
A New Social Network Sampling Algorithm

Based on Temperature Conduction Model

Xiaolin Du and Yunming Ye
Shenzhen Graduate School, Harbin Institute of Technology Shenzhen 518055, P.R. China

Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen 518055, P.R. China

Email: duxiaolinhitsz@gmail.com, yeyunming@hit.edu.cn

Yueping Li
Shenzhen Polytech, Shenzhen 518055, P.R.China

leeyueping@gmail.com

Xiaohui Huang
Shenzhen Graduate School, Harbin Institute of Technology Shenzhen 518055, P.R. China

Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen 518055, P.R. China

Email: XiaohuiHuang.hxh016@gmail.com

Abstract—A popular solution to dealing with large-scale

social networks is to derive a representative sample from a

social network. This sample is expected to represent the

original social network well such that the sampled network

can be used for simulations and analysis. In this paper, we

propose a new social network sampling algorithm based on

the Temperature Conduction model. Our sampling

approach is able to effectively maintain the topological

similarity between the sampled network and its original

network. We have evaluated our algorithm on several well-

known data sets. The experimental results show that our

algorithm outperforms the state-of-the-art methods.

Index Terms—sampling algorithm, temperature conduction,

conduction boundary, topology structure

I. INTRODUCTION

Social networks, such as twitter, micro-blog, MSN,

Facebook, co-citation relation, credit network, etc.,

appear everywhere in our modern lives. The modern

science of networks has brought significant advances in

our understanding of complex systems [1]. In research,

social networks are usually represented by different types

of graphs. Vertices represent entities, and edges represent

interactions between pairs of entities. Some graph mining

techniques, such as graph visualization techniques, graph

structure analyzing techniques, etc., are then employed to

assist social networks analysis. However, given a large

graph with millions of vertices, it is very difficult to use

typical graph mining approaches to handle the entire

graph directly. An essential issue is to find certain

methods to accelerate the graph mining process. A

popular solution is to accomplish a sub-graph, which can

represent the original graph effectively such that we are

able to use this sub-graph for simulations and analysis.

The accomplishment of a sub-graph relies on a graph

sampling process. This process aims at selecting a set of

vertices and edges in a way that the resulting sub-graph

obeys some general characteristics of the original graph.

In this paper, we focus on developing new methods in the

context of graph sampling techniques.

Sampling in a large-scale graph usually encounters

three questions [4]. What is a good sampling method?

What is a good sample size? How do we measure the

goodness of a single sample as well as the goodness of a

whole sampling method? At present, the state-of-the-art

sampling algorithms include: Random Node (RN)

sampling, Random PageRank Node (RPN) sampling,

Random Degree Node (RDN) sampling, Random Edge

(RE) sampling, Random Walk (RW) sampling, Random

Jump (RJ) sampling, Forest Fire (FF) sampling [2], and

other sampling strategies, which will be briefly

introduced in section II. In these algorithms, sample size

is usually predefined by users so that they can get their

expected sampled graphs. In a sampling process,

maintaining similar properties between a sampled graph

and its original graph is essential, because we can study

the sampled graph, instead of its original graph, only

when a sampled graph represents its original graph

effectively. Another important issue is to evaluate

whether a sampled graph and its original graph have

similar properties. Likewise, the existing techniques that

measure the between-graph similarity will be introduced

in section II.

The rest of the paper is organized as follows: Section II

presents the related works. Section III describes the

proposed Temperature Conduction sampling algorithm.

The experiment process and the results are presented in

Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

Currently, there have been several state-of-the-art

graph sampling algorithms. Conceptually, we can split

these existing algorithms into three groups [4]: methods

2688 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2688-2696

based on randomly selecting vertices, methods relying on

randomly selecting edges, and exploration techniques that

simulate random walks or virus propagation to find a

representative sample of the vertices.

As a typical approach based on randomly selecting

vertices, Random Node sampling (RN) algorithm starts

by selecting a set of vertices randomly, and then a

sampled graph is induced by the selected vertices. The

process of Random PageRank Node sampling (RPN) lies

in setting the probability of a vertex, which is selected

into the sampled graph, to be proportional to its

PageRank weight. The idea of Random Degree Node

sampling (RDN) is that the probability of a vertex being

selected is proportional to its degree.

Similarly to RN sampling, one can also select edges

randomly. This process is called Random Edge (RE)

sampling. We present three methods based on exploration

techniques. Random Walk (RW) sampling starts at

randomly picking a vertex, and then it simulates a

random walk on the original graph. Random Jump (RJ)

sampling is very similar to RW sampling. The only

difference is that, under RJ sampling, we randomly jump

to any vertex in a graph with probability c = 0.15. Forest

Fire (FF) sampling [2] is a recursive process. First,

randomly pick a seed vertex, and begin “burning”

outgoing links and the corresponding vertex. If a link gets

burned, the vertex at the other endpoint has a chance to

burn its own links, and so on recursively.

Apart from above-mentioned methods, there are other

simple sampling strategies. In particular, Krishnamurthy

et al. [6] explored contraction-based methods and graph

traversal based on depth and breadth first search. But

none of them performed well over all.

The sampling algorithms enable us to utilize sub-

graphs with a small- scale of vertices and edges. But, how

can we evaluate the performances of these algorithms? In

other words, how can we evaluate the similarity between

a sampled graph and its original graph? At present,

researchers have designed several evaluation measures.

One strategy is to compute the similarity of the

distributions of the sampled graph and its original graph

to indicate their similarity. The following are

representatives of existing evaluation techniques:

 The degree distribution: for every degree d , we

count the number of vertices with degree d [9];

 The distribution of sizes of weakly connected

components: we count the number of weakly

connected components with the same size;

 The distribution of the clustering coefficient: let

vertex v have k neighbors, then at most

*(1) / 2k k  edges can exist between them; let vC

denote the fraction of these allowable edges that

actually exist, the clustering coefficient is then

defined as the average vC over all the vertices of

degree d [7];

 Hop-plot: the number ()P h of reachable pairs of

nodes at distance h or less, where h is the

number of hops [10];

 The distribution of the first left singular vector of

the graph adjacency matrix versus the rank ;

 The distribution of singular values of the graph

adjacency matrix versus the rank: spectral

properties of graphs often follow a heavy-tailed

distribution [11].

Among these sampling algorithms and evaluation

techniques, one important character of a graph,

topological structure, is overlooked. Topological structure

is capable of revealing the real topology and social

relation of networks. A promising sample of a network

should maintain the similar topological structure to its

original network. A sampling algorithm should consider

the topological structure maintenance between the

original network and its sampled one. Our proposed

algorithm is just this.

In this paper, we propose a sampling algorithm, which

can formulize a sampled network with similar topological

structure to its original network. We evaluate our

algorithm with respects to some existing evaluation

techniques on several well-known data sets. The

experimental results demonstrate that our algorithm

outperforms other competitive methods.

III. GRAPH SAMPLING BASED ON TEMPERATURE

CONDUCTION MODEL

We firstly introduce the terminologies that are

frequently used in this paper. Given an initial relational

graph (,)G GG V E , GV represents the vertex set of G ,

and GE represents the edge set of G . Let (,)S S SG V E

be a sample of graph G , where SV represents the vertex

set of SG , and SE represents the edge set of SG .

Our motivation is that, given an initial graph G , we

are expected to sample the vertices and edges distributing

globally in G in order to maintain the topology of G .

That is, here are some vertices embedding in almost

every part of G . At the same time, the sampled graph

SG also performs well on the existing evaluation

techniques mentioned in section II.

A. Temperature Conduction Model

In this section, we will present the Temperature

Conduction (TC) sampling model, which is able to assure

the similar topology structure between the original graph

and its sampled graph.

First, we will introduce two important concepts in our

model: “Hot Vertex” and “Temperature Conduction”.

Given a relational graph G , we pick a vertex v in G ,

then add v to the sampled graph SG
.
 Here, we denote

this vertex v as a “Hot Vertex”. Once a vertex becomes a

“Hot Vertex”, a process of heat emission will start. The

hot vertex will deliver its temperature to the nearby

vertices connected directly or indirectly to this hot vertex.

The temperature of a vertex around the hot one is

measured by the distance from this vertex to the hot

vertex and the total counts of paths connecting this vertex

with the hot vertex. The shorter distance to the hot vertex,

the higher “Temperature” value the vertex has. If there

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2689

© 2013 ACADEMY PUBLISHER

Figure 1. An Example of Conduction Boundary.

are several hot vertices around a “not-hot” vertex, the

temperature value of this vertex is a temperature value

summation from all hot vertices. In addition, the

temperature value is also affected by the counts of paths

to the hot vertex. More paths can conduct more

temperature value. In this paper we only consider the

paths less than three steps, and we suppose if the distance

from a vertex to the hot vertex is larger than three, this

vertex will not take the temperature into account.

Subsequently, we present the method to calculate the

temperature value.

Once a vertex is a “Hot Vertex”, which is denoted as

hotv , we firstly set the temperature value of the hot vertex

at ten, and then the vertices around hotv can be conducted

“Temperature” from hotv . For a vertex v with current

temperature vT , the conduction temperature denoted by

vT

can be given by:

3

_1

1
* hot v

v i
hot vi

T T
T Cp

i Dis


  (1)

where hotT denotes the temperature value of hotv , and

iCp denotes the number of paths with i steps size

between v and hotv . Here we only consider the paths

within three steps for simplicity. _hot vDis is the distance

between hotv and v . In graph theory, the distance

between two vertices in a graph is the number of edges in

a shortest path connecting them.

From (1), we can obtain some properties of vT . First,

vT is inversely proportional to _hot vDis . The shorter

distance to the hot vertex, the higher “Temperature” the

vertex has. Second, vT is proportional to the difference

of hotT

and vT . Third, vT is related to the counts of

paths to hotv within three steps.

After computing the vT of each vertex around a hot

vertex, we add vT to every vT . The whole graph is then

in the state of heat balance, that is, there is no any

temperature conduction between vertices. Subsequently,

we will heat another vertex, which will become a new

“Hot Vertex”.

To design the strategy of heating a vertex, we must

firstly introduce another important concept: “Conduction

Boundary”. Conduction Boundary is a set of vertices. The

vertices in the conduction boundary set must meet two

conditions: first, vertices in the conduction boundary set

are not hot; second, vertices in the conduction boundary

set have at least one edge to some hot vertices.

The initial conduction boundary set is an empty set. A

conduction boundary set maintains above-mentioned

properties, when vertices in this set become hot vertices.

Once one vertex becomes a hot vertex, we will perform

two operations to the conduction boundary set: first,

delete the hot vertex from the conduction boundary set;

second, add the neighbors to this hot vertex (the neighbor

vertices are not in the conduction boundary set, and they

are not hot vertex). The heating strategy is to randomly

choose a vertex with lower temperature in temperature

conduction boundary. Fig. 1 shows an example of the

temperature conduction boundary. In Fig. 1, the star-

shaped vertices are hot vertices, and the triangle vertices

are all in the conduction boundary set, because they all

satisfy with the conditions of the conduction boundary set:

not being a “Hot Vertex” and having at least one edge

connected to some hot vertices.

Our sampling model starts heating vertices in the

original graph according to the proposed heating strategy.

We then add the hot vertices to the sampled graph

repeatedly until the number of vertices in the sampled

graph reaches to certain threshold that we set at the

beginning of the algorithm.

Specifically, our model is described as follows. The

initial conduction boundary set is an empty set, and the

initial temperature value of every vertex is 0. After

setting the size of the sampled graph or the sampling

percentage of the original graph, we randomly select a

vertex as the starting vertex and heat it to be a hot vertex.

Meanwhile, we add this hot vertex to the sampled graph.

Then we update temperature values of the vertices around

the hot vertex. We add neighbors of the hot vertex to the

conduct boundary set. Our vertex heating strategy relies

on choosing some vertices in the conduction boundary set

to be hot vertices. Subsequently, we randomly select a

vertex with the lowest temperature in the conduction

boundary set and heat it. We update the temperature

values and maintain the conduction boundary set. This is

an iterative process until the number of vertices in the

sampling graph is up to a user’s requirement. After the

sampling process of selecting vertices to the sampled

graph, we add the induced edges to the sampled graph.

B. Algorithm Details

For clarity, we summarize the entire algorithm as

follows. Initially, we must set two parameters: sampling

size N (or sampling percentage P) and random

percentage r . Their roles will be described below. Given

a sampling size N ，our algorithm starts at choosing a

vertex sv randomly, then heat vertices according to the

following process:

2690 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 3. Temperature Conduction in Every Connected Component.

Figure 4. Original Data Sets Visualization Layout.

Input: original graph G , sampling size N (or sampling percentage

P) and random percentage r .

Output: sampled graph SG

T1: Input the sampling size: N ;

T2: Randomly choose a vertex sv from G as start vertex and

heat sv ;

T3: Add sv to SG ;

T4: Compute conduction temperature value and update the

conduction boundary set;

T5: While {the number of vertices in SG < N }

T6: Randomly choose a vertex v with low temperature

value in conduction boundary set;

T7: Add v to SG ;

T8: Compute conduction temperature values and update the

conduction boundary set;

T9: End

T10: Add edges whose endpoints are in the vertex set of SG to

SG .

Figure 2. Sampling Algorithm Based on Temperature Conduction
Model.

1. Heat sv to be a hot vertex and add sv to SG .

Update temperature values of vertices around sv .

Update the conduction boundary set cbS ;

2. Randomly choose a vertex v in cbS with lower

temperature value at random percentage r . Heat

v and update temperature values of vertices

around v . Then update the conduction boundary

set cbS ;

3. Execute step 2 recursively. As the process

continues, the number of vertices in SG can be up

to the predefined vertices amount. The recursively

process stops;

4. Induce edges and add these edges to SG .

Thus, as is shown in Fig. 2, the heating process in the

Temperature Conduction model begins with choosing a

vertex sv randomly, spreads to the vertices in the

conduction boundary set, and proceeds recursively until

the number of vertices in sampled graph SG is up to our

predefined amount. In this process, two important steps

are temperature conduction and updating the conduction

boundary set. The essential property of this model is that

we randomly choose the vertex with low temperature

value in the conduction boundary set.

We next explain the reason of this choosing strategy.

Higher temperature value of one vertex indicates more

hot vertices around the vertex or shorter distance to the

hot vertices or even both. Our objective is to sample the

vertices and edges distributing globally over G in order

to maintain the topology of G . Hence, choosing vertices

with low temperature values can make the “heating”

process not lie in a local part of graph G but disperse all

over graph G . The sampling process can be performed

globally. That is, here are some vertices that are

embedded in almost every part of G .

C. Extensions

Our basic version of the Temperature Conduction

model requires that the original graph is a connected

graph. But real-life networks may not be fully connected.

By extending this model to real-life networks, we

introduce an extension method: we can perform the

“heating” process in every connected component. That is,

before “heating”, we must add an extra step, which is to

get the connected components of the original graph. Then

we can run our algorithm in every connected component.

Fig. 3 shows a graph with four connected components,

and we do the “heating” process in four connected

components.

IV. EXPERIMENT

In this section, we evaluate our proposed model on

several real-life graphs. We have considered five

common used data sets collected from the homepage of

Newman [15]. As is shown in Fig. 4 and Table I, these

data sets are email, power, hep-th, astro-ph and cond-mat.

Data sets: hep-th, astro-ph and cond-mat, are not fully

connected. So we firstly get their biggest weakly

connected component and denote them hep-th_conect,

astro-ph_connect and cond-mat_connect, respectively.

Table I shows the detailed description of these five data

sets and Fig. 4 shows the visualization layouts of five

data sets.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2691

© 2013 ACADEMY PUBLISHER

In statistics, the Kolmogorov-Smirnov test (K-S test) is

a non-parametric test for the equality of continuous, one-

dimensional probability distributions that can be used to

compare a sample with a reference probability

distribution (one-sample K-S test), or to compare two

samples (two-sample K-S test) [14]. The smaller the

testing value is, the larger the probability that two

samples obey the same distribution is. Thus, we employ

K-S test to measure the similarity of two distributions in

our paper.

We summarize the results in Table II, Table III, Table

IV and Table V. The results are obtained by averaging the

K-S Test over 20 runs on each dataset. These four tables

show the experimental results by different sampling

percentages (P). In each column, we bold the best test

value. In general, we can observe that our algorithm

delivers most of the best test values.

TABLE I.
DATA SETS DESCRIPTION

Data set

Name
Edge

Count

Vertex

Count

Diameter Description

email 1134 5452 8 List of edges of the network of e-mail interchanges between members of the University

Rovira i Virgili (Tarragona) [12].

hep-th_conect 13815 5835 19 Weighted network of coauthor ships between scientists posting preprints on the High-Energy

Theory E-Print Archive between Jan 1, 1995 and December 31, 1999[13].

power 6594 4941 46 An undirected, unweighted network representing the topology of the Western States Power

Grid of the United States [7].

cond-

mat_connect
44619 36458 18 Weighted network of coauthor ships between scientists posting preprints on the Condensed

Matter E-Print Archive between Jan 1, 1995 and December 31, 1999[13].

astro-
ph_connect

119652 14845 14 Weighted network of coauthor ships between scientists posting preprints on the Astrophysics

E-Print Archive between Jan 1, 1995 and December 31, 1999[13].

TABLE II.
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.05)

P=.05 Data Sets Name email hep-th_connect power cond-mat_connect astro-ph_connect

RN CD 0.9856 0.9636 0.9922 0.8327 0.7573

Degree 0.5314 0.5155 0.8674 0.4718 0.3783

Hop_plot 0.0541 0.0706 0.0226 0.0392 0.0888

RDN CD 0.9535 0.9611 0.9815 0.9888 0.8084

Degree 0.4339 0.6769 0.8031 0.7690 0.3471

Hop_plot 0.0431 0.0444 0.0275 0.0600 0.0615

RPN CD 0.9384 0.9729 0.9862 0.9611 0.9875

Degree 0.5728 0.6482 0.7949 0.4611 0.3366

Hop_plot 0.0375 0.0311 0.0242 0.0277 0.0742

RE CD 0.9887 0.8957 0.9852 0.8774 0.5427

Degree 0.4457 0.6741 0.8532 0.7924 0.4920

Hop_plot 0.0325 0.0676 0.0222 0.0353 0.0570

RW CD 0.9989 0.9999 0.9996 0.9413 0.9707

Degree 0.7068 0.6601 0.4480 0.4487 0.1068

Hop_plot 0.0174 0.0018 0.0018 0.0026 0.0028

RJ CD 0.9993 0.9882 0.9974 0.9956 0.9715

Degree 0.7603 0.7879 0.4732 0.6383 0.2156

Hop_plot 0.0043 3.70E-05 3.66E-09 1.79E-04 9.33E-04

TC CD 0.8694 0.7619 1.0000 0.2712 0.1200

Degree 0.6579 0.6094 0.6034 0.1203 0.0865

Hop_plot 2.49E-04 8.62E-06 3.40E-11 8.94E-06 4.37E-04

2692 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE III.
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.1)

P=0.1 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect

RN CD 0.9615 0.9068 0.9835 0.8637 0.6091

Degree 0.5267 0.7143 0.7814 0.6224 0.3441

Hop_plot 0.0315 0.0682 0.0234 0.0453 0.0817

RDN CD 0.9336 0.9735 0.9090 0.9864 0.8371

Degree 0.4788 0.7131 0.8552 0.7284 0.2248

Hop_plot 0.0178 0.0348 0.0454 0.0320 0.1058

RPN CD 0.9742 0.9786 0.9924 0.9967 0.9990

Degree 0.5149 0.6806 0.8197 0.4443 0.1665

Hop_plot 0.0282 0.0535 0.0222 0.0291 0.0481

RE CD 0.9855 0.9124 0.9615 0.9872 0.4808

Degree 0.4131 0.7566 0.7431 0.7745 0.5942

Hop_plot 0.0305 0.0823 0.0251 0.0231 0.0758

RW CD 0.9999 0.9992 0.9985 0.9847 0.9627

Degree 0.7638 0.9220 0.6290 0.3550 0.0412

Hop_plot 0.0037 1.35E-05 0.0001 0.0020 1.40E-04

RJ CD 0.9997 0.9877 0.9999 0.9971 0.9710

Degree 0.7651 0.8642 0.6341 0.5107 0.0510

Hop_plot 0.0037 1.88E-04 1.33E-08 0.0017 0.0021

TC CD 0.8491 0.7654 0.9772 0.2844 0.0112

Degree 0.5045 0.5475 0.7220 0.0970 8.44E-04

Hop_plot 0.0018 1.27E-04 2.43E-07 2.19E-04 0.0012

TABLE IV.
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.15)

P=.15 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect

RN CD 0.9563 0.9670 0.9687 0.7908 0.7010

Degree 0.4138 0.5939 0.7566 0.5017 0.4176

Hop_plot 0.0297 0.0776 0.2792 0.0559 0.0767

RDN CD 0.9949 0.9514 0.9325 0.9960 0.9732

Degree 0.4928 0.6905 0.8303 0.7593 0.3604

Hop_plot 0.0202 0.0530 0.0300 0.0813 0.1012

RPN CD 0.9840 0.9879 0.9347 0.9966 0.9997

Degree 0.5263 0.6499 0.7368 0.6171 0.2342

Hop_plot 0.0116 0.0283 0.0298 0.0415 0.0563

RE CD 0.9997 0.8962 0.9131 0.9887 0.6302

Degree 0.5198 0.7081 0.8531 0.8618 0.6071

Hop_plot 0.0743 0.0404 0.0271 0.0628 0.0797

RW CD 1.0000 0.9999 1.0000 0.9471 0.9412

Degree 0.7606 0.8341 0.8050 0.3845 0.0146

Hop_plot 0.0059 0.0035 5.07E-04 0.0013 0.0056

RJ CD 0.9928 0.9991 0.9990 0.9951 0.9338

Degree 0.8108 0.7642 0.8239 0.5879 0.1234

Hop_plot 0.0011 0.0007 1.31E-07 8.77E-04 0.0055

TC CD 0.8325 0.8917 0.9955 0.1588 0.0020

Degree 0.6523 0.3446 0.8497 0.0934 0.0018

Hop_plot 0.0017 3.31E-04 1.65E-10 1.91E-04 0.0058

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2693

© 2013 ACADEMY PUBLISHER

Figure 5. Visualization results of “email” data set (P=0.1).

For data sets “cond-mat_connect” and “astro-

ph_connect”, our algorithm produces almost the best test

values for all sampling percentages. The sizes of these

two data sets are larger than the other three data sets. It

implies that our algorithm performs better when the scale

of networks increases. For data set “power”, our method

cannot gain the best performance. Fig. 4 (power) shows

the layout of “power”. From Fig. 4 (power), we observe

that the distribution of “power” differs from other data

sets. The diameter of “power” data set is 46, which is

larger than those of others. Also, vertices in “power” are

not distributed radially around some centroids, but they

are dispersed irregularly. This suggests that our algorithm

may not work well for this type of data set. With the

sampling percentage increases, the test values of our

method in all five datasets tend to decrease, as more

samples of original graph can represent the original

structure better. From the analysis above, we can

conclude our method is better than the others.

Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9 show the

comparative layout results of 7 sampling algorithms on 5

data sets. The results suggest that algorithms base on

randomly choosing vertices or edges can produce many

isolated vertices in the sampled graphs and fail in

maintaining similar topological structure between the

original graph and its sampled graph, while algorithms

based on the exploration strategy can maintain this

similarity better. After comparing these visualization

results to the origin graphs, we can see that our algorithm

(TC) performs better than the algorithms (RW and RJ)

based on exploration.

TABLE V.
STATISTIC RESULTS ON 3 EVALUATION CRITERIA (P=0.2)

P=0.2 DataSets Name email hep-th_connect power cond-mat_connect astro-ph_connect

RN CD 0.9809 0.9228 0.9483 0.9723 0.8506

Degree 0.6842 0.5592 0.8098 0.5543 0.5392

Hop_plot 0.0305 0.0563 0.0224 0.0360 0.0505

RDN CD 0.9995 0.9903 0.9338 0.9689 0.9812

Degree 0.3939 0.6979 0.7591 0.8980 0.5023

Hop_plot 0.0347 0.0398 0.0474 0.0459 0.0958

RPN CD 0.9693 0.9996 0.9993 0.9990 0.9995

Degree 0.4279 0.7184 0.6325 0.4580 0.2375

Hop_plot 0.0627 0.0524 0.0400 0.0407 0.1133

RE CD 0.9999 0.9206 0.9548 0.9629 0.6886

Degree 0.3416 0.5734 0.8738 0.8004 0.6884

Hop_plot 0.6884 0.0587 0.0185 0.0430 0.0742

RW CD 1.0000 1.0000 1.0000 0.9918 0.9222

Degree 0.6150 0.6227 0.0716 0.3973 0.0133

Hop_plot 0.0286 0.0055 2.59E-05 0.0040 0.0089

RJ CD 1.0000 0.9999 0.9999 0.9980 0.9980

Degree 0.6489 0.7884 0.7276 0.4850 0.1784

Hop_plot 0.0014 0.0029 0.0021 0.0034 0.0078

TC CD 0.5995 0.7277 0.9815 0.1163 0.0021

Degree 0.3342 0.4857 0.8776 0.0316 0.0013

Hop_plot 0.0017 0.0016 1.72E-09 0.0037 0.0058

2694 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 9. Visualization results of “astro-ph_connect” data set (P=0.1).

Figure 8. Visualization results of “cond-mat_connect” data set (P=0.1).

Figure 7. Visualization results of “power” data set (P=0.1).

Figure 6. Visualization results of “hep-th” data set (P=0.1).

V. CONCLUTION

It is important to generate a representative sampled

graph, which enables us to accelerate the large-scale

graph mining process. Despite many existing evaluations

and algorithms with respect to graph sampling, only few

studies work on the properties of topological similarity

between the original graph and its sampled graph. This is

exactly the focus of this work. In this paper, we propose a

Temperature Conduction sampling algorithm. We

provide extensive analysis and comparisons with the

state-of-the-art methods. In particular, we perform a

systematic evaluation of sampling algorithms by non-

trivial statistical evaluation methods (the Kolmogorov-

Smirnov Test). The comparative results suggest that our

algorithm can effectively maintain the topological

similarity between the sampled graph and its original

graph.

ACKNOWLEDGMENT

This research was supported in part by NSFC under

Grant No.61272538, National Commonweal Technology

R&D Program of AQSIQ China under Grant

No.201310087, Shenzhen Science and Technology

Program under Grant No.CXY201107010163A, and

Shenzhen Strategic Emerging Industries Program under

Grants No.JCYJ20120613135329670 and No.

ZDSY20120613125016389.

REFERENCES

[1] Fortunato S. “Community detection in graphs,” Physics

Reports, 2010, 486(3): 75-174.

[2] Leskovec J, Kleinberg J, Faloutsos C. “Graphs over time:

densification laws, shrinking diameters and possible

explanations,” Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in data

mining. ACM, 2005: 177-187.

[3] Stumpf M P H, Wiuf C, May R M. “Subnets of scale-free

networks are not scale-free: sampling properties of

networks,” Proceedings of the National Academy of

Sciences of the United States of America, 2005, 102(12):

4221-4224.

[4] Leskovec J, Faloutsos C. “Sampling from large graphs,”

Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining.

ACM, 2006: 631-636.

[5] Zou R, Holder L B. “Frequent subgraph mining on a

single large graph using sampling techniques,”

Proceedings of the Eighth Workshop on Mining and

Learning with Graphs. ACM, 2010: 171-178.

[6] Krishnamurthy V, Faloutsos M, Chrobak M, et al.

“Reducing large internet topologies for faster

simulations,” Networking Technologies, Services, and

Protocols; Performance of Computer and Communication

Networks; Mobile and Wireless Communications Systems.

Springer Berlin Heidelberg, 2005: 328-341.

[7] Watts D J, Strogatz S H. “Collective dynamics of ‘small-

world’networks,” Nature, 1998, 393(6684): 440-442.

[8] Bouttier J, Di Francesco P, Guitter E. “Geodesic distance

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2695

© 2013 ACADEMY PUBLISHER

in planar graphs,” Nuclear Physics B, 2003, 663(3): 535-

567.

[9] Faloutsos M, Faloutsos P, Faloutsos C. “On power-law

relationships of the internet topology,” ACM SIGCOMM

Computer Communication Review. ACM, 1999, 29(4):

251-262.

[10] Palmer C R, Gibbons P B, Faloutsos C. “ANF: A fast and

scalable tool for data mining in massive graphs,”

Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining.

ACM, 2002: 81-90.

[11] Chakrabarti D, Zhan Y, Faloutsos C. “R-MAT: A

recursive model for graph mining,” Computer Science

Department, 2004: 541.

[12] Guimera R, Danon L, Diaz-Guilera A, et al. “Self-similar

community structure in a network of human interactions,”

Physical review E, 2003, 68(6): 065103.

[13] Newman M E J. “The structure of scientific collaboration

networks,” Proceedings of the National Academy of

Sciences, 2001, 98(2): 404-409.

[14] http://en.wikipedia.org/wiki/KS_Test#cite_note-0 2012

[15] http://www-personal.umich.edu/~mejn/netdata/ 2012

[16] Yu W, Li S, Zhang Y, et al. “Mining Users Similarity of

Interests in Web Community,” Journal of Computers,

2011, 6(11): 2357-2364.

[17] Ma R, Deng G, Wang X. “A Cooperative and Heuristic

Community Detecting Algorithm,” Journal of Computers,

2012, 7(1): 135-140.

[18] Zhu S, Lin K, Zeng Z, et al. “A Sampling Method Based

on Gauss Kernel Learning and the Expanding Research,”

Journal of Computers, 2012, 7(2): 547-554.

[19] Li Y, Du X, Ye Y, et al. “Stratified Sampling Large

Relational Networks Using Topologically Divided

Stratums,” Procedia Engineering, 2011, 15: 3774-3779.

Xiaolin Du was born in HeiLongjiang Province, China in Jan.

1983, and received her Master Degree in Computer Science

from Harbin Institute of Technology in 2009.

Currently, she is a PhD candidate in Shenzhen Graduate

School, Harbin Institute of Technology. Her research interests

involve data mining, data visualization and social network

discovering.

Yunming Ye was born in China in Sep. 1976, and received his

PhD degree in Computer Science from Shanghai Jiao Tong

University in 2004.

Currently, he is a professor in Shenzhen Graduate School,

Harbin Institute of Technology. His research interests include

Web mining, Web Search, and social computing.

Yueping Li was born in Guangdong Province, China in Sep.

1980, and received his PhD in Computer Science from Sun Yat-

sen University in 2008.

Currently, he is a post doctor in Shenzhen Graduate School,

Harbin Institute of Technology. His research interests involve

web mining, graph algorithm and optimization.

Xiaohui Huang is a PhD candidate in the Shenzhen Graduate

School, Harbin Institute of Technology, China. His research

interests are in the areas of data mining, topic detection and

clustering algorithm.

2696 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

