoothed versions of Ilc,

and the original Ilc can be recovered by:

Ilc = b+
k∑

i=1

di (3)

where b = Ineps is the base layer and d is detail layers
defined as

di = Ii−1
eps − Iieps, where i = 1, . . . , n and I0

eps = Ilc
(4)

We construct a three-level decomposition (one coarse
base level and two detail levels), and let η as the exposure
factor of the base layer, δ0 as the boosting factor for the
base layer and δ1, δ2 for the medium and fine detail layers.
The final enhanced result Ien at each pixel q is then given
by

(Ien)q = µ+ S(δ0, ηbq − µ) + S(δ1, d
1
q) + S(δ2, d

2
q)
(5)

where µ is the mean value of the lightness range, and S
is a sigmoid function.

Finally we convert the color image in CIELAB color
space with the contrast enhanced lightness channel Ien
into the RGB color space, and denoted Irgben. The green
channel of Irgben is further applied with a Contrast-
Limited Adaptive Histogram Equalization (CLAHE) to
enhance the global contrast of the image. Finally we
obtain an enhanced green channel image Ieg which will
be used in the following processes. The preprocessing
results is illustrated in Fig. 3 and Fig. 4(a).

B. Candidate Detection

The objective of this step is to coarsely segment all
the bright candidate regions, such as optic disk, cotton
wool spots, hard exudates, which directly use the in-
tensity feature of the retinal image. We herein integrate

(a)

(b)

Figure 3. Illustration of the preprocessing: (a) Illumination normalized
               image  Irgbeq. (b) Enhanced color image Irgben.

histogram segmentation and morphological reconstruction
to coarsely segment these candidate regions.

Intuitively, the distribution of grey levels in the his-
togram of Ieg can be modeled as a normal distribution.
Fig. 4 illustrates the histogram of Ieg and in which the
red curve represents the estimated model of the histogram.
The normal probability density function (PDF) is defined
as in Eq. 6 and its cumulative distribution function (CDF)
is computed as in Eq. 7.

f(x;µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(6)

F (x;µ, σ) =
1

σ
√

2π

∫ x

−∞
exp

(
− (x− µ)2

2σ2

)
dx (7)

We first use the maximum likelihood (ML) to estimate
the parameters µ and σ of the normal distribution in our
experiments, and we choose the global threshold t1 as the
grey level value at F (x) = 0.97. The initial candidate
regions can be segmented from Ieg by finding pixels
whose grey level value are greater than t1. The candidate
regions after histogram segmentation will contain hard
exudates, CWS and OD and other false positives, such as
center reflex on the vessel, as shown in Fig. 7(a).

Then, we apply the morphological reconstruction [18]
to remove false positives and obtain the final exudates
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Figure 4. Histogram fitting. (a) Green channel image Ieg after applied
CLAHE. (b) Histogram of Ieg and its fitted normal distribution function.

candidate regions. The morphological reconstruction is
given by the following iterative formula:

hk+1 = (hk ⊕B) ∩M (8)

with

(hk ⊕B)(x) = sup
y∈E

[hk(y) +B(x− y)]

where hk is the marker image at the kth iteration, B is the
structuring element, E is a Euclidean space or an integer
grid, M is the mask and “⊕” is the morphological dilation
operator. This iterative process repeats until no changes
occur in h.

In this paper, we set the image which has the same
grey level value as the green channel Ig of Irgb but zero
in all candidate regions as the initial marker Imarker

and let Ig as the mask image, and choose B as a
3×3 square-shaped structuring element. Then we use the
morphological reconstruction to obtain the reconstructed
image Irecon, and segment the HEs candidate regions
Icand by converting the difference between Irecon and
Ig to a binary image with an empirical threshold t2.

C. Optic Disk Removal

Furthermore, the optic disk (OD) in retinal images
always appears the same intensity and same yellowish

Figure 5. Vessels’ direction template.

(a)

(b)

Figure 6. Illustration of OD removal: (a) the center of the OD with ‘+’
                    marked; (b) the estimated area of the OD.

color as HEs, it is necessary to remove the OD region
from Icand before following process, and obtain the final
HEs candidate regions Ifin. In this paper, we use the
vessels’ direction matched filter proposed in [19] to locate
the optic disk. First, since the profile of the retinal blood
vessel has the similarity with 2-D Gaussian template, a
multi-directional Gaussian matched filter is designed to
detection the vessel network which is presented by Chaud-
huri et al. [20]. The convolutional mask in direction i is
defined as:

f ′i(x, y) = fi(x, y)−mi ∀q̄i ∈ N (9)
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Figure 7. Coarse segmentation processing: (a) Image obtained with the threshold t1 = 0.79 based on histogram segmentation. (b) Marker image
Imarker . (c) The reconstructed image Irecon. (d) Exudates candidate image Icand obtained with the threshold t2 = 0.08. (e) Final exudate candidate
                                               regions Ifin after OD removal. (f) Ifin superimposed on original color image Irgb.

with

fi(x, y) = − exp

(
−u2

2σ2

)
∀q̄i ∈ N

mi =
∑
q̄i∈N

fi(x, y)/A

where the neighborhood N = {(u, v) | |u| ≤ 3σ, |v| ≤
L/2}, and A is the number of points in N . The cor-
responding point q̄i in the rotated coordinate system is
determined as

q̄i = [u, v] = q̄ri (10)

with the rotation matrix

ri =

[
cos θi − sin θi
sin θi cos θi

]
We use this convolutional kernel to filter the input

image in 12 directions with an angular resolution of 15◦,
and then Otsu method is adopted to segment the vessel
network.

Next, according to all blood vessels originate from the
OD, a 9×9 vessels’ direction matched filter is designed in
the same way as [19], see Fig. 5, and which can be resized
using bilinear interpolation to four different sizes. The
point has the minimum variation between the responds of
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Figure 8. Kirsch operators in different directions.

Figure 9. Multiscale LoG filters.

four templates matched with the binary vessel network,
which can be seem as the location of the OD. Then we
choose an empirical radius to estimate the OD as a circle
region which is ignored in the following processes. The
OD region is shown in Fig. 6, and Fig. 7 illustrates the
candidate regions extraction in detail.

IV. FINE LEVEL: HES CLASSIFICATION

A. Feature Extraction

The final candidate regions Ifin may contain three
types of regions, i. e., HEs, CWS and other artifacts. For
classifying these regions into HEs or non-HEs, we need to
define a set of representative features for each candidate
region, which will be used as the input in the following
classification. The following 44 features are defined to
describe each candidate region:
• Feature 1: Area a =

∑
j∈Ω 1, where Ω is the pixels

set of the candidate region.
• Feature 2: Circularity cc = 4πa/p2, where p and a

represent the region perimeter and area respectively.
• Feature 3: Compactness cm =

√
(
∑n

j=1 dj − d̄)/n,
where dj is the distance from the centroid of the
region to its convex hull’s jth vertex pixel, d̄ is the
mean value of all the distances from the centroid to
all the n vertex pixels.

• Feature 4: Edge strength es =
∑

j∈Ω IKirsch(j)/p,
where IKirsch is the value of each pixel’s response
after applying a Kirsch operator on Ieg , the template
of Kirsch filter is shown in Fig. 8.

• Feature 5-8: The grey-level value of the centroid of
the region in [Il, Iu, Iv , Ih]. Il, Iu, Iv correspond
to images of l channel, u channel and v channel in
Luv colorspace respectively, Ih represents the image
of h channel in HSI colorspace.

• Feature 9-12: Mean grey-level value values of the
region in [Il, Iu, Iv , Ih]:

µi =

∑
j∈Ω Ii(j)

a
i = l, u, v, h (11)

• Feature 13-16: Standard deviation values of the re-
gion in [Il, Iu, Iv , Ih]:

σi =

√∑
j∈Ω(Ii(j)− µi)2

a
i = l, u, v, h (12)

• Feature 17-20: Mean grey-level value values of the
surrounding region in [Il, Iu, Iv , Ih]. The surround-
ing region is obtained by subtracting the candidate
region from the region dilated with a disk-shaped
structuring element.

µa
i =

∑
j∈Ω̄ Ii(j)

a
i = l, u, v, h (13)

with
Ω̄ = Ω⊕B − Ω

where “⊕” is morphology dilate operator and B is
structure element.

• Feature 21-24: Standard deviation values of the sur-
rounding region in [Il, Iu, Iv , Ih].

σa
i =

√∑
j∈Ω̄(Ii(j)− µa

i )2

i = l, u, v, h (14)

• Feature 25-28: Difference of the mean value between
the original region and its surrounding region in [Il,
Iu, Iv , Ih].

DMi = σi − σa
i i = l, u, v, h (15)

• Feature 29-32: Homogeneity of the candidate region
in [Il, Iu, Iv , Ih], which are measured by the
Shannon’s entropy. Taking the u channel image Iu
for example, the homogeneity Hu of the region is
defined as follows:

Hu = −
Lu−1∑
i=0

P (bui) ln[P (bui)]

P (bui) = N(bui)/a, i = 1, ..., Lu − 1

(16)

where Lu is the number of grey levels inside of
the region in Iu, bui represents each grey level and
N(bui) is the number of pixels has the same bui
inside of the region.

• Feature 33-44: Mean response values of the candi-
date region in filtered images which are obtained
by applying multi-scale 2-D LoG (Laplacian of
Gaussian) filter on Ieg with σ = {σ0, 1.5σ0, 2.5σ0},
where σ0 = {

√
2, 2, 2

√
2, 4}. The 2-D LoG filter

(see Fig. 9) has the form as follows:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (17)

Principle component analysis (PCA) method is then
used to reduce the dimension of these features from 44-D
to 10-D with a confidence degree of 95%.
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B. HEs Classification

We introduce the widely used statistical learning
method SVM in the classification stage, which maps the
input vector x into a high dimensional feature space by
choosing a nonlinear mapping kernel [21].

Take two-class problem for example, let a training set
S = (xi, yi, 1 ≤ i ≤ n) composed of the examples xi ∈
Rn, each belonging to a class labeled by yi ∈ {−1, 1}.
The goal of the SVM is to find the optimal separating
hyperplane, i.e., to minimize the following cost function:

min
1

2
‖w‖2 + C

n∑
i=1

ξi (18)

s.t. yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n (19)

where ξi is slack variable which measures the degree
of misclassification of the data, C is penalty coefficient
which controls the cost of misclassification, the pair (w, b)
defines the hyperplane of equation wTxi + b = 0. The
Lagrangian function associated to the form is defined as

L(w, b, α) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑

i=1

βiξi−

n∑
i=1

αi[yi(w
Txi + b)− 1 + ξi]

(20)

where αi and βi is Lagrangian multipliers and according
to KKT condition,

0 ≤ αi ≤ C, i = 1, 2, . . . , n;
n∑
i

αiyi = 0
(21)

and the optimal separating hyperplane in the feature space
is given by [22], [23]:

f(x) = sgn

(
l∑

i=1

yiαiK(xi, x) + b

)
(22)

where K is the kernel function. Herein we use a two-class
SVM model with a RBF (Radial basis function) kernel to
separate those candidate regions into HEs or non-HEs.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Materials

The proposed HEs detection method is evaluated with
the publicly available DIARETDB1 database [24], which
consists of 89 eye fundus images stored in a PNG image
format with a 1500 × 1200 resolution at 24 bit and 50◦

field of view. Among all the 89 images, 83 images are
abnormal: 47 images contain HEs, 33 images contain
CWS and some images do not contain any DR-indicative
lesions but show signs of other pathological changes such
as microaneurysms and hemorrhages. Referring to the
rough ground truth provided by the database, all of these
pathological lesions on the images are labeled precisely
by our ophthalmologists in the region level. Artifacts
interfered regions are also labeled manually for training
a accurate classifier.

TABLE I.
TRAINING SETS DETAIL IN REGION LEVEL

Region category Image numbers Region numbers

Hard exudates(+1) a 22 941
Cotton wool spots(-1) 17 60
Artifacts interfered(-1) b 22 649
a +1, -1 are the labels assigned to train the two-class SVM model.
b Typical artifacts along main blood vessels due to light reflec-

tion, noise caused by normal macular reflection, and prominent
circular scars left after PRP.

B. Results and Discussion

In our experiments, we use 45 images chose from
the database for training and the rest 44 images for
testing. There are 941 exudate regions and 709 non-
exudate regions in the training set. Table I demonstrates
the detail of training sets in region level.

The non-linear RBF kernel function K is chosen as the
mapping kernel in SVM model, and the optimal relevant
parameters are trained with a 5-fold cross validation
[25], and a mean cross validation accuracy = 87.28% is
achieved is this step.

Following, we test our proposed method with the left
44 retinal images, which contain 2200 regions in total.
And similarly, these 2200 candidate regions also contain
HEs, cotton wools spots, and other interfered artifacts.
After inputing each region’s feature vectors, we obtain a
final decision label by using the trained SVM classifier.

Finally, we evaluate the performance of the automated
HEs detection approach according to lesion-based crite-
rion [13]. The lesion-based criterion aims at examining
the number of exudate lesion detected in the image.
Since the specificity criterion is mostly near 100% in
many existing literatures which does not represent an
informative measurement, we use the sensitivity (SE) and
positive predictive value (PPV) instead.

In general, there are four predict outcome in test
stage, such as true positive (TP), false positive (FP), true
negative (TN) and false negative (FN). The sensitivity can
be written as:

SE =
number of TP

number of TP + number of FN
(23)

and PPV can be obtained from the following identity:

PPV =
number of TP

number of TP + number of FP
(24)

where SE is the proportion of candidates that are known
to be the HEs the model predicts positive for it, while PPV
is the proportion of positive results that are true positives.

Table II shows the performance of our method com-
pared with others methods listed in their papers. Our
method achieve a superior performance with sensitivity
of 94.7% and PPV of 90.0%. The PPV reported in [9] is
higher than our results, but it is worth noting that their
test retinal images do not contain CWS, moreover, the
method proposed in [9] is typically morphological-based
and is not suitable for detecting exudates in retinal images
which contain normal macular reflection [10]. We take
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TABLE II.
COMPARISONS BETWEEN DIFFERENT METHODS AND OUR METHOD

Detection methods Database (number of test image) SE(%) PPV(%)

Osareh [26] 67 90.0 89.3
Zhang and Chutatape [14] 30 88.0 84. 0

Walter et al. [9] 15 92.8 92. 4
Sánchez et al. [27] 58 88.0 -
Garcı́a et al. [13] 67 87.61 83.51
Jaafar et al. [28] 119 93.2 83.7

Our method 44 94.7 90.0

SE: mean lesion-based sensitivity, PPV: mean lesion-based positive predictive value.

advantage of HEs’s multi-features and successfully use
them to distinguish HEs from CWS, scars left by PRP
treatment and noise caused by normal macular reflection.
These interference objects usually act as FPs and thus
degrade the HEs classification rate. We demonstrate three
of our HEs detection results in Fig. 10, in which the optic
disk region are firstly removed before the classification.
The first row in Fig. 10 demonstrates that our method
can distinguish HEs from CWS effectively. The scars
left by PRP treatment and normal macular reflection can
be excluded by our method which are illustrated in the
second and third row in Fig. 10.

VI. CONCLUSION

This paper proposed an effective hierarchical frame-
work to automatically segment hard exudates in color
fundus images, which is significant for the early clinical
diagnosis of DR. The undesirable affects produced in
image capturing are removed by preprocessing strategy.
The candidate region of HEs with accurate contour are
extracted by combining the histogram segmentation and
morphology reconstruction, and on which a set of distinc-
tive features is defined on the basis of its shape, color,
contrast and texture. After employing PCA to reduce the
redundance dimension, the feature vector is used to train
a SVM classifier to recognize the HEs and non HEs.
The experimental results showed that our method can
detect HEs effectively and distinguish HEs accurately
from orther interferences. Further tests should be carried
out on the proposed algorithms with different database
have a variety of lesions. In future, we intend to extend the
proposed method to segment CWS and build an integrated
diagnosis system of DR which can detect dark lesion such
as microaneurysm and hemorrhage.
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