
Detecting and Evaluating Semantic Influences of
Aspect Weaving in Aspect Oriented Models

Chunhua Yang

School of Information, Shandong Institute of Light Industry, Jinan, China
Email: jnych@126.com

Abstract—Weaving an aspect may introduce undesired
impacts on behavior of the base model or other afore-woven
aspects. An approach to detect and evaluate the semantic
influences of an aspect weaving on a pattern is presented.
The pattern specifies a desired behavior that should stay
unaltered or occur in the woven model. The detection and
evaluation are based on the semantic relationship between a
pattern and its projection that represents its actual
semantics in the woven model. Five types of aspect weaving
influences are identified. The approach has the Process
Algebras (PA) as the underlying formalisms and has been
implemented by mapping to the Concurrency Workbench
(CWB) tool. An example shows the effectiveness.

Index Terms—aspect weaving, influences, aspect interaction,
aspect interference, aspect-oriented software development

I. INTRODUCTION

With the aim of reducing complexity and enhancing
maintainability, aspects have been extended to software
modeling stage to modularize crosscutting concerns.

An aspect-oriented model generally consists of a base
model and aspect models. The base model encapsulates
the main functionality of the software system, while the
aspect models encapsulate concerns that crosscut the
main functionality. Aspect models combine with the base
model through a weaving process. Many approaches have
been proposed to specify aspect oriented models using
different notations, i.e. UML statecharts[1, 20], UML
activity diagrams[2, 3], Visual Contract Language (VCL)
[4], process algebra[18] etc.

However, the separate development of aspects may
introduce semantic problems in the process of weaving
[5]. The weaving of a new aspect may introduce
undesired impacts on behavior of the base model or an
afore-woven aspect, or result in emerging behaviors that
conflict with some intended behaviors, which threaten the
reliability of the software.

Many attempts have been made to detect whether there
exist aspect influences by checking aspect-oriented
models against desired properties [6, 7, 8, 9, 10, 19].
However, it has been neglected that how an aspect affects
the base model or other aspects.

We present an approach to evaluate whether and how
an aspect weaving influences a pattern. The pattern
specifies the behavior of the base model or an afore-
woven aspect, or an expected behavior in the woven
model. Its underlying formalisms are PA algebras.

The rest of the paper is organized as follows: In section
2, a motivation example is introduced. In section 3, the
approach is presented. Thereafter, section 4 describes the
implementation. Section 5 briefly describes the related
work and section 6 concludes.

II. A MOTIVATION EXAMPLE

When weaving an aspect into a well-designed system,
it is generally expected that certain behaviors occur or
stay unaltered in the augmented system.

Consider a property listing subsystem (or PLS for short)
in an online real estate system (see Fig.1). When a seller
has a house for sale, he or she should list the property
information for publicity through a broker. The work
flow is as follows: A broker inputs the property
information to the property listing system. Then system
verifies the correctness of the provided information. If the
verification result is ok, the information is saved to the
DB for listing publicity and the broker receives an
accepted response. Otherwise, the broker receives a
refused response.

Now, three aspects Timing, Auth, and Log are designed

to augment the system with new requirements. The
Timing aspect counts the average time of the process of
successful property listing, while the Auth and Log
aspects add the authentication and logging functions to
the PLS. Moreover, it is desired that:

R1. The original system behavior should be preserved
after the Timing aspect is woven; and

infoin
Property
Listing ListingDB accepted

refused

save

failed ok verify

Property‐File‐
Management

Figure 1. The property listing system.

This work was supported by the Natural Science Foundation of
Shandong Province China under Grant No.ZR2011FQ017 and Grant
No.ZR2012FM032, and Shandong Engineering Laboratory of Key
Technology for Flow Process Enterprise Information Integration.

Corresponding author: Chunhua Yang

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2675

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2675-2681

R2. Before the broker inputs the property information
to the property listing system, he or she should be
authenticated; and

R3. Each time the broker is authenticated, it should be
logged.

The expectation R1 implies that behavior of the base
model should stay unaltered after weaving the Timing
aspect, while R2 or R3 represents a desired behavior that
should occur in the augment system after weaving the
Auth aspect and the Log aspect.

To check whether the augment system satisfies these
expectations, influences of weaving the three aspects on
the behavior of the base model or the desired behaviors
(R2 and R3) should be evaluated.

III. THE APPROACH

Process Algebra [11] is a popular tool for modeling
software system [12]. Moreover, its notion of behavior
equivalence makes is feasible for comparing the semantic
relationship between two models. Therefore, our
approach has Process Algebra as the underlying
formalism.

A. Brief Introduction to PA
This section briefly introduces concepts related to

Process Algebra (PA in short) [11].
Assuming an infinite collection A of names, the set A=

{ a | a∈A} is the set of complementary names (or co-
names for short). Let Act = A∪ A∪{τ} be the set of
actions, where action τ is a distinguished unobservable
action or inner action.

Definition 1 The collection of process terms of the
Process Algebra is generated by the following grammar:

P::= 0| a.P | P+P | P|P | P\L | P[f] | K
where a is an action in Act, f: Act→Act is a relabelling
function, L⊆Act−{τ} is a set of labels, and K is a constant
possessing a defining equation of the form K Δ P.

In the syntax above, the null term “0” is the term that
cannot execute any action. The action prefix operator
“a.P” denotes the sequential composition of an action and
a term. The hiding operator “\L” makes the executed
actions belonging to L unobservable. The alternative
composition operator “+” expresses a nondeterministic
choice between two terms. The parallel composition
operator “|” expresses the concurrent execution of two
terms according to the following synchronization
discipline: two (observable) actions can synchronize iff
they are a pair of complementary actions.

The application of the semantics for PA is a Labeled
Transition System, where states are in correspondence
with process terms and transitions are labeled with
actions.

Definition 2 A labeled transition system (LTS) is a
tuple (S, Act, T, sinit), where S is a set of states which
include an initiate state sinit, Act is a set of actions,
T⊆S×Act×S is a transition relation.

We write s
a
→ s′ for a transition (s, a, s′)∈T.

A trace of a process P is a sequence a1 · · ·ak ∈Act*(k ≥
0) such that there exists a sequence of transitions P =

P0
1a

→ P1
2a

→ · · · ka

→ Pk for some P1, . . . , Pk. We write
Traces(P) for the collection of traces of P.

Definition 3 [Trace equivalence] Two processes and Q
are trace equivalent if, and only if, they afford the same
traces, i.e. Traces(P) = Traces(Q).

Let P and Q be processes. We write P
ε
⇒ Q iff there is

a (possibly empty) sequence of τ -labeled transitions that
leads from P to Q. (If the sequence is empty, then P = Q.)

For each action a, we write P
a
⇒ Q iff there are processes

P′ and Q′ such that

P
ε
⇒ P′

a
→ Q′

ε
⇒ Q.

For each action a, we use â to stand for ε if a = τ , and
for a otherwise.

Definition 4 [Weak Bisimulation] A binary relation R
over the set of states of an LTS is a weak bisimulation iff
whenever s1 R s2 and a is an action:

- if s1
a
→ s1′, then there is a transition s2

a
∧

⇒ s2′ such that
s1′ R s2′;

- if s2
a
→ s2′, then there is a transition s1

a
∧

⇒ s1′ such that
s2′ R s1′.

Two states s and s′ are observationally equivalent (or
weakly bisimilar), written s≈s′, iff there is a weak
bisimulation that relates them.

B Definition of Models
As PA is a powerful tool for modeling software system

behavior[12], we define the base model and advice
models as labeled transition systems.

Definition 5 A base component e=(S, Act, T, sinit) is a
LTS.

Definition 6 A base model m=(S, Act, T, sinit) is a LTS
that is a parallel composition of the base components
e1, …, en, i.e. m = e1||…||en (n≥1).

Definition 7 [Join Point] Given a base component
Bc=(S, Act, T, sinit), a join point jp is a state s∈S or a
transition (s, a, s′)∈T where a is an observable action.

If a join point is a transition, we call it transition join
point. Otherwise, we call it state join point.

We identify three advice types:
 sequential: A sequential advice applies to a

transition join point. The advice begins to run when
the join point is active. Until the advice arrives at a
final state, the join point executes (or continues)
immediately.

 branched: A branched advice applies to both a
transition join point and a state join point. The
advice executions before (or after) the transition join
point. If the conditions set by the advice satisfy, the
advice runs to a true final state and then the
transition join point executes immediately.
Otherwise, the advice runs to a false final state and
the state join point becomes active.

 synchronized: A synchronized advice is an advice
applies to transition join points. Execution of a
synchronized advice and the base model are
concurrent according to the synchronization rules: a

2676 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

transition join point synchronizes with a predefined
observable transition of the advice.

Definition 8 [Advice] An advice ad=(Type, Beha)
consists of a type Type and a behavior Beha, in which
Type=(sequential, branched, synchronized) and Beha=(S,
Act, T, sinit, Sfinal) is an extended LTS. An extended LTS
introduces a final state set Sfinal to the base LTS. A final
state is a state from which no transitions direct. Moreover,
Beha.Sfinal=∅ for Type= synchronized, and Beha.Sfinal≠∅
for Type=(sequential, branched).

Definition 9[Aspect] An aspect Ap={(jp1,ad1),…,(jpn,
adn)}(n≥1) is a set of pairs of an advice and a join point
set where the advice would apply.

C. Definition of Aspect Weaving
According to the advice types, we define five operators

(bef
seq∠ , aft

seq∠),(bef
brach∠ , aft

brach∠),(
syn∠) to weave sequential,

branched, and synchronized advices, respectively.
Moreover, we use M = op∠ (Bc, jp_x, ad) to denote the
advice weaving, where:
 M is a LTS that represents the composition model

resulted from the weaving, op∠ is the weaving
operator, ad is an advice, Bc is the base component
that jp_x belongs to; and

 jp_x = s
a
→ s′ stands for a transition join point for a

sequential advice; and
jp_x = {s

a
→ s′, sfalse} stands for a pair of a transition

and a state join point for a branched advice; and
jp_x= {<s1

1a
→ s1′, t1

1b
→ t1′>,…,<sn

na

→ sn′, tn
nb

→ tn′>}
(n≥1) stands for a set of pairs of a join point and the
corresponding synchronized transition in ad for an
interactive synchronized advice.

Fig.2 illustrates the two types of sequential advice
weaving. Formally, let M= bef

seq∠ (Bc, s
a
→ s′, ad), then:

 M.S=Bc.S ∪{snew}∪ad.Beha.S, M.sinit= Bc.sinit,
M.Act = Bc.Act ∪ ad. Act, and

 M.T=(Bc.T-{s
a
→ s′})∪{snew

a
→ s′, s

ε
→ t, tfinal

ε
→ snew}

∪ ad.Beha.T.
The process of the after-sequential weaving is similar

to the before-sequential weaving, which is as shown in
Fig.2(3).

Given a branched advice ad, which has a true final

state tfinal′ and a false final state tfinal′′, the before-branched
and after-branched advice weaving are depicted in
Fig.3(2) and Fig.3(3) respectively. Take the before-

branched weaving for instance(see Fig.3(2)). Let
M= bef

brach∠ (Bc, {s
a
→ s′,sfalse}, ad), then:

 M.S = Bc.S ∪ {snew} ∪ ad.Beha.S, M.sinit = Bc.sinit,
M. Act = Bc.Act∪ ad. Act, and

 M.T=(Bc.T-{s
a
→ s′})∪{snew

a
→ s′, s

ε
→ t,

tfinal′
ε
→ snew , tfinal′′

ε
→ sfalse }∪ ad.Beha.T.

As for a synchronized advice, its weaving is

implemented by parallel composition of PA. Formally, let
ad is an advice and M=

syn∠ (Bc, {<s1
1a

→ s1′,

t1
1b

→ t1′>,…,< sn
na

→ sn′, tn
nb

→ tn′>}, ad), then:
 Bc.Act=Bc.Act∪{b1 ,…, bn}, Bc.T=(Bc.T-{ <s1

1a
→ s1′}

-…- {sn
a
→ sn′})∪{ <s1

11 .ba
→ s1′, sn

nn ba .

→ sn′}, and
 M = Bc| ad.

Fig.4 illustrates the process of weaving synchronized
advices.

The weaving of an aspect is achieved by weaving

its advices in turn. Given an aspect A and a base
model B, we use B∠A to denote the process of
weaving A to B in the following sections. As the
woven model is a LTS, it can act as a base model
which allows weaving another aspect.

D. Detection and Evaluation of Aspect Weaving
Influences

A pattern specifies a certain behavior that is desired to
be checked in the woven model.

Definition 10[Pattern] Given a woven model M′=(S′,
Act′, T′, s′init), a pattern is a model M=(S, Act, T, sinit)
which satisfies Act⊆(Act′∪{τ}).

As the action set of a base model is a subset of the
woven model according to the definition of weaving, a
base model is a pattern.

Definition 11[Projection] Given a pattern M=(S, Act,
T, sinit) and a woven model M′=(S′, Act′, T′, s′init) which
satisfies Act⊆(Act′∪{τ}), then the projection of M′ on M,
written as M

M
′∇ , is a LTS (SP, ActP, TP, sinit-P), where

(1) a synchronized advice
and the join point

(2) synchronized advice
weaving

s
a

s′

t …… b

jp:

ad:

s
a.b s′

t …… b

jp:

ad:
t′ t′

Figure 4. The synchronized weaving.

s

a
s′ jp:

ad:

sfalse sfalse

t t′final…… b c

t′′final

ad: t
t′final …… b c

t′′final

s a s′ jp:
snew

d d

(1) a branched advice and
the join point

(2) before‐branched advice
weaving

sfalse

ad: t
t′final…… b c

t′′final

s a s′
jp:

snew

d

(3) after‐branched advice
weaving

Figure 3. The branched weaving.

s

a s′

t tfinal …

s a s′

t tfinal …

jp:

ad:

snew

b cb c

s a s′

t tfinal…

jp:

ad:

snew

b c

jp:

ad:

(1) a sequential advice
and the join point

(2) before sequential
weaving

(3) after‐ sequential
weaving

Figure 2. The sequential weaving.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2677

© 2013 ACADEMY PUBLISHER

 SP= S′, ActP= Act∪{τ}, sinit-P= s′init, and
 TP={(s1′, a, s2′)| (s1′, a′, s2′)∈T′ ∧ (if a′∈Act∪{τ}

then a=a′, otherwise a=τ)}.
In the projection, actions of the pattern are observable

while others are invisible. Therefore, projection
M
M
′∇ represents the actual behavior of the pattern M in

the woven model M′.
We introduce a function Ifl: LTS×LTS→(influence-free,

may-influence-free, extension, narrowing, alteration) to
evaluate the semantic relationship between two LTSs.

Definition 12 Given two LTSs M and N which
satisfies M.Act∪{τ}= N.Act∪{τ}, then the Ifl(M, N) is:

 influence-free iff M≈N; or
 may-influence-free iff Traces(M) = Traces(N); or
 extension iff Traces(M) ⊂Traces(N); or
 narrowing iff Traces(M) ⊃Traces(N); or
 alteration otherwise.

The influence of an aspect weaving on a pattern is
evaluated according to the semantic relationship between
the pattern and its projection in the woven model. As a
pattern and its projection are LTSs, their semantic
relationship is evaluated by the function Ifl.

Definition 13 [Aspect-Weaving Influence] Given a
pattern M, an aspect weaving M′= B∠A of base model B
and aspect A, and the projection M

M
′∇ , then the influence

of the aspect weaving on the pattern M is Ifl(M, M
M
′∇).

According to the definition, if only a desired behavior
can be specified as a pattern, the influence of an aspect
weaving on it can be detected. For example, if let the
pattern M=B, the weaving influence on the base model B
can be evaluated by Ifl(B, AB

B
∠∇). Meanwhile, let the

pattern M= 1

1

AB
A
∠∇ , we can evaluate the influence of

weaving another aspect A2 on the afore-woven aspect
A1according to Ifl(M, 21)(AAB

M
∠∠∇).

IV. IMPLEMENTATION

In this section, the approach is implemented by
mapping to a popular verification tool- the Concurrency
Workbench (CWB) [13], and the example introduced in
section 2 is implemented.

A. Mapping the Approach to the CWB
The CWB is an automated tool that helps in the

manipulation and analysis of concurrent system
specifications [13], in which a variety of equivalence
relationships are supported. As the main modeling
language used by the CWB is the process calculus CCS
[11], it is convenient to mapping our approach to the tool.

We map our approach to the CWB according to the
following rules:
 The base components, the base model, the patterns,

and the synchronized advices are LTSs. For a
Labeled Transition System (S, Act, T, sinit), a state
s∈S is represented as an agent in the CWB, while a
transition s

a
→ s1∈T is represented as an expression

like “agent S = a.S1;” in the CWB.
 The mapping of other types of advices is similar to

that of LTSs except that they have special undefined
agents to indicate the final state of the advice. The
special undefined agent’s name begins with ‘End’.

 The join point is a state or a transition in the base
model, which is mapped as an agent or an expression
in the CWB. Advice weaving is mapped according to
the advice type and steps defined by the
corresponding weaving operator, while the projection
is mapped according to its definition.

 Finally, three commands eq, mayeq, and maypre are
used to check semantic relationship between two
LTSs. The three commands return true iff two agents
are weak bisimilar, trace equivalent, or languages
contained, respectively. In other words, given two
LTSs M and M', Ifl(M, M′) is:
- influence-free iff eq(M, M′);or
- may-influence-free iff mayeq (M, M′); or
- extension iff maypre(M, M′); or
- narrowing iff maypre(M′, M); or
- alteration otherwise.

B. Implementing the Example
Fig.5 is the definition of the base model and the

aspects of the property listing system introduced in
section 2.

The base model PLS is a parallel composition of three
base components LDB, PFM and PL, which correspond
to the three components of the system: ListingDB,
Property File Management, and Property Listing
respectively (see Fig.1).In the CWB, ‘'a’ represents
coname a and ‘tau’ represents the ‘τ’.

The Timing aspect has a synchronized Timing advice
(agent Timing in Fig.5), which would execute the action
starttimer at the join point ‘agent PL = infoin.PL1’ and
execute the action endtimer at the join point ‘agent PL2 =
ok.'accepted.'save.PL’. The Log aspect has a sequential
Log advice (agent Log in Fig.5), which would insert after
the join point ‘agent PL = infoin.PL1’. The Auth aspect
has a sequential Auth advice (agent Auth in Fig.5), which
would weave before the join point ‘agent PL =
infoin.PL1’. The sequential agent Log and Auth have a
final state EndLog and EndAuth respectively.

The advice weaving is implemented by two stages:

 Firstly, agents in the base model and the aspect are

Figure 5. The base model and the aspects of the example.

2678 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

included in the woven model. Moreover, to
distinguish them from their original definitions,
every agent is renamed as ‘n_W’ where n is their
original names.

 Secondly, the weaving is implemented according to
the type of the advice and the definition of advice
weaving.

For example, Fig.6 despicts the woven model PLS_W
resulted from weaving the Log advice into the PLS.

The projection is implemented by applying its

definition. For example, in Fig.7, agent PLS_W_P is the
projection of the woven model PLS_W in Fig.6 on the
base model PLS, in which action log has been replaced by
‘tau’.

Now, the influences of aspect weaving on certain

patterns can be checked. Firstly, the influences on the
base model when weaving the three advices into it
individually is checked. Table 1 lists the results. In Table
1, agent PLS W is the woven model resulted from

weaving every advice into the PLS individually, while
agent PLS W P is the projection of PLS W on PLS.

From the result, we can conclude that the influence of
advice Log on the base model PLS is influence-free and
that of advice Auth is may-influence-free. However, the
influence of advice Timing on PLS is narrowing, i.e. the
base model has been altered, which violates the
expectation R1.

Through analysis, there are deadlocks in the woven
model after weaving the Timing advice. To overcome the
problem, we design an alternative aspect which consists
of two advices TimeLog1 and TimeLog2 (see Fig.5). The
two advices will log the time at the join points ‘agent PL
= infoin.PL1’ and ‘agent PL2 = ok.'accepted.'save.PL’.
Then, certain computation for the average time can be
conducted on the log files afterwards. The two timing
advices are designed as depicted in Fig.5. Moreover, as
shown in table 1, their influences on the base model are
influence-free, which satisfy R1.

Then we detect the aspect weaving influences when
weaving these advices into the base model incrementally
in a sequence Auth->TimeLog1->TimeLog2->Log. Table
2 lists the checking results. To make it clearly understood,
parameters M and M′are specified in the weaving notation
‘∠’and the projection notation‘∇’. From the table, it can
be seen that aspect Auth has a may-influence-free
influence on the base model PLS, while the weaving of
TimeLog1 and TimeLog2 have influence-free influences
on the base model PLS∠Auth and influence-free impacts
on the afore-woven aspect Auth. Finally, the weaving of
Log does not influence the base model and the afore-
woven aspects Auth, TimeLog1, and TimeLog2.

Finally, we check the influences of aspect weaving on
the desired behavior. We design two patterns as follows
to describe the desired behavior in R2 and R3:
agent Pattern1 = 'authorized.infoin.Pattern1 + 'unauthorized.0; and
agent Pattern2 = 'authorized.log.Pattern2 + 'unauthorized.0;,

Through evaluation (see Table 3), weaving all aspects
into the PLS has influence-free on Pattern1 and Pattern2,
i.e. it satisfies these expectations.

TABLE I.
INFLUENCES OF ASPECTS ON THE BASE MODEL WHEN WOVEN INDIVIDUALLY

The base
model

The advice M M′ eq
(M, M′)

mayeq
(M,
M′)

maypre
(M, M′)

maypre
(M′, M)

PLS Log PLS W PLS W P T T T T

PLS Timing PLS W PLS W P F F F T
PLS Auth PLS W PLS W P F T T T
PLS TimeLog1 PLS W PLS W P T T T T
PLS TimeLog2 PLS W PLS W P T T T T

Figure 7. The projection of the woven model on PLS.

Figure 6. The woven model

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2679

© 2013 ACADEMY PUBLISHER

V. RELATED WORK

Majority of currently approaches to detecting aspect
influences adopt model checking as the underlying
technologies. They generally define the semantics as
certain desired properties. Through checking the model
derived from aspect weaving against desired properties,
the influences of one aspect on the base model or other
aspects can be detected. The approach proposed in [6]
can verify whether the woven program contains
unexpected behaviors such as deadlocks. MAVEN tool
[10] can verify and analyze aspect interference modularly.
It can not only verify the correctness of an aspect relative
to its specification, but also allow establishing
noninterference among aspects, or detecting potential
interference. The approach proposed in [9] can detect
aspect-base interactions modularly. As for the UML
based aspect models, they should first be translated into
some formal specifications. In [8], AO models written in
Aspect-UML are translated into Alloy for verification.
Similarly, in [7], aspect-oriented state models of a system
are transformed into FSP processes which are checked by
the LTSA model checker.

In contrast to the model-checking based approaches,
the approach presented in the paper focuses on the
influences of aspect weaving on the behavior of a pattern
other than certain behavior properties.

In addition, other approaches employ technologies
such as program slicing[14], graph transformation[15, 16]
and semantics annotation[17] to detect the aspect
interactions in AOSD. The approach in [14] uses

programming slicing to detect the influences between
aspects. The graph transformation based approach in [15]
is to analyze potential inconsistencies caused by aspect
composition. The graph transformation based approach in
[16] can detect aspect interference at shared join points.
The approach in [17] is presented to detect aspect
interactions in aspect scenarios, which is based on
lightweight semantic annotations of aspects. In contrast to
these approaches, our approach operates on design
artifacts. Nevertheless, the idea of program slicing is
similar our notion of projection. In other words, the
projection can be seen as a kind of the semantic slicing of
the model.

VI. CONCLUSION

In this paper, we have presented and implemented an
approach to detect semantic influences of aspect weaving
on the base model, an afore-woven aspect, or an expected
behavior in the woven model. The behavior to be
detected is specified as a pattern. Through comparing the
semantic relationship between a pattern and its projection,
influences of the aspect weaving on the pattern are
evaluated. The approach can detect and evaluate five
types of influences, which can be used as the basis for
estimating the correctness of aspects or be as clues to
further improvements when undesirable influences occur.

Currently, we implement the weaving manually. As
the CWB is a command line tool and the detection of
aspect influences needs three models: a pattern, a woven
model and the projection, there are much trivial work on

TABLE II.
INFLUENCES OF ASPECTS WHEN WEAVING THEM INCREMENTALLY.

M M′ eq
(M, M′)

mayeq
(M, M′)

maypre
(M, M′)

maypre
(M′, M)

PLS AuthPLS
PLS

∠∇
F T T T

PLS∠AUTH 21 TimeLogTimeLogAuthPLS
AuthPLS

∠∠∠
∠∇ T T T T

AuthPLS
Auth

∠∇
21 TimeLogTimeLogAuthPLS

Auth
∠∠∠∇

T T T T

PLS∠AUTH∠TIMELOG1∠TIMEL
OG2

LogTimeLogTimeLogAuthPLS
TimeLogTimeLogAuthPLS

∠∠∠∠
∠∠∠∇ 21

21
T T T T

21 TimeLogTimeLogAuthPLS
Auth

∠∠∠∇ LogTimeLogTimeLogAuthPLS
Auth

∠∠∠∠∇ 21 T T T T

21
1

TimeLogTimeLogAuthPLS
TimeLog

∠∠∠∇ LogTimeLogTimeLogAuthPLS
TimeLog

∠∠∠∠∇ 21
1

T T T T

21
2

TimeLogTimeLogAuthPLS
TimeLog

∠∠∠∇ LogTimeLogTimeLogAuthPLS
TimeLog

∠∠∠∠∇ 21
2

T T T T

TABLE III.
INFLUENCES OF ASPECTS WEAVING ON PATTERNS

M M′
eq

(M,
M′)

mayeq
(M, M′)

maypre
(M, M′)

maypre
(M′, M)

Pattern1
LogTimeLogTimeLogAuthPLS

Pattern
∠∠∠∠∇ 21

1

T T T T

Pattern2
LogTimeLogTimeLogAuthPLS

Pattern
∠∠∠∠∇ 21

2

T T T T

2680 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

saving copies of models. The problem can be resolved by
building an automatic weaving tool in the future.

ACKNOWLEDGMENT

This work was supported by the Natural Science
Foundation of Shandong Province China under Grant
No.ZR2011FQ017 and Grant No.ZR2012FM032, and
Shandong Engineering Laboratory of Key Technology
for Flow Process Enterprise Information Integration.

REFERENCES

[1]B. Wang, C. Zhu, J. Sheng, “A formal description method for
aspect-oriented statechart based on CSP”, In Proceedings
of International Symposium on Computer Science and
Computational Technology, pp. 750-753, 2008

 [2]D. Mouheb, D. Alhadidi, M. Nouh, M. Debbabi, L. Wang,
M. Pourzandi, “Aspect weaving in UML activity diagrams:
A semantic and algorithmic framework”, Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
vol 6921 LNCS, pp. 182-199, 2012.

 [3]M. Nouh, R. Ziarati, D. Mouheb, D. Alhadidi, M. Debbabi,
L. Wang, M. Pourzandi, “Aspect weaver: A model
transformation approach for UML models”, In Proceedings
of the 2010 Conference of the Center for Advanced Studies
on Collaborative Research, CASCON'10, pp. 139-153,
2010.

 [4]N. Amálio, P. Kelsen, Q. Ma, C. Glodt, “Using VCL as an
aspect-oriented approach to requirements modeling”,
Transactions on Aspect-Oriented Software Development
VII - A Common Case Study for Aspect-Oriented Modeling,
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 6210 LNCS, pp. 151-199, 2010.

[5] R. Douence, P. Fradet, and M. Südholt, “A framework for
the detection and resolution of aspect interactions”, In
Proceedings of the ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component
Engineering(GPCE ’02), London, UK, Lecture Notes in
Computer Science 2487, pp. 173–188,2002.

[6] N. Ubayashi, T. Tamai, “Aspect-Oriented Programming
with Model Checking”, in Proceedings of the 1st
international conference on Aspect-oriented software
development (AOSD'02), pp.148-154,2002.

[7] D. Xu, I. Alsmadi, W. Xu, “ Model Checking Aspect-
Oriented Design Specification”, in Proceedings of the 31st
IEEE International Computer Software and Applications
Conference (COMPSAC'07), pp.491– 500,2007.

[8] F. Mostefaoui and J. Vachon, “Design-level Detection of
Interactions in Aspect-UML models using Alloy”, Journal
of Object Technology, Special Issue: Aspect-Oriented
Modeling, vol. 6, no. 7, pp.137–165, 2007.

[9] Z. Altahat, T. Elrad, “Detection and verification of semantic
interaction in AOSD”, in Proceedings of 6th International

Conference on Information Technology: New Generations,
pp.807-812, 2009.

[10] M. Goldman, E. Katz, S. Katz, “MAVEN: modular
aspect verification and interference analysis”, Formal
Methods in System Design - FMSD , vol. 37, no. 1, pp. 61-
92, 2010.

[11] R. Milner, Communication and Concurrency,
Prentice-Hall International Series in Computer Science,
1989.

[12] R. Allen and D. Garlan, “A formal basis for
architectural connection”, ACM Transactions on Software
Engineering and Methodology, vol. 6, pp.213-249, 1997.

[13] R. Cleaveland, J. Parrow, and B. Steffen, “The
Concurrency Workbench: A Semantics based Verification
Tool for Finite-state Systems”, in Proceedings of the
Workshop on Automated Verification Methods for Finite-
state Systems, LNCS, 407, 1989.

[14]D. Balzarotti, A. Castaldo D’Ursi, L. Cavallaro, and M.
Monga, “Slicing AspectJ woven code”, in Proceedings of
Foundations of Aspect-Oriented Languages workshop
(FOAL2005), 2005.

[15]K. Mehner, M. Monga, G. Taentzer, “Interaction Analysis
in Aspect-Oriented Models”, in Proceedings of the 14th
IEEE International Requirements Engineering Conference,
pp.66-75, 2006.

 [16]M. Aksit, A. Rensink, T. Staijen, “A graph-transformation-
based simulation approach for analysing aspect interference
on shared join points”, in Proceedings of the 8th ACM
International Conference on Aspect-Oriented Software
Development, pp.39-50, 2009.

[17] G. Mussbacher, J. Whittle, D. Amyot, “Modeling and
detecting semantic-based interactions in aspect-oriented
scenarios”, Requirements Engineering, vol. 15, no. 2, pp.
197-214, 2010.

[18] Chunhua Yang, Haiyang Wang,” Formal Models for
Architecture Aspects and Their Weaving”, Journal of
Software, vol. 3, no. 9 : Special Issue: Selected Best Papers
of ISECS 2008 - Track on Software, pp.52-59, 2008.

[19] Mahmoud O. Elish, Mojeeb Al-Khiaty, Mohammad
Alshayeb,” Investigation of Aspect-Oriented Metrics for
Stability Assessment: A Case Study”, Journal of Software,
vol. 6, no. 12: Special Issue: Parallel and Distributed Data
Processing, pp.2508-2514, 2011.

[20] Lichen Zhang,” Aspect-Oriented Development Method for
Non-Functional Characteristics of Cyber Physical Systems
Based on MDA Approach”, Journal of Software, vol. 7, no.
3, pp. 608-619, 2012.

Chunhua Yang received her Ph.D., M.S. and B.S. degrees in
Department of Computer Science and Technology from
Shandong University, China, in 2010, 2002 and 1995,
respectively. She is an Assistant Professor of School of
Information Science of Shandong Light Industry, Shandong,
China. Her research interests include aspect oriented
technologies, business process, and web services.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2681

© 2013 ACADEMY PUBLISHER

