
Software Behavior Modeling Based on Invariant
Constraints

Cheng Peng

School of Information Science and Engineering, Central South University, ChangSha 410083, China；
College of Computer and Communication, Hunan University of Technology, ZhuZhou 412008, China

E-mail: doc_pen@126.com，mjfok@qq.com

Lu-ming Yang 1, Jun-feng Man 2
1School of Information Science and Engineering, Central South University, ChangSha 410083, China；
2College of Computer and Communication, Hunan University of Technology, ZhuZhou 412008, China

Abstract—Modeling the networked software interactive
behavior is the basis of understanding its internal
mechanism and the running rules .The software interactive
behavior log files are firstly collected by monitoring, and
then the invariant constraints are mined from it, finally, a
dynamic model learned from the finite state machine is
presented. In this model, not only thought over the situation
that the parallel partly ordered event sequence generated
by the networked software interaction, but the interplay
between data values and components interactions are also
considered, and the event are satisfied the invariant
constraints. In order to ensure certainty and completeness
of the model, the method of merging equivalent states in the
divided sub-diagram is proposed. The corresponding
algorithms are also designed. Meanwhile, the effectiveness
and feasibility of the proposed method are validated
through experiments.
Index Terms—networked software, interactive behavior,
finite state machine, invariant constrain

I. INTRODUCTION

With the development and progress of the computer
network and software technology, the calculation mode
updates constantly, and the distributed computing, grid
computing, cloud computing and transparent computing
technology[1] appear one after another, the software
system deployed above them also has a corresponding
change, from the single version software to the
internetware to the networked software[2], moreover, the
operating environment of the software system also
transforms from the closed, controllable environment to
the open, cross-platform, dynamic, resources sharing,
changeful, collaborative, difficult-controlled environment.
Under this kind of multiple complicated conditions, how
to realize the real-time tasks effectively, and provide
stable and sustainable online services, and how to
guarantee the security and reliability of the data is an
urgent problem to be solved. The key problem not only
lies in network protocol, improvement and innovation of
the storage and computing mechanism, but also lies in
the analysis and research of the constructivism and

evolutionary [3] of the software system itself which
operating in all kinds of frameworks, not only lies in the
development phase of the software, but also in the
running phase, the grasp of the vital signs and interactive
behavior characteristics of the ontology elements of the
software, which will help us improve the credibility[4]of
the networked software from another angle, and improve
the quality of the service that the user gets in the network
environment.

The construction of software behavior model is the
basis of software understanding and software analysis. At
present, the software behavior modeling method is
mainly divided into the following two kinds, one is the
static analysis for the program source code, the other is
the dynamic analysis for the log documents collected
when they are running, and the former is called static
modeling, while the latter is called dynamic modeling
[5-7].These modeling methods provided us with very
important idea and reference for our research. The static
modeling method tries to analyze all possible paths
formed during the source code invoking between
procedures. In fact, it is limited by the copyright and the
software decompilation, so the behavior model is
difficult to have integrity and applicability, while the
dynamic modeling method monitors and collects the log
documents produced in the software interaction process,
and then extracts the invoking relationship of the
procedures, finally generates the behavior model.
Although the dynamic modeling method is simple,
practical, to be used extensively, there still exists some
restrictions:ⅰ.The monitoring objects are limited to the
single system software or the application software [8-10],
but much less attention has paid on the large-scale
networked software system.ⅱ . The monitoring and
collecting format of the log document [11] has no
standard, but disorganized content, much more
redundancy, which brings difficulties for analysis.ⅲ
The description of event is too simple, lack of
considering the parameter delivery when the software

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2455

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2455-2461

performs, resulting in control flow and data flow can not
be taken into account together in the model, the attack
detection for data semantic will be failed.ⅳ. the model
state setting is unreasonable, and the program pointer(PC)
as state[12],although which can depict the invoking
relationship when the procedure operates, it only contains
address information, and can not judge the similar
structure in the model, and also can not handle the
merger of the state in the trace behavior. From the system
resources invoking to resolve the object and used as state
[13], is only suitable for the log document analysis of the
operating system.ⅴ. the sequences of event that the
model receives must be the orderly
sequences[14-15]arranged by the timestamp, and the
problem that the disorder or partially ordered event
sequences produced during the parallel execution under
the distributed environment[16-18] lost the reception
ability has been discussed in our former work [19].ⅵ.In
addition, the model has a very strong dependence on the
integrity of the log document, and the incompleteness of
the log document will lead to the mining invariant[20-22]
lost accuracy, while the invariant plays a key role in
terms of refinement and abstraction for the model.

 In view of this, the paper proposes a dynamic
modeling method called IBDM (Interactive Behavioral
Dynamic Modeling) which is based on the networked
software interactive behavior, IBDM implants the
monitoring probe into the networked software, sets the
monitoring information format in advance, monitors the
dynamic interaction behaviors inside the software in the
long-term, and the information collected is stored as the
formatted log documents. First of all, it uses the
automatic generation of the regular expressions to divide
the log documents into some trace sub-diagram,
considering the semantic and universality for the state in
the model, we adopts the fine-grained event to describe
state, then, mines six kinds of invariant from the trace
diagram, and it is divided according to the trace
sub-diagram whether it meets the invariant constraint
conditions or not, finally, IBDM mergers the equivalence
structure between the trace sub-diagram which satisfies
the invariant constraint, refining and abstracting the
initial model, forming the final model. The theoretical
analysis and experimental result has proved that IBDM
modeling method has the accuracy and validity, which
has laid the foundation for the follow-up behavior
analysis.

II. RELATED WORKS

The work related to the log documents mining mainly
focuses on detecting the relevance of the log document,
abnormal and the performance test. The purpose of this
work is not to find a precise model from the log
document that any system produces. For example, the
tool of SALSA [23] and Mocha [24] extracted and
visualized the behavior of the node in the Hadoop' log
document and conducted the performance test, its main
task is to do Map Reduce description.J.Yang [25] mined
and visualized the temporary attribute of the event trace,

and adopted them to study the evolution of the program,
but also not use these temporary attribute to infer the
system model. With regard to the model inference, K-tail
algorithm [26] is widely used, which iteratively merges
the state of the sub-diagram with the same maximum
depth of K, then generates a simplified finite state
machine model. In general, using the K-tail algorithm
can infer model for small or simple system without
developers’ supervising, once the complexity of the
system increases, the accuracy of the model will greatly
decreased, but its merger mechanism can be improved
and perfected, will enlighten us much. In addition, there
are many methods for inferring the system model usually
by using the statute conditions that the developer written.
Whittle and Schumann [27] infer a components state
chart from the running scenery and attributes of the
system, Damas [28] uses the interactive scene that the
developer provides to induce the Labeled Transition
System(LTS), later, by reducing the developer's
participation to expand this method. However, these
methods may produce excessive redundancy models, and
need a lot of artificial input.

III.IBDM MODEL

A Model Definition
Before the definition of the IBDM model, we will

firstly give the relevant definition.
Definition 1(event) event is the set of function

sequence. When monitoring the online electronic
shopping system, we preset the format of monitoring
software interactive event as ()ctvpme ,,,,= , among
them, Mm ∈ ,

RDp ∈ ,
VDv ∈ , Tt ∈ , Cc ∈ ,the given M is

the finite set of the function, while R is the finite set of
parameters, V is the finite set of variable, and T is the set
of time stamp, also C is the set of all kinds classes in the
system, then

RD is the domain of parameters and
VD is

the domain of variable.
Definition2 (transaction) transaction ()iniii eeet ,,, 21= are

the sequence of real-time incidents when complete some
kinds of operation that contains, it is the subset of the
system trace. One time execution of the online electronic
shopping may implement multiple functions, and it
depends on customer’s requirement, for example, the
user can finish the meal ordering and book shopping on
the internet in a shopping and so on, while they
correspond with different transaction and each type of
transaction contains the events which are not completely
the same.

Definition 3(trace) trace is the finite set of the event
sequence assigned by a fixed time called the
timestamp, () ()nnn vpmvpmbt ,,,, 111= , n is the number
of the event instance, while m is the event instance
belongs to different transaction.

Definition 4(Invariant) log contains rich information
for our analysis, on one hand, the log records the
concurrent execution of multiple transaction, the event
produced by the concurrent execution has timestamp
overlaps, resulting in incomplete order in the internal

2456 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

trace, namely it has partly order between the events,
using≺ symbol to represent. On the other hand, the log
collected from software system has certain mode; mining
these certain modes can help us construct dynamic model.

If ia , jb are the event type, ia
∧

, jb
∧

are the corresponding
event instance, we can mine six kinds of invariants that
relate to the event type ia and jb from the traces. They
are:

ji ba → : The event whose type is a produced by
transaction i is always followed by the event whose type
is b produced by transaction j. it can be expressed
as: jiji baba

∧∧∧∧
∃∀ ≺,, .

ia → jb : The event whose type is a produced by
transaction i is always never followed by the event whose
type is b produced by transaction j. it can be expressed
as: jiji baba

∧∧∧∧
∃∀ ≺,, .

ji ba ← : The event whose type is a produced by
transaction i always precede the event whose type is b
produced by transaction j. it can be expressed
as: jiij baab

∧∧∧∧
∃∀ ≺,, .

ji ba || : The event whose type is a produced by
transaction i always concur at the same time with the
event whose type is b produced by transaction j. it can be
expressed as:

⎟
⎠
⎞

⎜
⎝
⎛ ∧∀

∧∧∧∧

ijjiji abbaba ≺≺,, .

ji ba || : The event whose type is a produced by
transaction i always never concur at the same time with
the event whose type is b produced by transaction j. it
can be expressed as: ⎟

⎠
⎞

⎜
⎝
⎛ ∧∀

∧∧∧∧

ijjiji abbaba ≺≺,, .

ji ba ↔ : The event whose type is a produced by
transaction i always circulates with the event whose type
is b produced by transaction j. it can be expressed
as: ⎟

⎠
⎞

⎜
⎝
⎛ ∨∀

∧∧∧∧

ijjiji abbaba ≺≺,, .

Definition 5(state) the state is the function sequence
invoked in the implementation process of the program,
which is the event set: { }ENDSTARTS ,⊇ .

Definition6 (equivalent state) given two interactive
traces defined as follows, the first and the second

() ()xmxm vpmvpmbt
x
,,,, 111 1

= ,

() ()tftf wpfwpfbt
t
,,,, 112 1

= , 21 btbt ⇔ , if and only if

tx = ,and xi ,...,1=∀ , ii fm = ,
ii fm pp = , ii wv = ,so the

corresponding state of the event in the trace is also
equivalent.

Definition7 (transfer) transfer ()',,, sPmst = , Sss ∈', ,
which respectively represents the source and objective
state, Mm∈ ,is the function in the process of transfer, P
is the transfer judgment.

Definition 8(judgment) it is said the transfer whether
established or not, { }FalseTrueDDP VR ,: →× , which
illustrates the function whether accepts the input

parameters and the value of the variable or not, for
example, the union of the function login and the
transition conditions () 0)(0 >∧>= pwdlengthuserlengthP
presents that the parameters of the function login whether
meets the judgment conditions when the state transits,
from which to decide whether produces transfer or not.

Definition 9(path) given the trace length n ,
()ENDeeSTARTbt n ,,...,, 1= , Ν∈n ,To make the model accept

the trace bt, the necessary and sufficient
conditions: ()() ()ENDPmssPmssPmSTART nnn ,,,,,,,,, 12221111 −=∏∃
for ni ,,1=∀ , () truevpP imi i

=, ,∏ is the complete path
of model M, which presents the sequence of the trace that
the model accepts, and is the basis for the following
behavior analysis(abnormal behavior diagnosis, etc).
Definition 10(IBDM model) the IBDM model is the
four-tuple ()zcP ssTS ,,, , among them,

 1. { }MmmS ∈= | m is the invoking function when
the software executes, which describes the state set of the
executive software.

 2. SDT
P

MP →: , VRMDM ××⊆ , presents the condition
judgment transfer.

 3. { }STARTsc = ,it is the initial state set.
 4. { }ENDsz ⊇ , it is the final state set.

B Constructing Algorithm
Algorithm 1:IBDM constructing algorithm
Input the log document L, regular expression

RegExps;
Extracting the trace diagram traceGraph from the log;
According to the definition 4, mining the invariants

from traceGraph;
Getting the sub-diagram set of {G}from the dividing

traceGraph; setting the initial steps Step as the dividing
times that needed; setting the initial value of the dividing
steps value as: n=0;

If the sub-diagram does not meet the invariants, we
should continue to divide this sub-diagram into two
parts, π 1 , π 2 , π 1 contains the event satisfying the
invariants, while π 2 does not;

 n=n+1;
If n=Step, or the event in the sub-diagram meets the

invariants stops, otherwise, execution circulates;
According to the definition 6, combining the

equivalent state between sub-diagram, then generating
the judgment of P associated with an event, and forming
refinement and abstract of the final model;

Algorithm 2 Mining Invariant
1. Initialing the event type ai , bj , circulation times N,

setting the initial value i=0;
2. According to the definition 4, calculating the

invariants:
If the value Follow [ai][bj] of the event jb

∧
 followed

the event ia
∧

,and this value equals the value Occ[ai] of
the times of the event ia

∧
 appears, So, generates the

invariant ji ba → ;

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2457

© 2013 ACADEMY PUBLISHER

If the value Follow[ai][bj] of the event jb
∧

 followed

the event ia
∧

 equals 0, So, generates the
invariant ia → jb ;

If the value Prec[ai][bj]of the event ia
∧

 appears
before he event jb

∧
,and it equals the value Occ[ai] of the

times of the event jb
∧

 appears, So, generates the
invariant ji ba ← ;

If the value Prec[ai][bj] of the event ia
∧

 appears
before the event jb

∧
 equals the value Follow[ai][bj]of

the event jb
∧

 followed the event ia
∧

,So, generates the
invariant ji ba ↔ ;

If the co-occurrence times of the event ia
∧

and jb
∧

CoOcc[ai][bj]=0, and Follow[ai][bj]=0, Prec[ai][bj]=0,
So,generatesthe invariant ji ba || ;

If the pair event < ia
∧

, jb
∧

> appears one after another,
and the sum of Followpair[ai][bj] and Precpair[ai][bj],
equals the co-occurrence cumulative total times
CoOcc[ai][bj]of the event ia

∧
and jb

∧
 in a trace, So,

generates the invariants ji ba || ;
3. i=i+1;
4. i=N, Completing the calculation, Otherwise repeat;
5. Output the invariants;

IV. EXAMPLES AND ANALYSIS

A Traces Sub-diagram
The interactive log is collected by the monitoring

components when the electronic shopping system
running, and stored as text documents form. Because we
preset the monitoring format, the events partly and
orderly arrange by the timestamp (different components
execute paralleling, some events have time overlap), for
this special format of log, we use regular expression to
analyze them. We induce the same event type as a class,
and each vertex represents an event, while the edge
represents the relationship between each event, and the
attributes on the edge represents the parameters
transferred. The set of these kind diagrams is called trace
diagram. To the log document in this paper, we use the
regular expression :(?< timestamp>). + "(? <TYPE>.+)",
which divides the log documents into three traces, and
each trace corresponds to an interactive transaction. As
shown in figure 1.Among them, the trace corresponding
to the transaction 1 is:<0,login>, <1,search-goods>,
<2,order-items >, <3,valid-order>, <4,get--card>,
<5,check-out>, the integer is the ordered timestamp
exported from the log.

The experiment result shows that, for different size of
log, the trace number extracted from them is almost at
the same. As the system is the same electronic shopping
system monitored at a certain period of time, and the

interactive operation is a relatively fixed mode. The log
collected at different time length, only the repetition
operations differs, but not produce new interactive
operation, which saves the storage space when we
construct the interactive behavior model, and simplify the
model structure is becoming possible.

Figure1. the trace sub-diagram extracted from the log

B Invariant
The six kinds of invariant mined from the log is the

completely logical structure coverage for the log, and
they reveal the multiple interactive relationships between
the event instances at the same transaction, and the
parallel operation between the event instances at the
different transaction. By scanning the log, extracting the
atomic operation as a candidate event instance, and then
adopting the co-occurrence counting method mentioned
before to find the relationship between them, forming the
correlative relationship set that contains specific temporal
logic and semantic logic. These constraint conditions
constituted by multiple relationships between the event
instances have made up for the widespread defects that
the system bugs which is difficult to be detected from the
log. We mined six kinds of invariant from the log that
contains 280 records; table 1 has given the part result of
invariants. It is easy to find that, in our actual shopping
operation, counter-examples “ cardgetorderinvalid −→− ”
of invariants is not allowed. That is to say in the case of
lacking stock, still order the goods and make payment,
which reflects the existence of the counter-example path
in the model. This kind of counter-example invariants is
captured from the electronic shopping system, and it is
obviously not consistent with the normal situation, but
really happened in the process of the transaction,
according to these invariants to construct model, then
traversing the model and determining whether there is a
counter-example path or not, which is the main basis of
detecting system bug.

2458 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

TABLE 1

PARTLY RESULTS OF THE SIX KINDS OF INVARIANTS

ba → ba → ba ←

outcheckcardget −→−

incardget log→−

cardgetorderinvalid −→−

cardgetordervalid −→−

cardgetoutcheck −→−
ordervalidoutcheck −→−

ordervalidcardget −→−
itemsordercardget −→−

outcheckin −←log
cardgetin −←log

orderinvalidin −←log
ordervalidin −←log

ba↔ ba || ba ||

itemsordergoodssearch −↔−
outcheckin −↔log

orderinvalidgoodssearch −↔−
cardgetordervalid −↔−

goodssearchgoodssearch −− ||

cardgetcardget −− ||

C Refinement and Abstraction
Abstraction and refinement is the double operation of

the IBDM modeling. From the beginning of the initial
model, the first step is to execute the model refinement,
which is an iterative process. IBDM refines every trace
sub-diagram until the model meets all mining invariants,
then we merge those sub-diagrams with abstraction. The
abstraction process is restrained, which is bound to
ensure that no invariant violation in the process of
refinement. When can not execute abstraction, we output
the model. As long as the model does not satisfy the
invariants constraint, IBDM will execute the division
continuously. The checker based on the model of the
FSM (finite state machine) is adopted to verify whether
the model satisfies the invariants constraint or not, that is
to say, we convert each invariant to the miniature FSM
that can accept traces, and these traces satisfy with the
invariant constraints. We should update these FSM
model when traverse the model, if the model does not
satisfy the invariant constraint, the model checker outputs
a counter-example path. Refinement implements by
identifying the counter-example set, and decide the
candidate division set. IBDM parallel searches the
counter-example in the traces model to identify division.
In the traces, what is needed is the prefix part of the
counter-example path, and IBDM finds out the longest
prefix. The last division for this prefix in the model is the
refinement of the candidate division, we separate the
candidate division of the event instance according to the
other input-edge divided is whether the direct precursor
of the candidate division or not. It is allowed the
existence of the counter-example evolutionary path.
Through the search of the final model counter-example
path, we can detect the system bug; the corresponding
description is made in paragraphs of the invariant part.

Refinement may produce many results, when this
situation happened, the model contains the division could
be merged, and do not violate invariants. IBDM uses the
K-tail equivalence class method to abstract; which begins
with the most fine grit model, merging each K-tail
equivalence partitioning until there is not any pair K-tail
equivalence partitioning. For example, no two division is
the root of the sub-diagram which has the same depth of
K, and each step of the algorithm uncertainly choices and

merges a pair of K-tail equivalence partitioning,
producing a relatively accurate model. Then, from the
start of this model, combining with the constraint
conditions to merge all divisions, the merged results can
satisfy the invariants. Finally the model produced is local
optimal, which is to say, if merging any two division
among them would violate the invariants. In ubuntu
environment of Linux operating system, execute the
IBDM algorithm and output the final model is shown in
figure 2.

 Figure2. The final model

D Accuracy and Efficiency Evaluation
Definition 11(model accuracy) is an evaluation for the

model acceptance ability, and describes the event
sequence accepted accounting for the proportion of the
total number of trace in log f.

By the hypothesis testing and distribution fitting,
determined the event appearance in the log obey Poisson
distribution ()λP , and λ is the average number of events
occurred in unit time. We traverse the event existed both
in log and in model, splitting them into some operation
sequences in chronological order, the ratio between the
number of completely path Π in the model and these
operation sequences is the accuracy f, which can be

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2459

© 2013 ACADEMY PUBLISHER

expressed as:

()

()N

ILP
f

n
Mm

ψ

λϕ ⎟
⎠

⎞
⎜
⎝

⎛ −×
=

∑
∈ (1)

Among them, L is the length of log documents,

nI is the number of the event not existing in model,
Mm ∈ is the event in the log, ()Nψ is the completely

path numbers in the model, N is the model scale.
As is shown in figure 3, for the on-line electronic

shopping system log, the comparative curses are the
popular modeling algorithm K-tail and IBDM modeling
algorithm proposed in this paper. All of the data is the
average operation result by 100 times. Taking 4=λ ,the
experiment shows that, the IBDM modeling algorithm
uses the invariant to constraint the model, with the
increment of the length of the log documents, the
successful matching of probability increases between the
completely path and the event sequence in the model,
explaining the acceptance ability of the model is also
growing, instead, with the expansion of the model scale,
without the constraint of the invariants, the model
generated by the K-tail algorithm contains more and
more redundant state, corresponding to the repetition of
the path. The acceptance ability of the model is interfered
by the repeated matching, and its accuracy has also been
affected. The ratio of IBDM modeling algorithm
accuracy is around 70%, and has a relation of the log
document integrity. The algorithm still have a strong rely
on the log documents, in the same case, a complete log
documents that contains all of the unknown event will
achieve a better accuracy.

Figure3. Accuracy compared

Figure 4.Algorithm efficiency

As is depicted in figure 4, the IBDM modeling can be
divided into four processes including the invariant
mining, the sub-diagram extraction, refinement and
abstraction. The data used in the experiment is the log
collected from the online electronic shopping system
within one week. From the figure 4, the invariant mining
has obviously spent more time comparing with other
processes, so the well designed mining algorithms will
directly affect the efficiency of the whole modeling.
Second, when the model is set up, no other assumptions
condition is required, so this method can be used to the
behavior modeling of most networked software.

V. SUMMARY AND FUTURE WORK

 Based on the constraints of the invariants, the
software interactive behavior dynamic modeling provides
software behavior analysis with new ideas and method.
For the interaction log documents produced by the
on-line electronic shopping system, we proposed that
abstracting the log with the gigantic scale and complicate
content to the intuitive and concise model, which not
only meets the invariant constraints extracted from the
log, but also vividly describes the program behavior rules.
Through which we can have a deep understanding and
cognition for the system. Analyzing the counter-example
path of the model, can reveal the potential threats
existing in the system, and validate the known bug. We
can adopt the model for the malicious software spreading
dynamics analysis by extracting the malicious software
running trace from the model to control and prevent
threats, so the reliability and safety of the system will be
improved.

How to detect the program behavior anomaly and how
to pin down to maintain the whole system stability when
the bug is found, how to analyze certain special
synchronous behavior will be our future work.

ACKNOWLEDGMENT

This work is supported by the National Natural
Science Foundation of China under grant No. 61171192
and 61170102, the Natural Science Foundation of Hunan
province in China under grant No. 11JJ4050 and
11JJ3070, the Education Department Foundation of
Hunan Province under the grant No. 11B039, 11W002
and 11C0400.

REFERENCES

[1] Zhang Yaoxue. Transparence computing: Concept,
architecture and example [J]. ACTA ELECTRONICA
SINICA, 2004, 32(12A): 169-173. (in Chinese)

[2] MA Yu-Tao, HE Ke-Qing, LI Bing, LIU Jing. Empirical
Study on the Characteristics of Complex Networks in
Networked Software[J].Journal of Software, 2011, 22(3):
381-407. (in Chinese)

[3] YANG Fu-qing, MEI Hong, LU Jian, JIN Zhi. Some
Discussion on the Development of Software
Technology[J]. ACTA ELECTRONICA SINICA, 2002,
30(12A):1901-1906. (in Chinese)

[4] CHEN Huo wang ,WANG Ji ,Dong Wei. High Confidence
Software Engineering Technologies [J]. ACTA

2460 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

ELECTRONICA SINICA 2003, 31(12A):1933-1938.(in
Chinese)

[5] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli,
Mauro Santoro. SEIM: Static Extraction of Interaction
Models [A]. International Workshop on Software
Engineering[C]. Cape Town, South Africa: IEEE
Computer Society, 2010. 22-28.

[6] Christopher Ackermann, Mikael Lindvall, Rance
Cleaveland. Towards Behavioral Reflexion Models [A].
Reliability Society [C]. Mysuru, India: IEEE Computer
Society,2009. 175-184.

[7] Jonathan E. Cook, Alexander L. Wolf. Discovering
Models of Software Processes from Event-Based Data
[J].ACM Transactions on Software Engineering and
Methodology, 1998, 7(3): 215-249.

[8] Kai-Yuan Cai, Bei-Bei Yin. Software execution processes
as an evolving complex network [J]. Information Sciences,
2009,179 (12): 1903-1928.

[9] Tao Li, Wei Peng, Charles Perng, Sheng Ma, and Haixun
Wang. An Integrated Data-Driven Framework for
Computing System Management[J]. IEEE Transactions on
Systems, 2010, 40(1): 90-99.

[10] Chun ying Zhao, Jun Kong, and Kang Zhang. Program
Behavior Discovery and Verification: A Graph Grammar
Approach [J]. IEEE Transactions on Software Engineering,
2010, 36(3): 431-447.

[11] Anton ChuvAkin, GunnAr Peterson. How to
DoApplication Logging Right[J]. IEEE Computer and
Reliability Societies, 2010, 8(4):82-85.

[12] ZhenLi,JunFeng Tian and Liu Yang. An Improved
Software Behavior Model in System Call Level and
Trustworthiness Evaluation.[J]. Information Technology
Journal, 2011, 10(11):2208-2213.

[13] FU Jian-Ming, TAO Fen, WANG Dan, ZHANG
Huan-Guo. Software Behavior Model Based on System
Objects[J]. Journal of Software, 2011, 22(11): 2716−2728.
(in Chinese)

[14] Curtis E.Hrischuk, Murray Woodside. Logical Clock
Requirements for Reverse Engineering Scenarios from a
Distributed System [J]. IEEE Transaction on Software
Engineering, 2002, 28(4): 321-338.

[15] Selvaraj Srinivasan, R. Rajaram. A Decentralized
Deadlock Detection and Resolution Algorithm for
Generalized Model in Distributed Systems [J]. Distributed
and Parallel Databases, 2011, 29(4):261-276.

[16] Jonathan E. Cook, Zhidian Du, Chongbing Liu, Alexander
L. Wolf. Discovering models of behavior for concurrent

workflows[J]. Computers in Industry, 2004,53(3): 97–
319.

[17] Jonathan E. Cook, Zhidian Du. Discovering thread
interactions in a concurrent system [J]. The Journal of
Systems and Software, 2005,77(3): 285–297.

[18] Jonathan E. Cook, Cha He, and Changjun Ma. Measuring
Behavioral Correspondence to a Timed Concurrent
Model[A]. IEEE Computer Society's Technical Council on
Software Engineering[C]. Florence, Italy: IEEE Computer
Society,2001.332-341.

[19] PENG Cheng, YANG Lu-ming, MAN Jun-feng. Research
on Tokenizing Behavior Footprints of Incomplete
Transaction[J]. Journal of Chinese Computer Systems,
2011, 32(8): 1593-1598. (in Chinese)

[20] Zhen Li , Junfeng Tian. A Software Behavior Automaton
Model Based on System Call and Context[J].Journal of
Computers,2011,6(5):889-896.

[21] Zhen Li , Junfeng Tian. An Approach of Trustworthiness
Evaluation of Software Behavior Based on
Multidimensional Fuzzy Attributes [J]. Journal of
Computers,2012, 7(10):2572-2577.

[22] Yongfeng Yin, Bin Liu. Research on Formal Verification
Technique for Aircraft Safety-Critical Software [J].
Journal of Computers, 2010,5(8): 1152-1159.

[23] J.Tan, X.Pan, S.Kavulya, R.G, and P.Narasimhan. SALSA:
Analyzing Logs as State Machines[A]. USENIX
Workshop [C].San Diego, CA: USENIX, 2008.6-6.

[24] J.Tan, X.Pan, S.Kavulya, R.G, and P.Narasimhan. Mochi:
Visual Log-Analysis Based Tools for Debugging Hadoop
[A]. IEEE International Conference on Distributed
Computing Systems Workshops [C].Geneva, Italy: IEEE
Computer Society, 2010. 795-806.

[25] J.Yang and D.Evans. Dynamically Inferring Temporal
Properties[A]. ACM SIGART/SIGSOFT Workshop [C].
Washington, DC: Association for Computing Machinary,
2004. 23-28.

[26] A.W.Biermann and J.A.Feldman. On the Synthesis of
Finite-State Machines from Samples of Their Behavior [J].
IEEE Trans. Comput., 1972, 21(6):592–597.

[27] J. Whittle and J. Schumann. Generating State chart
Designs from Scenarios [A]. New York, ACM [C].
Limerick, Ireland: IEEE-CS Computer Society,
2000.314-323.

[28] C. Damas et al. Generating Annotated Behavior Models
from End-User Scenarios [J]. IEEE Transaction on
Software Engineering, 2005, 31(12): 1056-1073.

Cheng Peng He is pursuing the Ph.D.
degree in School of Information Science
and Engineering, Central South
University, Chang Sha, China. His
current research interests include trusted
software, computer network and
software engineering.

Luming Yang He is a Professor and
Ph.D. advisor in School of Information
Science and Engineering, Central South
University, Chang Sha, China. His
research interest includes database
system, computer network and software
architecture.

Junfeng Man corresponding author,. He
received the Ph.D. degree in School of
Information Science and Engineering,
Central South University in 2010,
ChangSha, China. He is professor in
College of Computer and
Communication of Hunan University of
Technology. His research interests
include trust software, pervasive

computing.

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2461

© 2013 ACADEMY PUBLISHER

