
A Parallel Evolution based Intelligent
Optimization Algorithm to Solve Large-scale

Production Planning Problem in Defense Industry

Yu Zhou
College of Information System and Management, National University of Defense Technology, Changsha 410073, P. R.

China
Email: zhouyu_gfkd@126.com

Jiang Jiang

College of Information System and Management, National University of Defense Technology, Changsha 410073, P. R.
China

Email: jiangjiang_gfkd@126.com

Abstract—Since the multistage production planning
problem possesses high-dimensional variables and large-
scale solution space, it is hard to be solved in an acceptable
time. To deal with this challenge, we propose a parallel
evolution based intelligent optimization algorithm. The
proposed algorithm employs the differential evolution as the
algorithm framework to implement the primary mutation
and crossover operations, then the entire variables are
clustered into several sub-populations according to the
problem structure, finally a parallel evolution strategy is
proposed to speed up the convergence and progress the
search precision of the sub-population. A case of weapons
production planning is studied to validate the proposed
algorithm. The results show that this algorithm has the
fastest convergence and the best global searching capability,
compared with classical differential evolution algorithm,
genetic algorithm and particle swarm optimization
algorithm.

Index Terms—production planning; multistage stochastic
programming; differential evolution; parallel evolution;
variables clustering

I. INTRODUCTION

The scenario tree based stochastic programing as a
kind of mathematical programming technique is more and
more popular to model the Large-scale Production
Planning Problem in Defense Industry [1-3]. However,
the challenge of this application is that the variable
dimensions and the solution space exponentially increase
with the planning stage and the scenarios. Moreover, they
are usually larger than 1000 dimensions and 101000
solutions respectively in the context of weapons
production planning. In recent literatures [4-6], the
scenario tree based multistage stochastic programming
model is solved by some business software such as
CPLEX.

However, the weapons production planning (WPP)
problem belongs to the nonlinear integer programming
with real exponent and it is hard to be converted into the

standard form which could be solved by CPLEX. Some
vigorous mathematical approaches are also studied to
solve the multistage stochastic programming model, but
these approaches require the model to satisfy some strict
restraints such as convex programming [7], linear
programming [8] and/or 0-1 mixed integer programming
[9]. Unfortunately, the multistage stochastic programing
model in the context weapons production planning does
not satisfy these constraints.

In recent years, more and more researchers developed
the intelligent optimization algorithms to attack the large-
scale production planning problem in many fields. Wu et
al. developed a new heuristic search algorithm to solve
the dedicated and flexible capacity planning problems
[10]. Jiao et al. proposed a generic algorithm (GA) with
specific encoding scheme to synchronize product
portfolio generation and selection in production planning
[11]. Chen et al. introduced a binary particle swarm
optimization algorithm (PSO) with dynamic inertia
weight and mutation mechanism for the production
planning problem in the thin film transistor Array process
[12]. Interested readers may refer to [13-16].

However, neither did these studies consider the
scenario tree based variables structure in multistage
stochastic programming model nor systematically
develop an evolutionary algorithm to specifically handle
the high-dimensional variables in production planning. At
the same time, differential evolution (DE) which is
considered as an important branch of the evolutionary
algorithms is widely used to solve optimization problems
in many fields [17-20]. The simple mutation operation
and one-on-one competition strategy of DE reduce the
complexity of traditional genetic operations, which brings
to a strong global convergence and robustness.

Based on these surveys, we seek to develop an
intelligent optimization algorithm to solve the multistage
stochastic programming problem in the context of
weapons production planning. In order to handle the
high-dimensional variables and the large-scale solution

2474 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2474-2481

space, we propose two novel optimization strategies
which are the variable clustering and parallel evolution.
To the best of our knowledge, this intelligent
optimization algorithm is first proposed here and could be
applied to other engineering fields.

II. MULTISTAGE STOCHASTIC PROGRAMMING MODEL

A. Overview of Weapons Production Planning
Suppose that there are C capability requirements and

M weapon categories, in which each capability
requirement is supported by more than one weapon
category and vice versa. Each weapon category contains a
number of weapon models. For each weapon model, the
capability values depend on the corresponding production
time and production budget. In each weapon category, the
weapon models have different capability values when
they are assigned with equivalent production time and
production budget. To understand the concept of weapons
production planning, we need to know the weapons
multi-period production process which is introduced in
Figure 1.

Initial stage 1th Period

Select weapon models

1th
model

1th weapon category

2th weapon category

Mth weapon category

k1th
model

1th
Possibility

2th
Possibility

Zth
Possibility

1th
model

1th
model

k2th
model

kM th
model

Meet

Pth Period

k1th
model

k2th
model

kMth
model

Meet

Implement PT and PB
WPCRsWP

kM th
model

k2th
model

k1th
model

1th
Possibility

2th
Possibility

CRs

Zth
Possibility

Implement PT and PB

 Figure 1. Weapons multi-period production process

In Figure 1, the weapons production process consists
of two kinds of variables, one is to select the optimal
weapon model from each category which will be
implemented at initial stage, and the other one is to
optimize the production time (PT) and the production
budget (PB) of each selected weapon which will be
implemented in multi-period. All of the selected weapons
constitute a weapons portfolio (WP). The objective is to
minimize the capability gaps between the weapons
portfolio and the capability requirements (CRs) over the
planning horizon. In this context, both of the capability
deficiencies and surpluses between capabilities of the
weapons portfolio and the capability requirements are
recognized as the capability gaps.

B. Formulations of Capabilities for the Weapons
Portfolio

Each capability of the weapons portfolio comes from
the corresponding one of each weapon in this portfolio.
Thus, we firstly calculate the capability value of each
weapon. Given the production time and the production
budget in each period, if this weapon does not have the
cth capability, , ,mk p cWC = 0; otherwise, , ,mk p cWC is
calculated as follows：

, , , , , ,

, , , , , ,

, , , , , , , ,
1 1

, ,

, , , , , , , ,
1 1

() (); 1

() ();1

k p c l k p c hm m

m m m m

m
k p c l k p c hm m

m m m m

L H

k p c l k p k p c h k p
l h

k p c L H

k p c l k p k p c h k p
l h

a t b q p
WC

a t b q p P

α β

α β

= =

= =

⎧
× ==⎪⎪= ⎨

⎪ ′ ′× < <⎪⎩

∑ ∑

∑ ∑

i i

i i

(1)

s.t.
1

, , ,
1

1 ((())) ;
m m m

p

k p k p k p
p

t t t T p p
−

′
′=

⎛ ⎞
′ ′= × + × −⎜ ⎟

⎝ ⎠
∑ (2)

1

, , , ,
1

1 ((())) ;
m m m m

p

k p k p k p k p
p

q q q qu p p
−

′ ′
′=

⎛ ⎞
′ ′= × + × −⎜ ⎟

⎝ ⎠
∑ (3)

, , , , , , , , , , , ,, , ,
m m m mk p c l k p c l k p c l k p c la b α β +∈\ (4)

where Eq. (1) represents the cth capability value of the
kmth weapon in the pth period. The L-order (resp. H-order)
polynomial represents the relation between the cth
capability and the production time (resp. production
budget). The production time (resp. budget) of the
previous 1i − periods add the effective production time
(resp. budget) in the ith period according to Eqs. (2, 3).

Since the cth capability requirement is that the quantity
Rqp,c is needed at the time Rtp,c, we need to further
calculate the cth capability value of the weapon at the
time Rtp,c, it is calculated as follows：

, , , , , ,

, , , , , ,

, , , , , ,

()

()

m m m

m m m

m m m

k p c k p p c k p p c

k p c k p c k p p c

k p c p c k p k p p c

WC t Rt t Rt

WC WC t Rt

WC Rt t t Rt

⎧ × <
⎪⎪′ = ==⎨
⎪ × >⎪⎩

 (5)

where Eq. (5) represents that , ,mk p cWC′ is smaller while the
disparity between ,mk pt and Rtp,c is larger. This is because
the weapon has not been completely developed when

, ,mk p p ct Rt> , on the contrary, the weapon lacks enough
funding to maintain the achieved capability when

, ,mk p p ct Rt< .
After acquiring the cth capability value of each

weapon model, we can calculate the corresponding
capability value of the weapons portfolio through
weighted sum, which is calculated as follows:

 , , , ,
1

, m

M

m p c k p c
m

p cWC w WC
=

′= ×∑ (6)

where , , 0m p cw = , if the mth weapon category does not
have the cth capability.

C. Formulations of the Uncertain Capability
Requirements

In a practical defense engineering environment, the
capability requirements are incrementally evolving over
the whole planning horizon while they have uncertain
values in each period. Considering this property, the
uncertain capability requirements are formulated as
follows:

, , , , , , , ,{ (,)}p z c p z c p z c p z cR R Rt Rq= (7)

s.t. , , , , , , , ,, , ,p z c p z c p z c p z cRt Rt Rq Rq p p′ ′ ′≤ ≤ < (8)
 , 1,2,..., , 1,2,..., , 1,2,...,p pp p P c C z Z′ = = = (9)

, , , ,, , , ,p z c p z c pRq Rt P C Z+ +∈ ∈\ ` (10)
where Eq. (7) represents that the cth capability requires
the value Rqp,z,c at the time of Rtp,z,c in the pth period. Rp,z,c

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2475

© 2013 ACADEMY PUBLISHER

has Zp possibilities in each period. Constraint (8)
represents Rqp,z,c and Rtp,z,c increase with the period.

D. Multistage Stochastic Programming Model
The multistage stochastic programming model (MSP)

provides different production times and production
budgets to hedge against each possible group of
capability requirements. Since the variables in pth period
correlate with all of the ones in the previous (p-1)th
period, the scenario tree could be used to represent the
variables structure corresponding to the possible
evolution processes of the capability requirements. The
possibilities of the capability requirements equal to the
branches of the scenario tree in each period. A scenario
tree with 2-2-2 branches is shown in Figure 2.

1,1,cR 1,1V

3,1,cR 3,1V

3,2,cR 3,2V
2,1,cR 2,1V

3,1,cR 3,3V

3,2,cR 3,4V
2,2,cR 2,2V

1,2,cR 1,2V

3,1,cR 3,5V

3,2,cR 3,6V
2,1,cR 2,3V

3,1,cR 3,7V

3,2,cR 3,8V
2,2,cR 2,4V

0V

Figure 2. The 3-period scenario tree with 2-2-2 branches

In Figure 2, the path from the root node (circular node)
to a leaf node (rectangular node) is called a scenario s, i.e.
a possible evolution process of the capability
requirements over the entire planning horizon. The
variable set 0V in root node corresponds to the selected
weapon models to encounter all of the scenarios. Then,
the variable set ,p nV corresponds to the production time
and the production budget in each leaf node.

 The objective of weapons production planning is to
minimize the weighted sum of the capability gaps
between the weapons portfolio and the capability
requirements in each leaf node. Thus, the multistage
stochastic programming model for weapons production
planning is formulated as:

, ,
1 1 1

, ,min ()
p

p

NP C

p p n c
p n c

p z cn WC Rqπ
= = =

× −∑∑ ∑ (11)

s.t.
; mod() 0

mod(); mod() 0
p p p

p
p p p p

Z n Z
z

n Z n Z

=⎧⎪= ⎨ ≠⎪⎩
 (12)

1

p

p p
p

N Z ′
′=

=∏ , ,p pP N Z +∈` (13)

1

, , , , , ,
1

1 (() (()))
m m m

p
p

k p n k p n pre k p n
p

t t f t T p p
−

′

′=

⎛ ⎞
′ ′= × + × −⎜ ⎟

⎝ ⎠
∑ (14)

1

, , , , , , ,
1

1 (() (()))
m m m m

p
p

k p n k p n pre k p n k p
p

q q f q qu p p
−

′
′

′=

⎛ ⎞
′ ′= × + × −⎜ ⎟

⎝ ⎠
∑ (15)

, , , ,0 ; ,
m mk p n k p nt T t T +< ≤ ∈` (16)

, , , , , , , ,; , ,
m m m m m mk p k p n k p k p n k p k pql q qu q ql qu +≤ ≤ ∈` (17)

, ,
1

m

M

k p n p
m

q Q
=

≤∑ (18)

where ()pnπ is considered as the unconditional
probability of the npth possibility of the capability
requirements in each node. Constraints (14, 15) describe
the relation between np and Zp. mod(•) represents the
remainder operation. ()p

pref ′ i in constraints (14, 15) locates
the variables of the ancestor node in the thp′ period.
Furthermore, the variables in all leaf nodes (circular
nodes) must share the same variables of the weapon
models in the root node (rectangular node). Constraint
(16) and (17) represent the available range of the
production time and the production budget, respectively.
Constraint (18) represents the overall available budget for
the weapons portfolio in each period.

III. ALGORITHM DEVELOPMENTS

A. Classical DE Algorithm
We first develop the classical differential evolution

(CDE) algorithm to solve the addressed multistage
stochastic programming model. It is introduced as
follows:

Step 1 (Population Initialization). Generate the value
of each variable randomly in the available range
according to constraints (16, 17). The individual encoding
is shown as follows:

1 1

1

, , , , , , , , , , , ,

0

, ,0 1,1 1,

,

,..., ,...,

,..., ,..., ,... ,...,

,..., ,..., ,...,

m mM M

m M

k p n k p n k p n k p n k p n k p n

p n P NN

p n

V

V V V V V

V
k k

t t t q q q

k
⎧
⎪
⎪
⎨
⎪
⎪
⎩

������

����������������������

 (19)

Step 2 (Evaluation). For each current individual,
calculate the objective value by Eq. (11), and then
calculate the violation of the overall budget constraint by
Eq. (18). Record the current global optimization
individual. If there is no individual who satisfies the
overall budget constraint, take the individual with
minimum violated degree of the budget constraint as the
global optimization one.

Step 3 (Mutation). Execute mutation operation which
is formulated as

1 2 3
()i i i iU X F X X= + × − (20)

where
1i

X ,
2i

X and
2i

X are the randomly chosen
individuals from the current population X . The mutation
scaling factor F is a real constant number which is often
set to 0.5 [22].

Step 4 (Crossover). Select each variable of the current
individual iX with certain probability to replace the
corresponding bit of the temporary individual iU , which
is formulated as

(), (0,1)
()

(),
i j

i
i

U j R cr
U j

X j otherwise

<⎧⎪= ⎨
⎪⎩

 (21)

2476 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

where (0,1)jR is a uniform random number between 0
and 1, and cr is the crossover rate which is often set to 0.9
[22].

Step 5 (Handling constraints of variables). Judge each
bit in each individual whether or not violate the
constraints (16, 17) in the temporary population. The bit
which violates the corresponding constraint randomly
obtains a number as its value within the available range.

Step 6 (Selection). Evaluate the objective value and the
violation of budget constraint for each temporary
individual iU . If the current individual iX and temporary
individual iU both satisfy the budget constraint, the
individual with minimum objective value is selected as
new individual. If only one of them violates the budget
constraint, the individual without violation of the
constraint is selected. If iU and iX both violate the
constraint, the individual with minimum violated degree
is selected. Through above operation, the new population
is generated. Then, the global optimization individual is
updated.

Step 7 (Loop). Record the current global optimization
individual. Repeat steps 3 to 7 until the maximum
number of iterations or the desired solution is obtained.

B. Parallel Control Strategy
As shown in Figure 2, the individual contains one root

variable unit 0V and fourteen leaf variable units.
According to the Figure 2 and the encoding equation (19),
if 0V is fixed, the leaf variable units obviously can be
clustered into two completely uncorrelated parts.
Moreover, if 1V and 2V are also fixed, the else leaf
variable unit can be clustered into four completely
uncorrelated sub-individuals. Meanwhile, the
corresponding objective can also be decomposed two
child-objectives and/or four grandchild-objectives,
because objective function (11) is the weighted
summation of all the node objective functions.

To handle the crucial problem on how to fix 0V , we
seek to dynamically determine the 0V during the
iteration process. The idea is that if 0V of the global best
individual keeps invariant within consecutive I iterations,
each variable has obtain the best value. Thus, the 0V of
the global best individual is taken as the fixed root
variable unit of each individual in the clustering process.

The specific evolution procedure based on the
variables clustering-1 named as PEDE-1 is introduced as
follow:

Step 1. Define the 0Gv as the root variable unit of the
global best individual. Define 0cou = and a constant I.

Step 2. Implement iterations of the fundamental
evolution process.

Step 3. Judge whether each variable in 0
tGv equivalent

to the corresponding one in 1
0
tGv − . If yes, 1cou cou= + ;

else, 0cou = .

Step 4. If cou I== , implement the variables clustering-
1 operation and take the 0

tGv as the root variable unit of
each individual, else, go to Step 1.

Step 5. Implement the mutation and crossover for each
part sub-individuals independently.

Step 6. Implement the evaluation operation and
calculate the sub-objective value corresponding to each
sub-individual.

Step 7. Implement selection operation for each sub-
individual independently.

Step 8. Aggregate the sub-individuals and sub-
objective values into the comprehensive individual and
objective value, respectively. Then, update the global best
individual.

Step 9. Repeat steps 5 to 7 until the maximum number
of iterations or the desired solution is obtained.

C. Parallel Evolutionary Optimization
The parallel evolutionary strategy is proposed to

improve the performance of the fundamental differential
evolution algorithm, which is named as PEDE. The
purpose of PEDE is to simultaneously implement the
evolution operations on the clustering-1 based
populations and clustering-2 populations. This is because,
if we only use the variables clustering-1 strategy which is
named as PEDE-1, the solution space of the child
variable units is still far larger than the one of the ideal
scale of the variables. Thus, the child variable units could
not converge to the global best values in short iterations.
Furthermore, if we only use the variables clustering-2
strategy to implement evolution operation which is
named as PEDE-2, the algorithm will be premature and
trapped a local optimum. Thus, the parallel evolutionary
strategy is shown in Figure 3.

Figure 3: Flowchart of PEDE

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2477

© 2013 ACADEMY PUBLISHER

As shown in Figure 3, the left-hand represents the
optimization of one half populations at the level of child
individual corresponding to PEDE-1, and the right-hand
represents the optimization of the else half populations at
the level of grandchild individuals corresponding to
PEDE-2. Meanwhile, if PEDE-1 obtains child global best
solution, it will update the child variable unit of the other
half populations. This technique holds the optimization
on grandchild individual population not to be trapped in
local optimum. Therefore, PEDE could update the global
best solution based on the variables clustering-1 and
clustering-2 simultaneously during the iterations, it make
the CDE possess the faster convergent speed and the
higher searching precision.

In fact, the variables clustering-1 based sub-population
corresponds to the local search in a large scale and the
variables clustering-2 based sub-population corresponds
to the local search in a small scale. Generally speaking,
the algorithm could have a better global searching
capability at the earlier iterations, in order to find more
global optimization solutions. Then, the algorithm could
have a better local searching capability at the later
iterations, in order to improve the searching precision and
convergence. To meet these demands, we propose an
adaptive control strategy for each sub-population scale,
which is shown in Figure 4.

1

2 1

1;
 1:

 ;

((1));

 1;

j
for g G

if g G j
subpop g G
subpop pop subpop

end
end

round pop

j j

θ

=
=

> ×

= −

= × −

= +

Figure 4: Adaptive control strategy for each sub-population

In Figure 4, 1subpop (resp. 2subpop) corresponds to the
variables clustering-1 (resp. clustering-2) based sub-
population; θ is an judgment coefficient and belongs to
(0, 1) according to the empirical settings; g is the current
iteration times and G is the overall iteration times. The
most individuals join subpop1 to hold global searching
capability at the initial stage. Then, the individuals in the
subpop1 migrate to the subpop2 with the increase of the
iteration times, in order to strength the searching
precision and convergence. Meanwhile, to balance the
stability of the evolution on the two sub-populations,
migration do not occur in each generation but occur when
g G increases beyond the j times of θ .

IV. COMPUTATIONAL RESULTS

A. Case Description
Intelligence, surveillance and reconnaissance (ISR)

weapons are indispensable components of military
operations, they must work together to provide
commanders and soldiers with a comprehensive
understanding of battlefield situation. Thus, multiple ISR

weapons need to be planned to satisfy the capability
requirements. There are five weapon categories need to
be considered, and the corresponding variables and their
ranges are shown in Table 1.

TABLE 1
THE VARIABLES AND THEIR RANGES OF THE WEAPON CATEGORIES

Weapon Model Time Budget1 Budget2 Budget3
RS [1,5] (0, 15) (0, 200) (0, 300) (0, 200)
AWCS [1,4] (0, 15) (0, 200) (0, 200) (0, 150)
MHAUAS [1,6] (0, 15) (0, 100) (0, 100) (0, 100)
BLSDL [1,3] (0, 15) (0, 50) (0, 100) (0, 100)
C2S [1,4] (0, 15) (0, 100) (0, 100) (0, 120)
All of the notations in Table 1 are listed in the

following: (1) RS is the reconnaissance satellite. (2)
AWCS is the airborne warning and control system. (3)
MHAUAS is the medium to high altitude unmanned
aerial system. (4) BLSDL is the beyond line of sight data
link. (5) C2S is the command and control system. Each
category weapon has three kinds of variables, i.e. model
selection variable mk , production time variable ,mk pt and
production budget variable ,mk pq . For example, the data
on RS in Table 1 represents that it has five optional
weapon models. The production time must be planned
within a given interval i.e. 0 to 20 in each period and the
unit of production time is month. The production budget
must be planned within 0 to 300, 0 to 400 and 0 to 300
for each period, respectively, and the unit of production
budget is million dollars.

To explore the performance of the proposed algorithm,
we construct the scenario trees from 3-3-3 to 5-5-5
branches corresponding to the different scale of the
possible evolving capability requirements. The related
data are shown as in Table 2.

TABLE 2
PARTIAL DATA ON THE SCALE OF THE SIX INSTANCES

Branches 3-3-3 4-4-4 5-5-5
Children clusters 3 4 5
Grandchildren clusters 9 16 25
Leaf nodes 39 84 155
Variables 395 845 1555
Constraints 434 925 1710
Scale 78010> 168010> 310010>
The scenario trees with different branches have the

same structure which was shown in Figure 3. Since there
are five weapon categories to be planned, each leaf node
has corresponding five production time variables and five
production budget variables.

B. PEDE Versus GA
We first use PEDE to solve the MSP model. Then, we

replace the evolution operations of DE with GA. For the
variables take the decimal integer encoding, the heuristic
crossover based GA is appropriate to this encoding [23],
which is called GA-1. Then, in order to strengthen the
stochastic search capability of GA-1, we revise the
heuristic crossover of the GA-1 from Eq. (22) to Eq. (23):

, , , ,(0,1) ()ch i fa i ma i fa ip p R p p= + × − (22)

, , , ,(0,1) ()ch i fa i i ma i fa ip p R p p= + × − (23)
where pfa,i, pma,i and pch,i are the ith bit of the parent,

mother, and child, respectively. The difference between
Eq. (22) and Eq. (23) is that (0,1)R (resp. Ri(0, 1)) is

2478 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

fixed (resp. variable) in response to each bit of the mother
and father. The GA-1 revised by Eq. (24) is called GA-2.
Finally, we further amplify the stochastic search
capability through the revision of crossover probability pc
and mutation probability pm from Eq. (24) to Eq. (25):

0.9; 0.05pc pm= = (24)
0.4 (0,1) 0.5; (0,1) 0.1pc R pm R= + × = × (25)

The GA-2 revised by Eq. (25) is called GA-3. The
three versions of GA and the PEDE run 30 times,
respectively, to solve the addressed case. The best results
of the three versions of GA and the worst result of PEDE
are shown in Figure 5.

0 500 1000 1500 2000 2500 3000
2

2.5
2.75

3

4

4.5
4.75

5

6

7

8

9

Iterations

O
bj

ec
tiv

e
V

al
ue

GA-1
GA-2
GA-3
PEDE

Figure 5: The comparison between PEDE and GA

As shown in Figure 5, the worst result of PEDE is
superior to the best results of the three versions of GAs.
The final global optimization value of GA-1, GA-2 and
GA-3 are comparable with each other, and they are
4.7510, 4.7034 and 4.6965, respectively. It is implied that
the boost of the stochastic search is neither improve nor
weaken the performance of GA. Furthermore, the inertia
evolution operation of DE is superior to the GA in this
context.

C. PEDE Versus PSO
Next, we compare PEDE with PSO algorithm. For

updating the velocity of a particle in PSO, one kind of
updating equation is presented as follows [24]:

1 1,

2 2,

(0,1) ()

 (0,1) ()

d d d d
i i i i i

d d
i i

V w V c R pbest X

c R gbest X

= × + × × −

+ × × −
 (26)

Another kind of updating equation is presented as
follows [25]:

1 1,

2 2,

(0,1) ()

 (0,1) ()

d d d d d
i i i i i

d d d
i i

V w V c R pbest X

c R gbest X

= × + × × −

+ × × −
 (27)

The difference between Eq. (28) and Eq. (29) is that
the former has the same random number (0,1)R for each
dimension of the ith particle; the latter has different
random number (0,1)dR for each dimension of the ith
particle. Hence, we use these two updating equations to
explore the performance of the PSO, respectively. The
PSO based on (28) is called PSO-1; the PSO based on (29)
is called as PSO-2. We further strengthen the randomness
of PSO-2 to investigate the improvement of the search

space. Thus, we revise w and c from the empirical setting
(28) to the randomness setting (29):

0.5; 2w c= = (28)
,(0,1) ; 1 (0,1) 2, 1,2i i j i iw R c R j= = + × = (29)

The PSO-2 algorithm revised by Eq. (40) is called
PSO-3. The three versions of PSO run 30 times,
respectively, to solve the addressed case. The best results
are shown in Figure 6.

As shown in Figure 6, PSO-1 is of premature
convergence due to the same random numbers for all
dimensions, which leads to a smaller search space. PSO-2
and PSO-3 show the better convergent efficiency and
search space than PSO-1. Moreover, the final global
optimization value of PSO-3 achieves 3.494. But the
PSO-3 is still inferior to PEDE on global searching
capability, even though it has the better convergence
speed than PEDE before the previous 415 iterations. Thus,
we conclude that PEDE has more advantages to solve the
MSP model than the addressed PSO algorithms.

0 250 415 1,000 1,500 2,000 2,500 3,000
2

2.5
2.8

3.4
3.75

4.1

5

6

7

8

9

Iterations

O
jb

ec
tiv

e
V

al
ue

PSO-1
PSO-2
PSO-3
PEDE

Figure 6. The comparison between PEDE and PSO

D. PEDE Versus CDE
For F=0.5 and cr =0.9 is the empirical settings of

CDE[26], we change CDE algorithm as follow revisions:
(1) F=0.5, cr=0.9, which is named as CDE-1; (2) cr=0.9,
F is replaced with uniform random number between 0
and 1, which is named as CDE-2; (3) F=0.9, cr is
replaced with uniform random number between 0 and 1,
which is named as CDE-3. These algorithms run 30s
repeatedly, respectively. The best results are shown in
Figure 7.

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2479

© 2013 ACADEMY PUBLISHER

0 500 1,000 1250 1,500 2,000 2,500 3,000
2

3

4

5

6

7

8

9

Iterations

O
bj

ec
tiv

e
V

al
ue

CDE-1
CDE-2
CDE-3
PEDE

Figure 7. The comparison between PEDE and CDE

As shown in Figure 7, the curves of the three revised
algorithms get the best values 3.9442, 3.7793 and 2.8234,
respectively. The curve of the PEDE is in response to the
best value of 30s runs. PEDE still outperformances than
the other revised algorithms. It is referred that the only F
and cr are set as uniform random numbers simultaneously,
the classical DE i.e. all fixed one can be improved to the
best performance. Furthermore, PEDE obtains an enough
large searching space through the entire randomized
parameters. The statistical comparisons of the addressed
algorithms are shown in Table 3. PEDE has the best
stability than the other algorithms according to the
standard variation (Std.), and only the stability of
classical DE closes to the PEDE.

TABLE 3
STATISTICAL COMPARISON UNDER DIFFERENT SCALES

 Index 3-3-3 4-4-4 5-5-5

GA-3

Best 4.4624 5.3654 7.3900
Mean 4.6965 5.6456 7.7908
Worst 4.5319 5.9265 8.1917
Std. 0.0191 0.1556 0.2222

PSO-3

Best 3.4940 3.6395 3.7989
Mean 3.5444 3.9198 4.1989
Worst 3.5790 4.2007 4.5991
Std. 0.0104 0.0617 0.0119

CDE-3

Best 2.8234 4.0337 4.4972
Mean 3.2570 4.3072 4.8162
Worst 3.6991 4.5804 5.1358
Std. 0.1341 0.1516 0.1768

PEDE

Best 2.2439 3.2645 3.3411
Mean 2.4876 3.2957 3.3835
Worst 2.6516 3.3274 3.4252
Std. 0.0103 0.0172 0.0231

Next, we analyze the performances of PEDE and the
other algorithms in each instance which is shown in Table
3.As shown in Table 3, PEDE performs the best,
followed by CDE-3 and PSO-3, and the worst is GA-3.
According to the measures of Best and Mean, we can
conclude that PEDE has the best convergence and
searching efficiency than the other three algorithms.
Furthermore, the measures of Std and Worst imply that
PEDE has the best robustness and stability than the other
algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an intelligent optimization
algorithm to solve the multistage stochastic programming
model in weapons production planning, in which a
population parallel evolution based approach is proposed
to handle the high-dimensional variables and the large-
scale solution space. That is, the populations are
partitioned into several children clusters, and which are
implemented the DE evolution operations independently.
Meanwhile, the global best optimum individual of grand-
child populations is updated in the process of iterations.

The developed algorithm is applied to solve a case of
the multistage stochastic programming model in weapons
production planning. Six instances with different scale of
the variable dimensions and solution space are adopted to
test this algorithm. The computational results show that
PEDE has the best global searching capability but a slow
convergence speed, compared with GA, PSO and DE.
Fortunately, the variables clustering approach can speed
up the convergence and enlarge the searching space of
CDE, while each strategy of this approach is also
validated to be effective independently. PEDE performs
the best effectiveness between 3-3-3 to 5-5-5 branches, in
other words, when the variables scale does not exceed
more than approximate 2000 dimensions. It can be found
that the standard deviation (Std.) of PEDE is the smallest
among these algorithms under each scale of the branches.
It is also implied that the parallel evolutionary approach
also brings robustness and stability for CDE.

ACKNOWLEDGMENT

This research is supported in part by the National
Science Foundation of China under Contract no.
71031007, 71001104 and 71201168. We are grateful for
these financial supports. We are also grateful to the
anonymous reviewers for their valuable comments and
constructive criticism.

REFERENCES

[1] S. Ahmed and N. V. Sahinidis, "An approximation scheme
for stochastic integer programs arising in capacity
expansion," Operations Research, vol. 51, pp. 461-371,
2003.

[2] N. Geng, Z. Jiang, and F. Chen, "Stochastic programming
based capacity planning for semiconductor wafer fab with
uncertain demand and capacity," European Journal of
Operational Research, vol. 198, pp. 899-908, 2009.

[3] Y. Feng and S. M. Ryan, "Scenario construction and
reduction applied to stochastic power generation expansion
planning," Computers & Operations Research, vol. 40, pp.
9-23, 2013.

[4] Z.-L. Chen, S. Li, and D. Tirupati, "A scenario-based
stochastic programming approach for technology and
capacity planning," Computers & Operations Research,
vol. 29, pp. 781-786, 2002.

[5] S. S. Kara and S. Onut, "A two-stage stochastic and robust
programming approach to strategic planning of a reverse
supply network: The case of paper recycling," Expert
Systems with Applications, vol. 37, pp. 6129-6138, 2010.

[6] M. K. Zanjani, M. Nourelfath, and D. Ait-Kadi, "A multi-
stage stochastic programming approach for production
planning with uncertainty in the quality of raw materials

2480 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

and demand," International Journal of Production
Research, vol. 48, pp. 4701-4713, 2010.

[7] S. Vigerske and I. Nowak, "Adaptive discretization of
convex multistage stochastic programs," Mathematical
Methods of Operations Research, vol. 65, pp. 361-383,
2007.

[8] M. S. Casey and S. Sen, "The scenario generation
algorithm for multistage stochastic linear programming,"
Mathematics of Operations Research, vol. 30, pp. 615-631,
2005.

[9] L. F. Escudero, M. A. Garín, M. Merino, and G. Pérez,
"On BFC-MSMIP strategies for scenario cluster
partitioning, and twin node family branching selection and
bounding for multistage stochastic mixed integer
programming," Computers & Operations Research, vol. 37,
pp. 738-753, 2010.

[10] C.-H. Wu and Y.-T. Chuang, "An efficient algorithm for
stochastic capacity portfolio planning problems," Journal
of Intelligent Manufacturing, vol. 23, pp. 2161-2170, 2012.

[11] J. R. Jiao, Y. Zhang, and Y. Wang, "A heuristic genetic
algorithm for product portfolio planning," Computers &
Operations Research, vol. 34, pp. 1777-1799, 2007.

[12] Y.-Y. Chen and J. T. Lin, "A modified particle swarm
optimization for production planning problems in the TFT
Array process," Expert Systems with Applications, vol. 36,
pp. 12264-12271, 2009.

[13] C. Liu, S. Yang, "A serial insertion schedule generation
scheme for resource-constrained project scheduling,"
Journal of Computers, vol. 6, pp. 2365-2375, 2011.

[14] T.-L. Chen and H.-C. Lu, "Stochastic multi-site capacity
planning of TFT-LCD manufacturing using expected
shadow-price based decomposition," Applied
Mathematical Modelling, vol. 36, pp. 5901-5919, 2012.

[15] S. Kébé, N. Sbihi, and B. Penz, "A Lagrangean heuristic
for a two-echelon storage capacitated lot-sizing problem,"
Journal of Intelligent Manufacturing, vol. 23, pp. 2477-
2483, 2012.

[16] P.-F. Tsai, "A label correcting algorithm for partial
disassembly sequences in the production planning for end-
of-life products," Mathematical Problems in Engineering,
vol. 2012, p. Article ID 569429, 2012.

[17] D. Shen, Y. Li, "Multimodal optimization using crowding
differential evolution with spatially neighbors best search,"
Journal of Software, vol. 8, pp. 932-938, 2013.

[18] W. Liang, L. Zhang, M. Wang, "The Chaos differential
evolution optimization algorithm and its application to

support vector regression machine," Journal of Software,
vol. 6, pp. 1297-1304, 2011.

[19] C. Deng, C. Liang, B. Zhao, et al., "Structure-encoding
differential evolution for integer programming," Journal of
Software, vol. 6, pp. 140-147, 2011.

[20] L. Peng, Y. Wang, D. Dai, et al., "A novel differential
evolution with uniform design for continuous global
optimization," Journal of Computers, vol. 7, pp. 3-10,
2012.

[21] S. Martello and P. Toth, Knapsack problems. West Sussex,
England: John Wiley & Sons Press, 2001.

[22] W. Gong, Z. Cai, "Adaptive parameter selection for
strategy adaptation in differential evolution for continuous
optimization," Journal of Computers, vol. 7, pp. 672-679,
2012.

[23] R. L. Haupt and S. E. Haupt, Practical genetic algorithms.
New Jersey, USA: John Wiley & Sons Inc., 2004.

[24] J. Kennedy and R. Eberhart, "Particle swarm
optimization," in Proceeding of IEEE International
Conference on Neural Network, Perth, Western Australia,
1995.

[25] R. Eberhart and J. Kennedy, "A new optimizer using
particle swarm theory," presented at the 6th International
Symposium on Micro Machine and Human Science,
Nagoya, Japan, 1995.

[26] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
Evolution A Practical Approach to Global Optimization.
Berlin, Germany: Spring-Verlag Inc., 2005.

Yu Zhou is currently a Ph.D. candidate at College of
Information Systems and Management in National University of
Defense Technology, China. Her main research interests include
intelligent optimization algorithm and combinatorial
optimization.

Jiang Jiang is an associate professor at college of information
system and management, National University of Defense
Technology, China. His research interests span the areas of
knowledge-based systems, expert system and its applications.

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2481

© 2013 ACADEMY PUBLISHER

