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Abstract—Since the multistage production planning 
problem possesses high-dimensional variables and large-
scale solution space, it is hard to be solved in an acceptable 
time. To deal with this challenge, we propose a parallel 
evolution based intelligent optimization algorithm. The 
proposed algorithm employs the differential evolution as the 
algorithm framework to implement the primary mutation 
and crossover operations, then the entire variables are 
clustered into several sub-populations according to the 
problem structure, finally a parallel evolution strategy is 
proposed to speed up the convergence and progress the 
search precision of the sub-population. A case of weapons 
production planning is studied to validate the proposed 
algorithm. The results show that this algorithm has the 
fastest convergence and the best global searching capability, 
compared with classical differential evolution algorithm, 
genetic algorithm and particle swarm optimization 
algorithm.  
 
Index Terms—production planning; multistage stochastic 
programming; differential evolution; parallel evolution; 
variables clustering 
 

I.  INTRODUCTION 

The scenario tree based stochastic programing as a 
kind of mathematical programming technique is more and 
more popular to model the Large-scale Production 
Planning Problem in Defense Industry [1-3]. However, 
the challenge of this application is that the variable 
dimensions and the solution space exponentially increase 
with the planning stage and the scenarios. Moreover, they 
are usually larger than 1000 dimensions and 101000 
solutions respectively in the context of weapons 
production planning. In recent literatures [4-6], the 
scenario tree based multistage stochastic programming 
model is solved by some business software such as 
CPLEX.  

However, the weapons production planning (WPP) 
problem belongs to the nonlinear integer programming 
with real exponent and it is hard to be converted into the 

standard form which could be solved by CPLEX. Some 
vigorous mathematical approaches are also studied to 
solve the multistage stochastic programming model, but 
these approaches require the model to satisfy some strict 
restraints such as convex programming [7], linear 
programming [8] and/or 0-1 mixed integer programming 
[9]. Unfortunately, the multistage stochastic programing 
model in the context weapons production planning does 
not satisfy these constraints. 

In recent years, more and more researchers developed 
the intelligent optimization algorithms to attack the large-
scale production planning problem in many fields. Wu et 
al. developed a new heuristic search algorithm to solve 
the dedicated and flexible capacity planning problems 
[10]. Jiao et al. proposed a generic algorithm (GA) with 
specific encoding scheme to synchronize product 
portfolio generation and selection in production planning 
[11]. Chen et al. introduced a binary particle swarm 
optimization algorithm (PSO) with dynamic inertia 
weight and mutation mechanism for the production 
planning problem in the thin film transistor Array process 
[12]. Interested readers may refer to [13-16].  

However, neither did these studies consider the 
scenario tree based variables structure in multistage 
stochastic programming model nor systematically 
develop an evolutionary algorithm to specifically handle 
the high-dimensional variables in production planning. At 
the same time, differential evolution (DE) which is 
considered as an important branch of the evolutionary 
algorithms is widely used to solve optimization problems 
in many fields [17-20]. The simple mutation operation 
and one-on-one competition strategy of DE reduce the 
complexity of traditional genetic operations, which brings 
to a strong global convergence and robustness. 

Based on these surveys, we seek to develop an 
intelligent optimization algorithm to solve the multistage 
stochastic programming problem in the context of 
weapons production planning. In order to handle the 
high-dimensional variables and the large-scale solution 
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space, we propose two novel optimization strategies 
which are the variable clustering and parallel evolution. 
To the best of our knowledge, this intelligent 
optimization algorithm is first proposed here and could be 
applied to other engineering fields. 

II.  MULTISTAGE STOCHASTIC PROGRAMMING MODEL 

A.  Overview of Weapons Production Planning 
Suppose that there are C capability requirements and 

M weapon categories, in which each capability 
requirement is supported by more than one weapon 
category and vice versa. Each weapon category contains a 
number of weapon models. For each weapon model, the 
capability values depend on the corresponding production 
time and production budget. In each weapon category, the 
weapon models have different capability values when 
they are assigned with equivalent production time and 
production budget. To understand the concept of weapons 
production planning, we need to know the weapons 
multi-period production process which is introduced in 
Figure 1. 
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 Figure 1.  Weapons multi-period production process 

In Figure 1, the weapons production process consists 
of two kinds of variables, one is to select the optimal 
weapon model from each category which will be 
implemented at initial stage, and the other one is to 
optimize the production time (PT) and the production 
budget (PB) of each selected weapon which will be 
implemented in multi-period. All of the selected weapons 
constitute a weapons portfolio (WP). The objective is to 
minimize the capability gaps between the weapons 
portfolio and the capability requirements (CRs) over the 
planning horizon. In this context, both of the capability 
deficiencies and surpluses between capabilities of the 
weapons portfolio and the capability requirements are 
recognized as the capability gaps. 

B.  Formulations of Capabilities for the Weapons 
Portfolio 

Each capability of the weapons portfolio comes from 
the corresponding one of each weapon in this portfolio. 
Thus, we firstly calculate the capability value of each 
weapon. Given the production time and the production 
budget in each period, if this weapon does not have the 
cth capability, , ,mk p cWC = 0; otherwise, , ,mk p cWC  is 
calculated as follows： 
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where Eq. (1) represents the cth capability value of the 
kmth weapon in the pth period. The L-order (resp. H-order) 
polynomial represents the relation between the cth 
capability and the production time (resp. production 
budget). The production time (resp. budget) of the 
previous 1i −  periods add the effective production time 
(resp. budget) in the ith period according to Eqs. (2, 3). 

Since the cth capability requirement is that the quantity 
Rqp,c is needed at the time Rtp,c, we need to further 
calculate the cth capability value of the weapon at the 
time Rtp,c, it is calculated as follows： 
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where Eq. (5) represents that , ,mk p cWC′  is smaller while the 
disparity between ,mk pt  and Rtp,c is larger. This is because 
the weapon has not been completely developed when 

, ,mk p p ct Rt> , on the contrary, the weapon lacks enough 
funding to maintain the achieved capability when 

, ,mk p p ct Rt< . 
After acquiring the cth capability value of each 

weapon model, we can calculate the corresponding 
capability value of the weapons portfolio through 
weighted sum, which is calculated as follows:  

    , , , ,
1

, m

M

m p c k p c
m

p cWC w WC
=

′= ×∑                              (6) 

where , , 0m p cw = , if the mth weapon category does not 
have the cth capability. 

C.  Formulations of the Uncertain Capability 
Requirements 

In a practical defense engineering environment, the 
capability requirements are incrementally evolving over 
the whole planning horizon while they have uncertain 
values in each period. Considering this property, the 
uncertain capability requirements are formulated as 
follows: 

, , , , , , , ,{ ( , )}p z c p z c p z c p z cR R Rt Rq=                           (7) 

s.t.       , , , , , , , ,, ,    ,p z c p z c p z c p z cRt Rt Rq Rq p p′ ′ ′≤ ≤ <          (8) 
 , 1,2,..., ,   1,2,..., ,   1,2,...,p pp p P c C z Z′ = = =     (9) 

, , , ,,   , , ,p z c p z c pRq Rt P C Z+ +∈ ∈\ `                  (10) 
where Eq. (7) represents that the cth capability requires 
the value Rqp,z,c at the time of Rtp,z,c in the pth period. Rp,z,c 
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has Zp possibilities in each period. Constraint (8) 
represents Rqp,z,c and Rtp,z,c increase with the period.  

D.  Multistage Stochastic Programming Model 
The multistage stochastic programming model (MSP) 

provides different production times and production 
budgets to hedge against each possible group of 
capability requirements. Since the variables in pth period 
correlate with all of the ones in the previous (p-1)th 
period, the scenario tree could be used to represent the 
variables structure corresponding to the possible 
evolution processes of the capability requirements. The 
possibilities of the capability requirements equal to the 
branches of the scenario tree in each period. A scenario 
tree with 2-2-2 branches is shown in Figure 2. 
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Figure 2.  The 3-period scenario tree with 2-2-2 branches 

In Figure 2, the path from the root node (circular node) 
to a leaf node (rectangular node) is called a scenario s, i.e. 
a possible evolution process of the capability 
requirements over the entire planning horizon. The 
variable set 0V  in root node corresponds to the selected 
weapon models to encounter all of the scenarios. Then, 
the variable set ,p nV  corresponds to the production time 
and the production budget in each leaf node.  

 The objective of weapons production planning is to 
minimize the weighted sum of the capability gaps 
between the weapons portfolio and the capability 
requirements in each leaf node. Thus, the multistage 
stochastic programming model for weapons production 
planning is formulated as: 
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where ( )pnπ  is considered as the unconditional 
probability of the npth possibility of the capability 
requirements in each node. Constraints (14, 15) describe 
the relation between np and Zp. mod(•) represents the 
remainder operation. ( )p

pref ′ i  in constraints (14, 15) locates 
the variables of the ancestor node in the thp′  period. 
Furthermore, the variables in all leaf nodes (circular 
nodes) must share the same variables of the weapon 
models in the root node (rectangular node). Constraint 
(16) and (17) represent the available range of the 
production time and the production budget, respectively. 
Constraint (18) represents the overall available budget for 
the weapons portfolio in each period. 

III.  ALGORITHM DEVELOPMENTS 

A.  Classical DE Algorithm 
We first develop the classical differential evolution 

(CDE) algorithm to solve the addressed multistage 
stochastic programming model. It is introduced as 
follows: 

Step 1 (Population Initialization). Generate the value 
of each variable randomly in the available range 
according to constraints (16, 17). The individual encoding 
is shown as follows: 
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Step 2 (Evaluation). For each current individual, 
calculate the objective value by Eq. (11), and then 
calculate the violation of the overall budget constraint by 
Eq. (18). Record the current global optimization 
individual. If there is no individual who satisfies the 
overall budget constraint, take the individual with 
minimum violated degree of the budget constraint as the 
global optimization one. 

Step 3 (Mutation). Execute mutation operation which 
is formulated as 

1 2 3
( )i i i iU X F X X= + × −                         (20) 

where 
1i

X , 
2i

X  and 
2i

X  are the randomly chosen 
individuals from the current population X . The mutation 
scaling factor F is a real constant number which is often 
set to 0.5 [22]. 

Step 4 (Crossover). Select each variable of the current 
individual iX  with certain probability to replace the 
corresponding bit of the temporary individual iU  , which 
is formulated as 

( ),            (0,1)
( )

( ),           
i j

i
i

U j R cr
U j

X j otherwise
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                    (21) 
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where (0,1)jR  is a uniform random number between 0 
and 1, and cr is the crossover rate which is often set to 0.9 
[22]. 

Step 5 (Handling constraints of variables). Judge each 
bit in each individual whether or not violate the 
constraints (16, 17) in the temporary population. The bit 
which violates the corresponding constraint randomly 
obtains a number as its value within the available range. 

Step 6 (Selection). Evaluate the objective value and the 
violation of budget constraint for each temporary 
individual iU . If the current individual iX  and temporary 
individual iU  both satisfy the budget constraint, the 
individual with minimum objective value is selected as 
new individual. If only one of them violates the budget 
constraint, the individual without violation of the 
constraint is selected. If iU  and iX both violate the 
constraint, the individual with minimum violated degree 
is selected. Through above operation, the new population 
is generated. Then, the global optimization individual is 
updated. 

Step 7 (Loop). Record the current global optimization 
individual. Repeat steps 3 to 7 until the maximum 
number of iterations or the desired solution is obtained. 

B.  Parallel Control Strategy 
As shown in Figure 2, the individual contains one root 

variable unit 0V  and fourteen leaf variable units. 
According to the Figure 2 and the encoding equation (19), 
if 0V  is fixed, the leaf variable units obviously can be 
clustered into two completely uncorrelated parts. 
Moreover, if 1V and 2V  are also fixed, the else leaf 
variable unit can be clustered into four completely 
uncorrelated sub-individuals. Meanwhile, the 
corresponding objective can also be decomposed two 
child-objectives and/or four grandchild-objectives, 
because objective function (11) is the weighted 
summation of all the node objective functions.  

To handle the crucial problem on how to fix 0V , we 
seek to dynamically determine the 0V   during the 
iteration process. The idea is that if 0V  of the global best 
individual keeps invariant within consecutive I iterations, 
each variable has obtain the best value. Thus, the 0V  of 
the global best individual is taken as the fixed root 
variable unit of each individual in the clustering process.  

The specific evolution procedure based on the 
variables clustering-1 named as PEDE-1 is introduced as 
follow: 

Step 1. Define the 0Gv  as the root variable unit of the 
global best individual. Define 0cou =  and a constant I. 

Step 2. Implement iterations of the fundamental 
evolution process. 

Step 3. Judge whether each variable in 0
tGv  equivalent 

to the corresponding one in 1
0
tGv − . If yes, 1cou cou= + ; 

else, 0cou = . 

Step 4. If cou I== , implement the variables clustering-
1 operation and take the 0

tGv  as the root variable unit of 
each individual, else, go to Step 1. 

Step 5. Implement the mutation and crossover for each 
part sub-individuals independently. 

Step 6. Implement the evaluation operation and 
calculate the sub-objective value corresponding to each 
sub-individual. 

Step 7. Implement selection operation for each sub-
individual independently. 

Step 8. Aggregate the sub-individuals and sub-
objective values into the comprehensive individual and 
objective value, respectively. Then, update the global best 
individual. 

Step 9. Repeat steps 5 to 7 until the maximum number 
of iterations or the desired solution is obtained. 

C.  Parallel Evolutionary Optimization 
The parallel evolutionary strategy is proposed to 

improve the performance of the fundamental differential 
evolution algorithm, which is named as PEDE. The 
purpose of PEDE is to simultaneously implement the 
evolution operations on the clustering-1 based 
populations and clustering-2 populations. This is because, 
if we only use the variables clustering-1 strategy which is 
named as PEDE-1, the solution space of the child 
variable units is still far larger than the one of the ideal 
scale of the variables. Thus, the child variable units could 
not converge to the global best values in short iterations. 
Furthermore, if we only use the variables clustering-2 
strategy to implement evolution operation which is 
named as PEDE-2, the algorithm will be premature and 
trapped a local optimum. Thus, the parallel evolutionary 
strategy is shown in Figure 3. 

Figure 3: Flowchart of PEDE 
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As shown in Figure 3, the left-hand represents the 
optimization of one half populations at the level of child 
individual corresponding to PEDE-1, and the right-hand 
represents the optimization of the else half populations at 
the level of grandchild individuals corresponding to 
PEDE-2. Meanwhile, if PEDE-1 obtains child global best 
solution, it will update the child variable unit of the other 
half populations. This technique holds the optimization 
on grandchild individual population not to be trapped in 
local optimum. Therefore, PEDE could update the global 
best solution based on the variables clustering-1 and 
clustering-2 simultaneously during the iterations, it make 
the CDE possess the faster convergent speed and the 
higher searching precision. 

In fact, the variables clustering-1 based sub-population 
corresponds to the local search in a large scale and the 
variables clustering-2 based sub-population corresponds 
to the local search in a small scale. Generally speaking, 
the algorithm could have a better global searching 
capability at the earlier iterations, in order to find more 
global optimization solutions. Then, the algorithm could 
have a better local searching capability at the later 
iterations, in order to improve the searching precision and 
convergence. To meet these demands, we propose an 
adaptive control strategy for each sub-population scale, 
which is shown in Figure 4. 
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= −

= × −
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Figure 4: Adaptive control strategy for each sub-population 

In Figure 4, 1subpop  (resp. 2subpop ) corresponds to the 
variables clustering-1 (resp. clustering-2) based sub-
population; θ  is an judgment coefficient and belongs to 
(0, 1) according to the empirical settings; g is the current 
iteration times and G is the overall iteration times. The 
most individuals join subpop1 to hold global searching 
capability at the initial stage. Then, the individuals in the 
subpop1 migrate to the subpop2 with the increase of the 
iteration times, in order to strength the searching 
precision and convergence. Meanwhile, to balance the 
stability of the evolution on the two sub-populations, 
migration do not occur in each generation but occur when 
g G  increases beyond the j times of θ . 

IV.  COMPUTATIONAL RESULTS 

A. Case Description  
Intelligence, surveillance and reconnaissance (ISR) 

weapons are indispensable components of military 
operations, they must work together to provide 
commanders and soldiers with a comprehensive 
understanding of battlefield situation. Thus, multiple ISR 

weapons need to be planned to satisfy the capability 
requirements. There are five weapon categories need to 
be considered, and the corresponding variables and their 
ranges are shown in Table 1. 

TABLE 1 
THE VARIABLES AND THEIR RANGES OF THE WEAPON CATEGORIES 

Weapon Model Time Budget1 Budget2 Budget3
RS [1,5] (0, 15) (0, 200) (0, 300) (0, 200)
AWCS [1,4] (0, 15) (0, 200) (0, 200) (0, 150)
MHAUAS [1,6] (0, 15) (0, 100) (0, 100) (0, 100)
BLSDL [1,3] (0, 15) (0, 50) (0, 100) (0, 100)
C2S [1,4] (0, 15) (0, 100) (0, 100) (0, 120)
All of the notations in Table 1 are listed in the 

following: (1) RS is the reconnaissance satellite. (2) 
AWCS is the airborne warning and control system. (3) 
MHAUAS is the medium to high altitude unmanned 
aerial system. (4) BLSDL is the beyond line of sight data 
link. (5) C2S is the command and control system. Each 
category weapon has three kinds of variables, i.e. model 
selection variable mk , production time variable ,mk pt  and 
production budget variable ,mk pq . For example, the data 
on RS in Table 1 represents that it has five optional 
weapon models. The production time must be planned 
within a given interval i.e. 0 to 20 in each period and the 
unit of production time is month. The production budget 
must be planned within 0 to 300, 0 to 400 and 0 to 300 
for each period, respectively, and the unit of production 
budget is million dollars. 

To explore the performance of the proposed algorithm, 
we construct the scenario trees from 3-3-3 to 5-5-5 
branches corresponding to the different scale of the 
possible evolving capability requirements. The related 
data are shown as in Table 2. 

TABLE 2 
PARTIAL DATA ON THE SCALE OF THE SIX INSTANCES 

Branches 3-3-3 4-4-4 5-5-5 
Children clusters 3 4 5 
Grandchildren clusters 9 16 25 
Leaf nodes 39 84 155 
Variables 395 845 1555 
Constraints 434 925 1710 
Scale 78010>  168010>  310010>  
The scenario trees with different branches have the 

same structure which was shown in Figure 3. Since there 
are five weapon categories to be planned, each leaf node 
has corresponding five production time variables and five 
production budget variables. 

B. PEDE Versus GA 
We first use PEDE to solve the MSP model. Then, we 

replace the evolution operations of DE with GA. For the 
variables take the decimal integer encoding, the heuristic 
crossover based GA is appropriate to this encoding [23], 
which is called GA-1. Then, in order to strengthen the 
stochastic search capability of GA-1, we revise the 
heuristic crossover of the GA-1 from Eq. (22) to Eq. (23): 

, , , ,(0,1) ( )ch i fa i ma i fa ip p R p p= + × −                         (22) 

, , , ,(0,1) ( )ch i fa i i ma i fa ip p R p p= + × −                         (23) 
where pfa,i, pma,i and pch,i are the ith bit of the parent, 

mother, and child, respectively. The difference between 
Eq. (22) and Eq. (23) is that (0,1)R  (resp. Ri(0, 1)) is 

2478 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER



fixed (resp. variable) in response to each bit of the mother 
and father. The GA-1 revised by Eq. (24) is called GA-2. 
Finally, we further amplify the stochastic search 
capability through the revision of crossover probability pc 
and mutation probability pm from Eq. (24) to Eq. (25): 

0.9;           0.05pc pm= =                                   (24) 
0.4 (0,1) 0.5;           (0,1) 0.1pc R pm R= + × = ×               (25) 

The GA-2 revised by Eq. (25) is called GA-3. The 
three versions of GA and the PEDE run 30 times, 
respectively, to solve the addressed case. The best results 
of the three versions of GA and the worst result of PEDE 
are shown in Figure 5. 

0 500 1000 1500 2000 2500 3000
2

2.5
2.75

3

4

4.5
4.75

5

6

7

8

9

Iterations

O
bj

ec
tiv

e 
V

al
ue

 

 

GA-1
GA-2
GA-3
PEDE

 

Figure 5: The comparison between PEDE and GA 

As shown in Figure 5, the worst result of PEDE is 
superior to the best results of the three versions of GAs. 
The final global optimization value of GA-1, GA-2 and 
GA-3 are comparable with each other, and they are 
4.7510, 4.7034 and 4.6965, respectively. It is implied that 
the boost of the stochastic search is neither improve nor 
weaken the performance of GA. Furthermore, the inertia 
evolution operation of DE is superior to the GA in this 
context. 

C. PEDE Versus PSO 
Next, we compare PEDE with PSO algorithm. For 

updating the velocity of a particle in PSO, one kind of 
updating equation is presented as follows [24]: 

1 1,

2 2,

(0,1) ( )

        (0,1) ( )

d d d d
i i i i i

d d
i i

V w V c R pbest X

c R gbest X

= × + × × −

+ × × −
      (26) 

Another kind of updating equation is presented as 
follows [25]: 

1 1,

2 2,

(0,1) ( )

        (0,1) ( )

d d d d d
i i i i i

d d d
i i

V w V c R pbest X

c R gbest X

= × + × × −

+ × × −
      (27) 

The difference between Eq. (28) and Eq. (29) is that 
the former has the same random number (0,1)R  for each 
dimension of the ith particle; the latter has different 
random number (0,1)dR  for each dimension of the ith 
particle. Hence, we use these two updating equations to 
explore the performance of the PSO, respectively. The 
PSO based on (28) is called PSO-1; the PSO based on (29) 
is called as PSO-2. We further strengthen the randomness 
of PSO-2 to investigate the improvement of the search 

space. Thus, we revise w and c from the empirical setting 
(28) to the randomness setting (29): 

0.5;           2w c= =                                        (28) 
,(0,1) ;   1 (0,1) 2,    1,2i i j i iw R c R j= = + × =        (29) 

The PSO-2 algorithm revised by Eq. (40) is called 
PSO-3. The three versions of PSO run 30 times, 
respectively, to solve the addressed case. The best results 
are shown in Figure 6. 

As shown in Figure 6, PSO-1 is of premature 
convergence due to the same random numbers for all 
dimensions, which leads to a smaller search space. PSO-2 
and PSO-3 show the better convergent efficiency and 
search space than PSO-1. Moreover, the final global 
optimization value of PSO-3 achieves 3.494. But the 
PSO-3 is still inferior to PEDE on global searching 
capability, even though it has the better convergence 
speed than PEDE before the previous 415 iterations. Thus, 
we conclude that PEDE has more advantages to solve the 
MSP model than the addressed PSO algorithms. 
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Figure 6.  The comparison between PEDE and PSO 

D. PEDE Versus CDE 
For F=0.5 and cr =0.9 is the empirical settings of 

CDE[26], we change CDE algorithm as follow revisions: 
(1) F=0.5, cr=0.9, which is named as CDE-1; (2) cr=0.9, 
F is replaced with uniform random number between 0 
and 1, which is named as CDE-2; (3) F=0.9, cr is 
replaced with uniform random number between 0 and 1, 
which is named as CDE-3. These algorithms run 30s 
repeatedly, respectively. The best results are shown in 
Figure 7. 
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Figure 7.  The comparison between PEDE and CDE 

As shown in Figure 7, the curves of the three revised 
algorithms get the best values 3.9442, 3.7793 and 2.8234, 
respectively. The curve of the PEDE is in response to the 
best value of 30s runs. PEDE still outperformances than 
the other revised algorithms. It is referred that the only F 
and cr are set as uniform random numbers simultaneously, 
the classical DE i.e. all fixed one can be improved to the 
best performance. Furthermore, PEDE obtains an enough 
large searching space through the entire randomized 
parameters. The statistical comparisons of the addressed 
algorithms are shown in Table 3. PEDE has the best 
stability than the other algorithms according to the 
standard variation (Std.), and only the stability of 
classical DE closes to the PEDE. 

TABLE 3 
STATISTICAL COMPARISON UNDER DIFFERENT SCALES 
 
 Index 3-3-3 4-4-4 5-5-5 

GA-3 

Best 4.4624 5.3654 7.3900 
Mean 4.6965 5.6456 7.7908 
Worst 4.5319 5.9265 8.1917 
Std. 0.0191 0.1556 0.2222 

PSO-3 

Best 3.4940 3.6395 3.7989 
Mean 3.5444 3.9198 4.1989 
Worst 3.5790 4.2007 4.5991 
Std. 0.0104 0.0617 0.0119 

CDE-3 

Best 2.8234 4.0337 4.4972 
Mean 3.2570 4.3072 4.8162 
Worst 3.6991 4.5804 5.1358 
Std. 0.1341 0.1516 0.1768 

PEDE 

Best 2.2439 3.2645 3.3411 
Mean 2.4876 3.2957 3.3835 
Worst 2.6516 3.3274 3.4252 
Std. 0.0103 0.0172 0.0231 

Next, we analyze the performances of PEDE and the 
other algorithms in each instance which is shown in Table 
3.As shown in Table 3, PEDE performs the best, 
followed by CDE-3 and PSO-3, and the worst is GA-3. 
According to the measures of Best and Mean, we can 
conclude that PEDE has the best convergence and 
searching efficiency than the other three algorithms. 
Furthermore, the measures of Std and Worst imply that 
PEDE has the best robustness and stability than the other 
algorithms. 

V.  CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed an intelligent optimization 
algorithm to solve the multistage stochastic programming 
model in weapons production planning, in which a 
population parallel evolution based approach is proposed 
to handle the high-dimensional variables and the large-
scale solution space. That is, the populations are 
partitioned into several children clusters, and which are 
implemented the DE evolution operations independently. 
Meanwhile, the global best optimum individual of grand-
child populations is updated in the process of iterations. 

The developed algorithm is applied to solve a case of 
the multistage stochastic programming model in weapons 
production planning. Six instances with different scale of 
the variable dimensions and solution space are adopted to 
test this algorithm. The computational results show that 
PEDE has the best global searching capability but a slow 
convergence speed, compared with GA, PSO and DE. 
Fortunately, the variables clustering approach can speed 
up the convergence and enlarge the searching space of 
CDE, while each strategy of this approach is also 
validated to be effective independently. PEDE performs 
the best effectiveness between 3-3-3 to 5-5-5 branches, in 
other words, when the variables scale does not exceed 
more than approximate 2000 dimensions. It can be found 
that the standard deviation (Std.) of PEDE is the smallest 
among these algorithms under each scale of the branches. 
It is also implied that the parallel evolutionary approach 
also brings robustness and stability for CDE. 
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