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Abstract—A popular solution to dealing with large-scale 

social networks is to derive a representative sample from a 

social network. This sample is expected to represent the 

original social network well such that the sampled network 

can be used for simulations and analysis. In this paper, we 

propose a new social network sampling algorithm based on 

the Temperature Conduction model. Our sampling 

approach is able to effectively maintain the topological 

similarity between the sampled network and its original 

network. We have evaluated our algorithm on several well-

known data sets. The experimental results show that our 

algorithm outperforms the state-of-the-art methods. 

 

Index Terms—sampling algorithm, temperature conduction, 

conduction boundary, topology structure 

 

I.  INTRODUCTION 

Social networks, such as twitter, micro-blog, MSN, 

Facebook, co-citation relation, credit network, etc., 

appear everywhere in our modern lives. The modern 

science of networks has brought significant advances in 

our understanding of complex systems [1]. In research, 

social networks are usually represented by different types 

of graphs. Vertices represent entities, and edges represent 

interactions between pairs of entities. Some graph mining 

techniques, such as graph visualization techniques, graph 

structure analyzing techniques, etc., are then employed to 

assist social networks analysis. However, given a large 

graph with millions of vertices, it is very difficult to use 

typical graph mining approaches to handle the entire 

graph directly. An essential issue is to find certain 

methods to accelerate the graph mining process. A 

popular solution is to accomplish a sub-graph, which can 

represent the original graph effectively such that we are 

able to use this sub-graph for simulations and analysis. 

The accomplishment of a sub-graph relies on a graph 

sampling process. This process aims at selecting a set of 

vertices and edges in a way that the resulting sub-graph 

obeys some general characteristics of the original graph. 

In this paper, we focus on developing new methods in the 

context of graph sampling techniques. 

Sampling in a large-scale graph usually encounters 

three questions [4]. What is a good sampling method? 

What is a good sample size? How do we measure the 

goodness of a single sample as well as the goodness of a 

whole sampling method? At present, the state-of-the-art 

sampling algorithms include: Random Node (RN) 

sampling, Random PageRank Node (RPN) sampling, 

Random Degree Node (RDN) sampling, Random Edge 

(RE) sampling, Random Walk (RW) sampling, Random 

Jump (RJ) sampling, Forest Fire (FF) sampling [2], and 

other sampling strategies, which will be briefly 

introduced in section II. In these algorithms, sample size 

is usually predefined by users so that they can get their 

expected sampled graphs. In a sampling process, 

maintaining similar properties between a sampled graph 

and its original graph is essential, because we can study 

the sampled graph, instead of its original graph, only 

when a sampled graph represents its original graph 

effectively. Another important issue is to evaluate 

whether a sampled graph and its original graph have 

similar properties. Likewise, the existing techniques that 

measure the between-graph similarity will be introduced 

in section II. 

The rest of the paper is organized as follows: Section II 

presents the related works. Section III describes the 

proposed Temperature Conduction sampling algorithm. 

The experiment process and the results are presented in 

Section IV. Finally, Section V concludes the paper.  

II.  RELATED WORKS 

Currently, there have been several state-of-the-art 

graph sampling algorithms. Conceptually, we can split 

these existing algorithms into three groups [4]: methods 
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based on randomly selecting vertices, methods relying on 

randomly selecting edges, and exploration techniques that 

simulate random walks or virus propagation to find a 

representative sample of the vertices.  

As a typical approach based on randomly selecting 

vertices, Random Node sampling (RN) algorithm starts 

by selecting a set of vertices randomly, and then a 

sampled graph is induced by the selected vertices. The 

process of Random PageRank Node sampling (RPN) lies 

in setting the probability of a vertex, which is selected 

into the sampled graph, to be proportional to its 

PageRank weight. The idea of Random Degree Node 

sampling (RDN) is that the probability of a vertex being 

selected is proportional to its degree. 

Similarly to RN sampling, one can also select edges 

randomly. This process is called Random Edge (RE) 

sampling. We present three methods based on exploration 

techniques. Random Walk (RW) sampling starts at 

randomly picking a vertex, and then it simulates a 

random walk on the original graph. Random Jump (RJ) 

sampling is very similar to RW sampling. The only 

difference is that, under RJ sampling, we randomly jump 

to any vertex in a graph with probability c = 0.15. Forest 

Fire (FF) sampling [2] is a recursive process. First, 

randomly pick a seed vertex, and begin “burning” 

outgoing links and the corresponding vertex. If a link gets 

burned, the vertex at the other endpoint has a chance to 

burn its own links, and so on recursively.  

Apart from above-mentioned methods, there are other 

simple sampling strategies. In particular, Krishnamurthy 

et al. [6] explored contraction-based methods and graph 

traversal based on depth and breadth first search. But 

none of them performed well over all. 

The sampling algorithms enable us to utilize sub-

graphs with a small- scale of vertices and edges. But, how 

can we evaluate the performances of these algorithms? In 

other words, how can we evaluate the similarity between 

a sampled graph and its original graph? At present, 

researchers have designed several evaluation measures. 

One strategy is to compute the similarity of the 

distributions of the sampled graph and its original graph 

to indicate their similarity. The following are 

representatives of existing evaluation techniques: 

 The degree distribution: for every degree d , we 

count the number of vertices with degree d [9]; 

 The distribution of sizes of weakly connected 

components: we count the number of weakly 

connected components with the same size; 

 The distribution of the clustering coefficient: let 

vertex v  have k  neighbors, then at most 

*( 1) / 2k k   edges can exist between them; let vC  

denote the fraction of these allowable edges that 

actually exist, the clustering coefficient is then 

defined as the average vC  over all the vertices of 

degree d  [7]; 

 Hop-plot: the number ( )P h of reachable pairs of 

nodes at distance h  or less, where h  is the 

number of hops [10]; 

 The distribution of the first left singular vector of 

the graph adjacency matrix versus the rank ; 

 The distribution of singular values of the graph 

adjacency matrix versus the rank: spectral 

properties of graphs often follow a heavy-tailed 

distribution [11]. 

Among these sampling algorithms and evaluation 

techniques, one important character of a graph, 

topological structure, is overlooked. Topological structure 

is capable of revealing the real topology and social 

relation of networks. A promising sample of a network 

should maintain the similar topological structure to its 

original network. A sampling algorithm should consider 

the topological structure maintenance between the 

original network and its sampled one. Our proposed 

algorithm is just this. 

In this paper, we propose a sampling algorithm, which 

can formulize a sampled network with similar topological 

structure to its original network. We evaluate our 

algorithm with respects to some existing evaluation 

techniques on several well-known data sets. The 

experimental results demonstrate that our algorithm 

outperforms other competitive methods. 

III.  GRAPH SAMPLING BASED ON TEMPERATURE 

CONDUCTION MODEL  

We firstly introduce the terminologies that are 

frequently used in this paper. Given an initial relational 

graph ( , )G GG V E , GV  represents the vertex set of G , 

and GE  represents the edge set of G . Let ( , )S S SG V E  

be a sample of graph G , where SV  represents the vertex 

set of SG  , and SE  represents the edge set of SG . 

Our motivation is that, given an initial graph G , we 

are expected to sample the vertices and edges distributing 

globally in G  in order to maintain the topology of G . 

That is, here are some vertices embedding in almost 

every part of G . At the same time, the sampled graph 

SG  also performs well on the existing evaluation 

techniques mentioned in section II. 

A.  Temperature Conduction Model  

In this section, we will present the Temperature 

Conduction (TC) sampling model, which is able to assure 

the similar topology structure between the original graph 

and its sampled graph. 

First, we will introduce two important concepts in our 

model: “Hot Vertex” and “Temperature Conduction”. 

Given a relational graph G , we pick a vertex v  in G , 

then add v  to the sampled graph SG
.
 Here, we denote 

this vertex v  as a “Hot Vertex”. Once a vertex becomes a 

“Hot Vertex”, a process of heat emission will start. The 

hot vertex will deliver its temperature to the nearby 

vertices connected directly or indirectly to this hot vertex. 

The temperature of a vertex around the hot one is 

measured by the distance from this vertex to the hot 

vertex and the total counts of paths connecting this vertex 

with the hot vertex. The shorter distance to the hot vertex, 

the higher “Temperature” value the vertex has. If there 
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Figure 1.   An Example of Conduction Boundary. 

are several hot vertices around a “not-hot” vertex, the 

temperature value of this vertex is a temperature value 

summation from all hot vertices. In addition, the 

temperature value is also affected by the counts of paths 

to the hot vertex. More paths can conduct more 

temperature value. In this paper we only consider the 

paths less than three steps, and we suppose if the distance 

from a vertex to the hot vertex is larger than three, this 

vertex will not take the temperature into account. 

Subsequently, we present the method to calculate the 

temperature value. 

Once a vertex is a “Hot Vertex”, which is denoted as 

hotv , we firstly set the temperature value of the hot vertex 

at ten, and then the vertices around hotv  can be conducted 

“Temperature” from hotv . For a vertex v  with current 

temperature vT , the conduction temperature denoted by 

vT
 
can be given by: 

             

3

_1

1
* hot v

v i
hot vi

T T
T Cp

i Dis


                     (1) 

where hotT  denotes the temperature value of hotv , and 

iCp  denotes the number of paths with i  steps size 

between v  and hotv . Here we only consider the paths 

within three steps for simplicity. _hot vDis  is the distance 

between hotv  and v . In graph theory, the distance 

between two vertices in a graph is the number of edges in 

a shortest path connecting them. 

From (1), we can obtain some properties of vT . First, 

vT  is inversely proportional to _hot vDis . The shorter 

distance to the hot vertex, the higher “Temperature” the 

vertex has. Second, vT  is proportional to the difference 

of hotT
 
and vT . Third, vT  is related to the counts of 

paths to hotv  within three steps. 

After computing the vT  of each vertex around a hot 

vertex, we add vT  to every vT . The whole graph is then 

in the state of heat balance, that is, there is no any 

temperature conduction between vertices. Subsequently, 

we will heat another vertex, which will become a new 

“Hot Vertex”.  

To design the strategy of heating a vertex, we must 

firstly introduce another important concept: “Conduction 

Boundary”. Conduction Boundary is a set of vertices. The 

vertices in the conduction boundary set must meet two 

conditions: first, vertices in the conduction boundary set 

are not hot; second, vertices in the conduction boundary 

set have at least one edge to some hot vertices. 

The initial conduction boundary set is an empty set. A 

conduction boundary set maintains above-mentioned 

properties, when vertices in this set become hot vertices. 

Once one vertex becomes a hot vertex, we will perform 

two operations to the conduction boundary set: first, 

delete the hot vertex from the conduction boundary set; 

second, add the neighbors to this hot vertex (the neighbor 

vertices are not in the conduction boundary set, and they 

are not hot vertex). The heating strategy is to randomly 

choose a vertex with lower temperature in temperature 

conduction boundary. Fig. 1 shows an example of the 

temperature conduction boundary. In Fig. 1, the star-

shaped vertices are hot vertices, and the triangle vertices 

are all in the conduction boundary set, because they all 

satisfy with the conditions of the conduction boundary set: 

not being a “Hot Vertex” and having at least one edge 

connected to some hot vertices. 

Our sampling model starts heating vertices in the 

original graph according to the proposed heating strategy. 

We then add the hot vertices to the sampled graph 

repeatedly until the number of vertices in the sampled 

graph reaches to certain threshold that we set at the 

beginning of the algorithm. 

Specifically, our model is described as follows. The 

initial conduction boundary set is an empty set, and the 

initial temperature value of every vertex is 0. After 

setting the size of the sampled graph or the sampling 

percentage of the original graph, we randomly select a 

vertex as the starting vertex and heat it to be a hot vertex. 

Meanwhile, we add this hot vertex to the sampled graph. 

Then we update temperature values of the vertices around 

the hot vertex. We add neighbors of the hot vertex to the 

conduct boundary set. Our vertex heating strategy relies 

on choosing some vertices in the conduction boundary set 

to be hot vertices. Subsequently, we randomly select a 

vertex with the lowest temperature in the conduction 

boundary set and heat it. We update the temperature 

values and maintain the conduction boundary set. This is 

an iterative process until the number of vertices in the 

sampling graph is up to a user’s requirement. After the 

sampling process of selecting vertices to the sampled 

graph, we add the induced edges to the sampled graph. 

B.  Algorithm Details  

For clarity, we summarize the entire algorithm as 

follows. Initially, we must set two parameters: sampling 

size N (or sampling percentage P ) and random 

percentage r . Their roles will be described below. Given 

a sampling size N ，our algorithm starts at choosing a 

vertex sv  randomly, then heat vertices according to the 

following process: 
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Figure 3.   Temperature Conduction in Every Connected Component. 

 

Figure 4.   Original Data Sets Visualization Layout. 

Input: original graph G , sampling size N (or sampling percentage 

P ) and random percentage r . 

Output: sampled graph  SG  

T1:    Input the sampling size: N ; 

T2:    Randomly choose a vertex sv  from G  as start vertex and 

heat sv ; 

T3:    Add sv  to SG ; 

T4:    Compute conduction temperature value and update the 

conduction boundary set; 

T5:    While {the number of vertices in SG  < N } 

T6:            Randomly choose a vertex v  with low temperature 

value in conduction boundary set; 

T7:            Add v  to SG ; 

T8:            Compute conduction temperature values and update the 

conduction boundary set; 

T9:    End  

T10:  Add edges whose endpoints are in the vertex set of SG  to 

SG . 

Figure 2.   Sampling Algorithm Based on Temperature Conduction 
Model. 

1. Heat sv  to be a hot vertex and add sv  to SG . 

Update temperature values of vertices around sv . 

Update the conduction boundary set cbS ; 

2. Randomly choose a vertex v  in cbS  with lower 

temperature value at random percentage r . Heat 

v  and update temperature values of vertices 

around v . Then update the conduction boundary 

set cbS ; 

3. Execute step 2 recursively. As the process 

continues, the number of vertices in SG can be up 

to the predefined vertices amount. The recursively 

process stops; 

4. Induce edges and add these edges to SG . 

Thus, as is shown in Fig. 2, the heating process in the 

Temperature Conduction model begins with choosing a 

vertex sv  randomly, spreads to the vertices in the 

conduction boundary set, and proceeds recursively until 

the number of vertices in sampled graph SG  is up to our 

predefined amount. In this process, two important steps 

are temperature conduction and updating the conduction 

boundary set. The essential property of this model is that 

we randomly choose the vertex with low temperature 

value in the conduction boundary set. 

We next explain the reason of this choosing strategy. 

Higher temperature value of one vertex indicates more 

hot vertices around the vertex or shorter distance to the 

hot vertices or even both. Our objective is to sample the 

vertices and edges distributing globally over G  in order 

to maintain the topology of G . Hence, choosing vertices 

with low temperature values can make the “heating” 

process not lie in a local part of graph G  but disperse all 

over graph G . The sampling process can be performed 

globally. That is, here are some vertices that are 

embedded in almost every part of G . 

C.  Extensions 

Our basic version of the Temperature Conduction 

model requires that the original graph is a connected 

graph. But real-life networks may not be fully connected. 

By extending this model to real-life networks, we 

introduce an extension method: we can perform the 

“heating” process in every connected component. That is, 

before “heating”, we must add an extra step, which is to 

get the connected components of the original graph. Then 

we can run our algorithm in every connected component. 

Fig. 3 shows a graph with four connected components, 

and we do the “heating” process in four connected 

components. 

IV.  EXPERIMENT 

In this section, we evaluate our proposed model on 

several real-life graphs. We have considered five 

common used data sets collected from the homepage of 

Newman [15]. As is shown in Fig. 4 and Table I, these 

data sets are email, power, hep-th, astro-ph and cond-mat. 

Data sets: hep-th, astro-ph and cond-mat, are not fully 

connected. So we firstly get their biggest weakly 

connected component and denote them hep-th_conect, 

astro-ph_connect and cond-mat_connect, respectively. 

Table I shows the detailed description of these five data 

sets and Fig. 4 shows the visualization layouts of five 

data sets. 
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In statistics, the Kolmogorov-Smirnov test (K-S test) is 

a non-parametric test for the equality of continuous, one-

dimensional probability distributions that can be used to 

compare a sample with a reference probability 

distribution (one-sample K-S test), or to compare two 

samples (two-sample K-S test) [14]. The smaller the 

testing value is, the larger the probability that two 

samples obey the same distribution is. Thus, we employ 

K-S test to measure the similarity of two distributions in 

our paper. 

We summarize the results in Table II, Table III, Table 

IV and Table V. The results are obtained by averaging the 

K-S Test over 20 runs on each dataset. These four tables 

show the experimental results by different sampling 

percentages (P). In each column, we bold the best test 

value. In general, we can observe that our algorithm 

delivers most of the best test values. 

 

 

TABLE I. 
DATA SETS DESCRIPTION 

Data set 

Name 
Edge 

Count 

Vertex 

Count 

Diameter Description 

email 1134 5452 8 List of edges of the network of e-mail interchanges between members of the University 

Rovira i Virgili (Tarragona) [12].  

hep-th_conect 13815 5835 19 Weighted network of coauthor ships between scientists posting preprints on the High-Energy 

Theory E-Print Archive between Jan 1, 1995 and December 31, 1999[13].  

power 6594 4941 46 An undirected, unweighted network representing the topology of the Western States Power 

Grid of the United States [7].  

cond-

mat_connect 
44619 36458 18 Weighted network of coauthor ships between scientists posting preprints on the Condensed 

Matter E-Print Archive between Jan 1, 1995 and December 31, 1999[13].  

astro-
ph_connect 

119652 14845 14 Weighted network of coauthor ships between scientists posting preprints on the Astrophysics 

E-Print Archive between Jan 1, 1995 and December 31, 1999[13].  

 

TABLE II. 
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.05) 

P=.05 Data Sets Name email hep-th_connect power cond-mat_connect astro-ph_connect 

RN CD 0.9856 0.9636 0.9922 0.8327 0.7573 

Degree 0.5314 0.5155 0.8674 0.4718 0.3783 

Hop_plot 0.0541 0.0706 0.0226 0.0392 0.0888 

RDN CD 0.9535 0.9611 0.9815 0.9888 0.8084 

Degree 0.4339 0.6769 0.8031 0.7690 0.3471 

Hop_plot 0.0431 0.0444 0.0275 0.0600 0.0615 

RPN CD 0.9384 0.9729 0.9862 0.9611 0.9875 

Degree 0.5728 0.6482 0.7949 0.4611 0.3366 

Hop_plot 0.0375 0.0311 0.0242 0.0277 0.0742 

RE CD 0.9887 0.8957 0.9852 0.8774 0.5427 

Degree 0.4457 0.6741 0.8532 0.7924 0.4920 

Hop_plot 0.0325 0.0676 0.0222 0.0353 0.0570 

RW CD 0.9989 0.9999 0.9996 0.9413 0.9707 

Degree 0.7068 0.6601 0.4480 0.4487 0.1068 

Hop_plot 0.0174 0.0018 0.0018 0.0026 0.0028 

RJ CD 0.9993 0.9882 0.9974 0.9956 0.9715 

Degree 0.7603 0.7879 0.4732 0.6383 0.2156 

Hop_plot 0.0043 3.70E-05 3.66E-09 1.79E-04 9.33E-04 

TC CD 0.8694 0.7619 1.0000 0.2712 0.1200 

Degree 0.6579 0.6094 0.6034 0.1203 0.0865 

Hop_plot 2.49E-04 8.62E-06 3.40E-11 8.94E-06 4.37E-04 
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TABLE III. 
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.1) 

P=0.1 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect 

RN CD 0.9615 0.9068 0.9835 0.8637 0.6091 

Degree 0.5267 0.7143 0.7814 0.6224 0.3441 

Hop_plot 0.0315 0.0682 0.0234 0.0453 0.0817 

RDN CD 0.9336 0.9735 0.9090 0.9864 0.8371 

Degree 0.4788 0.7131 0.8552 0.7284 0.2248 

Hop_plot 0.0178 0.0348 0.0454 0.0320 0.1058 

RPN CD 0.9742 0.9786 0.9924 0.9967 0.9990 

Degree 0.5149 0.6806 0.8197 0.4443 0.1665 

Hop_plot 0.0282 0.0535 0.0222 0.0291 0.0481 

RE CD 0.9855 0.9124 0.9615 0.9872 0.4808 

Degree 0.4131 0.7566 0.7431 0.7745 0.5942 

Hop_plot 0.0305 0.0823 0.0251 0.0231 0.0758 

RW CD 0.9999 0.9992 0.9985 0.9847 0.9627 

Degree 0.7638 0.9220 0.6290 0.3550 0.0412 

Hop_plot 0.0037 1.35E-05 0.0001 0.0020 1.40E-04 

RJ CD 0.9997 0.9877 0.9999 0.9971 0.9710 

Degree 0.7651 0.8642 0.6341 0.5107 0.0510 

Hop_plot 0.0037 1.88E-04 1.33E-08 0.0017 0.0021 

TC CD 0.8491 0.7654 0.9772 0.2844 0.0112 

Degree 0.5045 0.5475 0.7220 0.0970 8.44E-04 

Hop_plot 0.0018 1.27E-04 2.43E-07 2.19E-04 0.0012 

 

TABLE IV. 
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.15) 

P=.15 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect 

RN CD 0.9563 0.9670 0.9687 0.7908 0.7010 

Degree 0.4138 0.5939 0.7566 0.5017 0.4176 

Hop_plot 0.0297 0.0776 0.2792 0.0559 0.0767 

RDN CD 0.9949 0.9514 0.9325 0.9960 0.9732 

Degree 0.4928 0.6905 0.8303 0.7593 0.3604 

Hop_plot 0.0202 0.0530 0.0300 0.0813 0.1012 

RPN CD 0.9840 0.9879 0.9347 0.9966 0.9997 

Degree 0.5263 0.6499 0.7368 0.6171 0.2342 

Hop_plot 0.0116 0.0283 0.0298 0.0415 0.0563 

RE CD 0.9997 0.8962 0.9131 0.9887 0.6302 

Degree 0.5198 0.7081 0.8531 0.8618 0.6071 

Hop_plot 0.0743 0.0404 0.0271 0.0628 0.0797 

RW CD 1.0000 0.9999 1.0000 0.9471 0.9412 

Degree 0.7606 0.8341 0.8050 0.3845 0.0146 

Hop_plot 0.0059 0.0035 5.07E-04 0.0013 0.0056 

RJ CD 0.9928 0.9991 0.9990 0.9951 0.9338 

Degree 0.8108 0.7642 0.8239 0.5879 0.1234 

Hop_plot 0.0011 0.0007 1.31E-07 8.77E-04 0.0055 

TC CD 0.8325 0.8917 0.9955 0.1588 0.0020 

Degree 0.6523 0.3446 0.8497 0.0934 0.0018 

Hop_plot 0.0017 3.31E-04 1.65E-10 1.91E-04 0.0058 
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Figure 5.   Visualization results of “email” data set (P=0.1). 

 

For data sets “cond-mat_connect” and “astro-

ph_connect”, our algorithm produces almost the best test 

values for all sampling percentages. The sizes of these 

two data sets are larger than the other three data sets. It 

implies that our algorithm performs better when the scale 

of networks increases. For data set “power”, our method 

cannot gain the best performance. Fig. 4 (power) shows 

the layout of “power”. From Fig. 4 (power), we observe 

that the distribution of “power” differs from other data 

sets. The diameter of “power” data set is 46, which is 

larger than those of others. Also, vertices in “power” are 

not distributed radially around some centroids, but they 

are dispersed irregularly. This suggests that our algorithm 

may not work well for this type of data set. With the 

sampling percentage increases, the test values of our 

method in all five datasets tend to decrease, as more 

samples of original graph can represent the original 

structure better. From the analysis above, we can 

conclude our method is better than the others. 

Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9 show the 

comparative layout results of 7 sampling algorithms on 5 

data sets. The results suggest that algorithms base on 

randomly choosing vertices or edges can produce many 

isolated vertices in the sampled graphs and fail in 

maintaining similar topological structure between the 

original graph and its sampled graph, while algorithms 

based on the exploration strategy can maintain this 

similarity better. After comparing these visualization 

results to the origin graphs, we can see that our algorithm 

(TC) performs better than the algorithms (RW and RJ) 

based on exploration. 

 

 

 

 

TABLE V. 
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.2) 

P=0.2 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect 

RN CD 0.9809 0.9228 0.9483 0.9723 0.8506 

Degree 0.6842 0.5592 0.8098 0.5543 0.5392 

Hop_plot 0.0305 0.0563 0.0224 0.0360 0.0505 

RDN CD 0.9995 0.9903 0.9338 0.9689 0.9812 

Degree 0.3939 0.6979 0.7591 0.8980 0.5023 

Hop_plot 0.0347 0.0398 0.0474 0.0459 0.0958 

RPN CD 0.9693 0.9996 0.9993 0.9990 0.9995 

Degree 0.4279 0.7184 0.6325 0.4580 0.2375 

Hop_plot 0.0627 0.0524 0.0400 0.0407 0.1133 

RE CD 0.9999 0.9206 0.9548 0.9629 0.6886 

Degree 0.3416 0.5734 0.8738 0.8004 0.6884 

Hop_plot 0.6884 0.0587 0.0185 0.0430 0.0742 

RW CD 1.0000 1.0000 1.0000 0.9918 0.9222 

Degree 0.6150 0.6227 0.0716 0.3973 0.0133 

Hop_plot 0.0286 0.0055 2.59E-05 0.0040 0.0089 

RJ CD 1.0000 0.9999 0.9999 0.9980 0.9980 

Degree 0.6489 0.7884 0.7276 0.4850 0.1784 

Hop_plot 0.0014 0.0029 0.0021 0.0034 0.0078 

TC CD 0.5995 0.7277 0.9815 0.1163 0.0021 

Degree 0.3342 0.4857 0.8776 0.0316 0.0013 

Hop_plot 0.0017 0.0016 1.72E-09 0.0037 0.0058 
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Figure 9.   Visualization results of “astro-ph_connect” data set (P=0.1). 

 

Figure 8.   Visualization results of “cond-mat_connect” data set (P=0.1).  

 

Figure 7.   Visualization results of “power” data set (P=0.1). 

 

Figure 6.   Visualization results of “hep-th” data set (P=0.1). 

 

V.  CONCLUTION 

It is important to generate a representative sampled 

graph, which enables us to accelerate the large-scale 

graph mining process. Despite many existing evaluations 

and algorithms with respect to graph sampling, only few 

studies work on the properties of topological similarity 

between the original graph and its sampled graph. This is 

exactly the focus of this work. In this paper, we propose a 

Temperature Conduction sampling algorithm. We 

provide extensive analysis and comparisons with the 

state-of-the-art methods. In particular, we perform a 

systematic evaluation of sampling algorithms by non-

trivial statistical evaluation methods (the Kolmogorov-

Smirnov Test). The comparative results suggest that our 

algorithm can effectively maintain the topological 

similarity between the sampled graph and its original 

graph. 
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