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Abstract—An improved harmony search algorithm for 
constrained multi-objective optimization problems is 
proposed in this paper. Inspired by Particle Swarm 
Optimization, an inductor particle is introduced to speed up 
the convergence rate of the CMOHS. Two populations are 
adopted to increase the opportunity of finding the optimal 
solutions. Numerical experiments are divided into two parts: 
the first one compares the CMOHS with NSGA-II, and the 
other one compares the CMOHS with the algorithm without 
the inductor individual. The results show that the CMOHS 
is more effective than NSGA-II, and the induction 
mechanism improved the convergence and diversity of the 
algorithm. 
 
 
Index Terms—Multi-objective optimization, Harmony 
search algorithm, Double populations, Density 
 

I.  INTRODUCTION 

Evolutionary algorithm has been used in the fields of 
academia and engineering to solve optimization problems 
successfully. The unconstrained optimization problems 
and the constrained optimization problems all need to be 
solved. The difficulty of solving constrained optimization 
problems is that the restrictions on the constraint 
variables in practical problems are hard to meet. The 
optimal solution of constrained optimization problems 
must satisfy all the constraints and have the best 
performance for the objective function among all the 
feasible solutions simultaneously. For the constrained 
multi-objective optimization problems, the constraints 
and all the objective functions should be taken into 
consideration. So it is more difficult to find the optimal 
solution of the constrained multi-objective optimization 
problems. In practical application, inevitably, most 
problems are constrained multi-objective optimization 

problems. so how to resolve the constrained multi-
objective optimization problems has been paid particular 
attention. 

The traditional approach to dealing with constraints is 
by using the penalty function. That is to translate the 
constrained optimization problem into the unconstrained 
optimization problem. Michalewicz [1] has done a 
comprehensive review on the various constraints 
approach based on the current evolutionary algorithm, in 
which the penalty function method is widely used. 
Woldesenbet [2] proposed an adaptive penalty function. 
The key of the penalty strategy is how to design a penalty 
function and how to select the penalty coefficient. The 
penalty coefficient is often related to the practical 
problem, so it is difficult to set. In recent years, the 
method that changing the constrained optimization 
problem into the multi-objective optimization problem 
has aroused great attention. The main idea of this 
approach is to change the constraints into the multi-
objective functions. Then the existing algorithm is used to 
solve the multi-objective optimization. This method does 
not require parameters setting, but with the constraints 
increase, the dimension of objective function and the 
difficulty of computation will increase. As the 
constrained multi-objective evolutionary algorithm is 
hard to be treated, the research in this area is still in 
developing stage at present. There are many 
representative researches. Deb [3] proposed the 
constraints dominance relationship to deal with 
constraints. Binh [4] combined the objective function and 
the constraint violation degree of the infeasible solution 
to compute the individual fitness, and sorted them based 
on the distance between the individual and the feasible 
boundary. Mu [5] proposed a technique similar to 
simulated annealing genetic algorithm. Infeasible 
solutions can be divided as the acceptable solutions and 
the unacceptable solutions by the infeasible degree in 
Mu’s method. And the infeasible solutions close to the 
feasible region and change into the feasible solutions 
gradually with the evolution. Wang [6] proposed a new 
genetic algorithm, in which the neighborhood comparison 
and the archiving operation are utilized to smooth the 
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conflicting objectives. Infeasibility degree selection is 
used to handle constraints. Meng [7] proposed a new 
algorithm based on the double populations for 
constrained multi-objective optimization Problem 
(CMOP). In the proposed algorithm, two populations are 
adopted, one is for finding the feasible solutions during 
the evolution, and the other is for finding infeasible 
solutions with better performance which are allowed to 
participate in the evolution with the advantage of 
avoiding constructing penalty function and deleting 
infeasible solutions directly. 

Harmony search algorithm [8] is a new intelligent 
optimization algorithm, proposed by Geem in 2001. As 
the genetic algorithm imitates biological evolution, the 
simulated annealing algorithm mimics the physical 
annealing mechanism, and the PSO imitates the predation 
of birds, the harmony search algorithm simulates the 
principles of playing music. The harmony search is 
widely used in many fields. Sadik [9] proposed a 
developing harmony search-based algorithm to determine 
the minimum cost design of steel frames with semi-rigid 
connections and column bases under displacement, 
strength and size constraints. Afkousi [10] proposed a 
harmony search algorithm to solve the unit commitment 
(UC) problem. Zeblah [11] used a harmony search meta-
heuristic optimization method to solve the multi-stage 
expansion problem for multi-state series-parallel power 
systems. 

This paper is structured as follows. Section II states the 
multi-objective constrained optimization problem. 
Section III describes the harmony search algorithm for 
constrained multi-objective optimization problems. 
Section IV shows the experimental results. Conclusions 
are drawn in Section V. 

II.  BASIC CONCEPTS OF CMOP 

The constrained multi-objective optimization problem 
can be mathematically described as: 

1 2min  ( ) [ ( ), ( ), , ( )]

s.t.   ( ) 0,  1, 2, ,

        ( ) 0,  1, 2, ,

m

i

i

y f x f x f x f x

g x i p
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⎧
⎪
⎨
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where m is the number of target vectors, p  is the number 
of inequality constraints, q  is the number of equality 
constraints, x = (x1, x2,…, xn) D∈  is the decision 
variables, y = (f1, f2,…, fm) Y∈  represents the target 
vector, ( ) 0g x ≤  are the inequality constraints, ( ) 0h x =  
are the equality constraints, D is the decision space, and 
Y represents the target space.  

In general, the equality constrain hi(x) = 0, can be 
transformed into two inequality constraints viz. 
hi(x) 0≥ and hi(x) 0≤ . The hi(x) 0≥  can be transformed 
into −  hi(x) 0≤ . Thus, all constraints can be completely 
converted into ( ) 0g x ≤ . Therefore, constrained multi-
objective optimization problem model can be described 
as: 
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where m  is the number of target vectors, c  is the number 
of constraints, x = (x1, x2,…, xn) D∈ is the decision 
variables, y = (f1, f2,…, fm) Y∈ , represents the target 
vector, ( ) 0g x ≤  are the constraints, D is the decision 
space, Y  represents the target space. 

There are several basic concepts which are often used 
in multi-objective optimization [12]:  

(1) Pareto dominate: A decision vector x0 is said to 
dominate a decision vector x1 (also written as x0 x1) if 
and only if  i∀ ∈ {1,...,m}: fi (x0) ≥  fi (x1) ，

  {1, , } :j m∧ ∃ ∈  fi (x0) >fi (x1).  
(2) Pareto optimal solution: A decision vector x0 is said 

to be non-dominated, if and only if there is no decision 
vector x1 which dominates x0, formally: ¬∃ x1: x1 x0. 

(3) Pareto optimal set: The Pareto optimal set PS is 
defined as PS = {x0|¬∃ x1 x0} also called non-dominated 
optimal set. 

(4) Pareto optimal front: The Pareto front PF is defined 
as PF = { f (x) = ( f1 (x), f2 (x),…, fm (x))| x∈  PS }. 

III.  HARMONY SEARCH ALGORITHM FOR CMOP 

Basic harmony search algorithm is described as 
follows. 

Step 1. Set the basic parameters of harmony search. 
Step 2. Initialize the harmony memory. 
Step 3. Generate new solutions. A new solution is 

generated through three mechanisms. (1) Keep the 
vectors in the harmony memory. (2) Randomly generate. 
(3) Make disturbance to some components of (1) and (2). 

Step 4. Update harmony memory. If the new solution 
is better than the worst solution in the harmony memory, 
replace the worst solution with the new solution, and get 
the harmony memory. 

Step 5. If the maximum iteration is reached, stop and 
output optimal solution, otherwise return to Step3. 

The following is the improved harmony search 
algorithm to deal with multi-objective constrained 
optimization problems.  

A.  Improvement of the Harmony Memory Consideration 
Rate and the Pitch Adjusting Rate 

In the basic harmony search algorithms, the harmony 
memory consideration rate (HMCR) and the pitch 
adjusting rate (PAR) are fixed value. However, in the 
actual study we found that the amount of the next 
evolution solutions should be the same as that of their 
parents as possible when the number of feasible solutions 
in the population is large. The HMCR should be 
increased, and the PAR should be reduced. On the 
contrary, when the number of feasible solutions in the 
population is small, the HMCR should be reduced, and 
the PAR should be increased. The HMCR and PAR are 
calculated as follows: 
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pop fHMCR
pop

=
                           (3) 

                     

popcPAR
pop

=
                               (4) 

where  HMCR  is the harmony memory consideration 
rate, PAR  is the pitch adjusting rate, pop  is the 
population size, popf is the number of feasible solution in 
the population, and popc is the number of infeasible 
solution in the population. 

B.  Generate New Solutions 
It is different from the basic harmony search algorithm. 

To deal with constrained multi-objective optimization 
problems, infeasible solutions are also participated in the 
evolution. The harmony memory is divided into a feasible 
solution set 1HM  and an infeasible solution set 2HM . 
Feasible solution and infeasible solution evolve by 
different methods which are described as follows.  

For the feasible solution set 1HM : 

 ( ( 1 1) 1) 1

1

' 1     

( )        
round rand hm

new
HM r HMCR

x
rand ub lb lb r HMCR

− + ≤
=

− + >

⎧
⎨
⎩

       (5) 

1
'1( ) ( ),   1, 2, 1new best new

x HM i x x i hmλ= + − =      (6) 
where r1 is a random number between 0  and 1 , 1HM  

is the feasible solution set, 1hm  is the size of the feasible 
solution set, and ub  and lb  is the lower bound and upper 
bound respectively. If r1 HMCR≤ , solutions in feasible 
solution set are selected randomly. If r1 HMCR> , 
generated solutions randomly. xbest is the optimal solution 
in the external populations, the specific selection method 
is described later. 

For the infeasible solution set 2HM :  

1 2( ) (1 ) ,   1, 2, 2new bestx HM i x i hmα α= + − =     (7) 
where 2HM  is the infeasible solution set, 2hm  is the 

size of the infeasible solution set, and xbest is the optimal 
solution in the external populations. 

For all solutions in the feasible solution set and 
infeasible solution set, if rand PAR≤ , the solution 
generated needs for adjusting, which is described as: 

                  1 ( )new newx x ub lbβ= + −                         (8) 

C.  Calculate Individual Density 
For individuals in the external population, it is difficult 

to recognize which one is the best. The density is adopted 
to find the best individual. This paper presents a new 
distance measurement method, and the density function is 
described as: 

       ,
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where |di - dj| is the Euclidean distance between 
individual i  and individual j .δ is the standard deviation 
of the distance that the individual i  to all the individual 
in the population. di,j  is the impact value of the individual 
i  to the individual j . Di  is the density of the individual 
i . Formula (9) means that if the distance between 
individual i  and individual j  beyond 2δ , then the 
individual j  has no effect on the individual i . When 
calculating the density of the individual i , individual j  
can not be considered. If the distance between individual 
i  and individual j  is less than 2δ , then individual j  
impacts individual i . The distance is smaller, the impact 
is greater, and the density is greater. Calculate the 
influence that all the individual impose on the individual 
i  and sum them, which are the density of the individual 
i . 

D.  Select the Best Individual 
The xbest is from particle swarm optimization [13-15]. 

In the PSO, all particles have to study the best particle in 
the population. This can increase information sharing and 
mutual cooperation between particles. The xbest is selected 
in the external population A. Calculate the density of 
each individual in external population by formula in III.C, 
the minimum density of the individual is selected as the 
global optimal solution. 

E.  Select the Evolutionary Population 
The new solution produced by harmony search 

algorithm will also be stored in the harmony memory. 
Then there will be a larger population, which is divided 
into feasible solution set 1HM  and the infeasible 
solution set 2HM . The feasible solution set 1HM  is 
sorted by the dominance relationship, and is described as 
follows. Select all non-dominated solutions in the 
population and define their order as 1. Then select the 
non-dominated solutions in the rest of the individuals and 
define them order as 2. Rank individuals from small to 
large until all the individuals are assigned an order. If the 
individuals have the same order, rank them by density, 
the one who has the smaller density is in the front. For the 
infeasible solution set 2HM , sort them according to their 
constraint violation degree, the one who has the smaller 
constraint violation value is in the front. Thus we re-sort 
the harmony memory and the front HM  individuals are 
selected as the next evolution generation. 

F.  Steps of Harmony Search Algorithm for CMOP 
Step 1. Set the basic parameters of harmony search. 

Set the external population A = ∅ . 
Step 2. Initialize the harmony memory. Put the 

feasible non-dominate solutions in the external 
population until A ≠ ∅ . 

Step 3. Generate new solutions. The harmony 
memory is divided into feasible solution set HM1 and 
infeasible solution set HM2. They generate new 
individuals according to the formula (5), (6), and (7). 
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Step 4. Update harmony memory. Add the newly 
generated individuals to the harmony memory and select 
the next evolution generation according to the III.E. 

Step 5. If the maximum iteration is reached, stop and 
output optimal solution, otherwise return to Step 3. 

IV.  EXPERIMENTAL RESULTS 

A.  Performance Index 
The dispersion of the solutions measured using the 

following formula 
2

1

(1, ) 1

( )

1

min ( ( ) ( ) )

, 1, 2, , ,

n

i
i

n i j
i k kj n k

d d
SP

n

d f x f x

i j n i j

=

∈ =

−∑
=

−

= −∑

= ≠

             (11) 

where n  is the number of obtained solutions, di  is the 
distance between the individual i  and its nearest 
individual, d is the average distance of di.  The 
expression 0SP =  shows that the solution evenly 
distributed in the Pareto front. The indicator reflects the 
uniformity of the solutions. 

The quality evaluation of the solutions for multi-
objective optimization problems is mainly concerned in 
the distance between the obtained non-dominated 
solutions set and the Pareto optimal set, and the diversity 
of the obtained non-dominated solutions set. Here the 
generational distance [16] (Van Veldhuizen and Lamont, 
1998) is adopted to measure the distance between the 
obtained non-dominated solutions set and the Pareto 
optimal set. And the extension indicator (Zhou, 2006) is 
adopted to evaluation the diversity of the solutions. The 
generational distance is defined as: 

             

1

1
( )

n P P
i

i
d

GD
n

=
∑

=                            (12) 

where n  is the number of vectors in the set of non-
dominated solutions found so far, di  is the Euclidean 
distance (measured in objective space) between each of 
these solutions and the nearest member of the Pareto 
optimal set,  and p  is a positive integer. 1p =  or 2p =  
usually. A smaller value of GD  demonstrates a better 
convergence to the Pareto front. It is clear that a value 

0GD =  indicates that all the generated elements are in 
the Pareto front. 

The extend indicator is proposed by Deb,which is 
modified as 

              
1

1

_
| |

_
( 1)

n

f l i
i

f l

d d d d

d d n d

−

=
+ + −∑

+ + −

Δ =                    (13)  

where the parameter di  is the Euclidean distance of 
neighboring solutions in the obtained non-dominated 
solutions set and d is the mean of all di. The parameters 

df and dl are the Euclidean distances between the extreme 
solutions and the boundary solutions of the obtained non-
dominated set. A value of zero for this metric indicates all 
members of the Pareto optimal set are equidistantly 
spaced. When the non-dominated solutions found so far 
are complete distribute evenly on the balance  surface,  
namely, df = 0, dl = 0, and di d= , so 0Δ = .The symbol 
Δ  reflects the distribution and the diversity of the non-
dominated solutions. 

B.  Parameters Setting and  Results Analysis 
We compared the CMOHS algorithm with NSGA-II in 

order to know the efficiency of the CMOHS algorithm. 
Four benchmark functions are chosen to test the 
performance of the algorithms, which are commonly used 
in the constrained multi-objective evolutionary algorithm 
test. They are belegundu, binh (2), srinivas and tanaka. In 
the CMOHS algorithm and the NSGA-II algorithm, the 
population size is set as 50 and the number of iterations is 
set as 100. Algorithms run 15 times independently. The 
maximum, minimum, average, standard deviation of the 
indicator convergence, diversity and spread are 
summarized in Table I to Table IV. 

Table I to Table IV shows that the convergence and 
spread of CMOHS is significantly better than that of 
NSGA-II. The diversity of CMOHS is better than that of 
NSGA-II in binh (2) and srinivas, but weaker in 
belegundu and tanaka. It can be seen from the standard 
deviation that CMOHS is more stable than NSGA-II. Fig. 
1. ~ Fig. 4. are the Pareto fronts of CMOHS for the four 
test functions. 

In order to test the impact of the guide individual to 
CMOHS, we compared CMOHS with the algorithm 
without guide individual (signed alg1). The alg1 is 
described as follows. 

Step 1. Set the basic parameters of harmony search. 
Set the external population A = ∅ . 

Step 2. Initialize the harmony memory. Put the 
feasible non-dominate solutions in the external 
population until A = ∅ . 

Step 3. Generate new solutions. The harmony 
memory is divided into feasible solution set HM1 and 
infeasible solution set HM2. They generate new 
individuals according to the following formula: 

( ( 1 1) 1) 1
1

1

1     

( )        
round rand hm

new
HM r HMCR

x
rand ub lb lb r HMCR

− + ≤
=

− + >

⎧
⎨
⎩     (14) 

'
11( ) ,   1, 2, 1newnew

x HM i x i hmλ= + =        (15) 
' ( )

new new
x x ub lbβ= + −

                  (16) 
Step 4. Update harmony memory. Add the new 

generated individuals to the harmony memory, select the 
next evolution generation according to section III.E. 

Step 5. If the maximum iteration is reached, stop and 
output optimal solution, otherwise return to Step3. 

Six benchmark functions are chosen to test the 
performance of the two algorithms. The four benchmark 
functions are the same with that discussed above, and 
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parameters setting is not changed. The parameters of 
obayashi are set as that, the population size is 100 and the 
number of iterations is 200. The parameters of jimenez 
are set as that, the population size is 100 and the number 
of iterations is 500. 

From Table V to Table X,  it  can be found that the 
convergence, spread and diversity of CMOHS are 
significantly improved relative to alg1 in belegundu, binh, 
and srinivas. For the benchmark tanaka, the convergence 

and spread of CMOHS is better than alg1 and the 
diversity of CMOHS is worser than alg1. For the 
benchmark jimenez, the convergence and spread of 
CMOHS is better than alg1, the diversity of CMOHS is 
the same as that of alg1. For the benchmark obayashi, the 
convergence, spread and diversity of CMOHS is the same 
as that of alg1. Overall, the guide individual improves the 
performance of CMOHS. 

  
TABLE I 

EVALUATION RESULTS OF THE BENCHMARK BELEGUNDU 
Evaluation index GD Δ  SP 

Algorithm NSGA-II CMOHS NSGA-II CMOHS NSGA-II CMOHS 
maximum 
minimum 
average 

SD 

0.0190 
0.0025 
0.0095 
0.0048 

9.2000e-4 
9.6800e-5 
1.7367e-4 
2.0721e-4 

1.6219 
1.1480 
1.3419 
0.1211 

1.6010 
0.8990 
1.0693 
0.1998 

0.0158 
0.0050 
0.0095 
0.0029 

0.0018 
1.0000e-4 
5.6000e-4 
5.8530e-4 

 
TABLE II 

EVALUATION RESULTS OF THE BENCHMARK BINH (2) 
Evaluation index GD Δ  SP 

Algorithm NSGA-II CMOHS NSGA-II CMOHS NSGA-II CMOHS 
maximum 
minimum 
average 

SD 

0.0907 
0.0205 
0.0325 
0.0169 

0.0367 
0.0079 
0.0139 
0.0074 

1.2986 
1.0527 
1.1675 
0.0821 

0.9745 
0.6546 
0.7762 
0.1131 

0.2921 
0.0511 
0.1328 
0.0681 

0.1157 
0.0029 
0.0331 
0.0335 

 
TABLE III 

EVALUATION RESULTS OF THE BENCHMARK SRINIVAS 
Evaluation index GD Δ  SP 

Algorithm NSGA-II CMOHS NSGA-II CMOHS NSGA-II CMOHS 
maximum 
minimum 
average 

SD 

0.1362 
0.0215 
0.0708 
0.0297 

0.0060 
0.0026 
0.0037 

8.3512e-4 

1.2443 
1.0539 
1.1197 
0.0582 

0.6607 
0.5886 
0.6188 
0.0222 

0.3171 
0.0845 
0.1486 
0.0534 

0.0351 
0.0115 
0.0171 
0.0065 

 
TABLE IV 

EVALUATION RESULTS OF THE BENCHMARK TANAKA 
Evaluation index GD Δ  SP 

Algorithm NSGA-II CMOHS NSGA-II CMOHS NSGA-II CMOHS 
maximum 
minimum 
average 

SD 

0.0032 
1.6995e-4 
9.5232e-4 
7.8863e-4 

0.0024 
3.0000e-4 
7.5333e-4 
6.0694e-4 

1.3633 
1.0341 
1.1689 
0.0981 

1.2264 
0.9672 
1.0225 
0.0669 

0.0120 
2.1437e-4 

0.0029 
0.0032 

0.0062 
4.0000e-4 

0.0010 
0.0014 

 

 

 

 

 

 

 

 

Fig. 1. belegundu                                                              Fig. 2. binh (2) 
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Fig. 3. srinivas                                                                               Fig. 4.  tanaka 
 

TABLE V 
EVALUATION RESULTS OF THE BENCHMARK BELEGUNDU 

Evaluation index GD Δ  SP 
Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

0.0625 
0.0067 
0.0281 
0.0167 

9.2000e-4 
9.6800e-5 
1.7367e-4 
2.0721e-4 

1.0991 
0.6953 
0.8960 
0.1103 

1.6010 
0.8990 
1.0693 
0.1998 

0.0149 
0.0036 
0.0076 
0.0035 

0.0018 
1.0000e-4 
5.6000e-4 
5.8530e-4 

 
TABLE VI 

EVALUATION RESULTS OF THE BENCHMARK BINH (2) 
Evaluation index GD Δ  SP 

Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

0.1948 
0.0155 
0.0447 
0.0436 

0.0367 
0.0079 
0.0139 
0.0074 

1.3659 
0.6919 
0.8564 
0.1916 

0.9745 
0.6546 
0.7762 
0.1131 

0.1591 
0.0095 
0.0499 
0.0339 

0.1157 
0.0029 
0.0331 
0.0335 

 
TABLE VII 

EVALUATION RESULTS OF THE BENCHMARK SRINIVAS 
Evaluation index GD Δ  SP 

Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

0.6290 
0.0107 
0.1352 
0.1731 

0.0060 
0.0026 
0.0037 

8.3512e-4 

1.0807 
0.6719 
0.8252 
0.1156 

0.6607 
0.5886 
0.6188 
0.0222 

0.3901 
0.0350 
0.1494 
0.1163 

0.0351 
0.0115 
0.0171 
0.0065 

 
TABLE VIII 

EVALUATION RESULTS OF THE BENCHMARK TANAKA 
Evaluation index GD Δ  SP 

Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

0.0801 
0.0123 
0.0435 
0.0195 

0.0024 
3.0000e-4 
7.5333e-4 
6.0694e-4 

1.0509 
0.6774 
0.8856 
0.0946 

1.2264 
0.9672 
1.0225 
0.0669 

0.2118 
0.0155 
0.0934 
0.0558 

0.0062 
4.0000e-4 

0.0010 
0.0014 

 
TABLE IX 

EVALUATION RESULTS OF THE BENCHMARK JIMENEZ 
Evaluation index GD Δ  SP 

Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

3.4588 
0.0584 
0.9188 
1.1532 

0.0656 
0.0351 
0.0460 
0.0076 

1.4137 
0.9940 
1.2958 
0.1031 

1.3821 
1.1620 
1.2864 
0.0654 

12.2186 
0.1207 
2.6269 
3.8965 

0.1464 
0.0478 
0.0934 
0.0286 
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TABLE X 
EVALUATION RESULTS OF THE BENCHMARK OBAYASHI 

Evaluation index GD Δ  SP 
Algorithm alg1 CMOHS alg1 CMOHS alg1 CMOHS 
maximum 
minimum 
average 

SD 

0.0013 
4.0000e-4 
8.1333e-4 
2.5317e-4 

0.0011 
4.0000e-4 
5.8667e-4 
1.9952e-4 

0.9284 
0.7883 
0.8550 
0.0449 

0.9017 
0.7840 
0.8611 
0.0397 

0.0015 
7.0000e-4 

0.0010 
2.2824e-4 

0.0026 
6.0000e-4 

0.0013 
7.8982e-4 

 

V.  CONCLUSION 

This paper proposes an improved harmony search 
algorithm to solve constrained multi-objective 
optimization problems. There are two different 
populations to store feasible solution and infeasible 
solution respectively. Feasible solutions and infeasible 
solutions adopt different evolutionary mechanisms. The 
extreme global ideas improve the performance of 
harmony search algorithm. Six benchmark functions in 
the experimental results show that the convergence, 
spread and diversity of CMOHS are significantly superior 
to that of NSGA-II. But in the test we also found that the 
performance of CMOHS highly depends on the 
parameters. We will research deeply in the future work. 
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