

Task Scheduling Algorithm in Grid Environment
Based on Duplication and Insertion

Lijun Cao
Hebei Normal University of Science & Technology

Email: misscao6666@163.com

Xiyin Liu, Torkel Hans-Georg, Zhongping Zhang
 Hebei Normal University of Science & Technology,China

Vocational College of Technology and computer science (BTI), Hammfelddamm 2, 41460 Neuss,Germany
 College of Information Science and Engineering Yanshan University, China

Email: liuxiyin2003@sina.com,torkel.hansgeorg@googlemail.com, zpzhang@ysu.edu.cn

Abstract—Grid resource scheduling theory involving basic
theoretical knowledge for grid scheduling was discussed in
this paper. Then an intensive study of the scheduling
strategy was made. According to the heterogeneous
characteristic of grid environment, an improved algorithm
DIBS for task scheduling were proposed. In this algorithm,
the entire scheduling process was divided into three steps:
layering, task priority, and task replication. In the layering
stage, according to the characteristics of the DAG, the
simultaneous distribution strategy for the multiple DAG
images was adopted. In the task priority stage, an improved
decision path strategy was proposed. In the replication stage,
the previous key path nodes were replaced by the best
precursor replication nodes. The effectiveness of this
algorithm was verified by Gantt chart. In this paper, the
relevant scheduling algorithm simulation was successfully
realized by using the basic framework and functions
provided by SimGrid and combining with the proposed
scheduling algorithm. The availability, validity and stability
of the DIBS scheduling algorithm were verified by
comparison and analysis of simulation results.

Index Terms—Task scheduling; scheduling algorithm, DIBS,
SimGrid

I. INTRODUCTION

The task scheduling is an essential component of the
high-performance computing. However, with the
emergence of grid computing, the task scheduling also
faces new challenges. As the grid environment is
composed of a large number of heterogeneous resources,
many problems for grid system caused by the different
structures and categories of the resources must be
resolved, such as communication between resources,
rational resource allocation, and efficient task scheduling.
It is the resources heterogeneity in grid environment that
places higher demand on the design of grid software.
These problems should be well solved in order to give
full play to the role of the grid technology.

The task scheduling issues in grid environment could
be divided into "grid resource oriented scheduling" and
"grid application oriented scheduling". The grid resource
oriented scheduling is proposed from the provider's
perspective, whose principle is to maximize the
efficiency of resources application in the grid
environment. The grid application oriented scheduling is
proposed from the grid user's perspective, whose
principle is to make the application execution best adapt
the dynamic nature of grid resources performance, and
thus to ensure the requirements of the application
performance.

In general, the grid resources are provided by a
number of resource providers, and each provider has
unique scheduling strategy and mechanism for local
resources. This "local resource scheduling" is the specific
implementation for each grid resource oriented
scheduling. On the other hand, the grid application
oriented scheduling should be realized in collaboration
with the local resource scheduler. The grid resource
oriented scheduler usually does not provide the necessary
interfaces for the grid application oriented scheduling to
help implement an application oriented scheduling
process, while the grid application oriented scheduler
often has no authority to intervene the operating mode of
the local grid resource scheduler, which makes the
implementation of application oriented scheduling
become very difficult. At present, some corresponding
mechanisms have been proposed to address these
problems, such as the resource reservation mechanism,
dynamic resource performance prediction mechanism,
resource scheduling information disclosure mechanisms,
synchronous resource rationing mechanism, calculating
migration mechanism, etc. However, the research and
implementation of these mechanisms are still far from
meeting requirements of the actual application. Therefore,
a good task scheduling strategy will greatly improve the
utilization of grid resources and further promote the
development of grid technology.

The task scheduling based on task duplication is a new
method that has been proved to have great performance.
By far some existing task duplication-based scheduling
algorithms have managed to generate optimal scheduling

Manuscript received January 1, 2013; revised May 1, 2013
Accepted June 1, 2013

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2447

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2447-2454

when the tasks fulfill certain conditions, but they still
show some inadequacies.
This paper made some developments and innovations in
the following aspects:

(1)In this study, noticing that in grid environment,
the target systems of task scheduling are usually
randomly linked network, and the applications are mostly
intensive parallel distributed applications, we proposed a
new heuristic task scheduling algorithm based on task
duplication and insertion – Duplication and Insertion
Based Scheduling (DIBS). The proposed algorithm could
reduce the time of repeatedly searching for the most
suitable processor during the execution of tasks,
meanwhile it allows simultaneous execution of multiple
applications, thus shortening the total execution time of
applications and balancing the load of processors..

(2) To further verify the effectiveness of the algorithm,
simulation model tests of resource discovery MLON-
RSA algorithm were carried out by the use of GridSim
simulation toolkit and simulation analysis of DIBS
algorithm were done by using SimGrid toolkit. The
simulations of LHCNF algorithm and DIBS scheduling
algorithm were achieved respectively in the tests. The
analysis to the obtained data and the comparison with
related algorithms proved the feasibility, efficiency and
stability of DIBS algorithm..

The central idea of task duplication- based scheduling
algorithms is to redundantly map some of the tasks in the
task plan to some processors in order to reduce the
communication between processors. This means that by
making use of the processors’ idle time to duplicate
predecessor tasks, the communication data between some
predecessor tasks does not need to be transmitted, and
thereby the waiting time of processors could be saved.
Based on different strategies of selecting the tasks to be
duplicated, different scheduling algorithms could form,
some of which duplicate the immediate predecessor tasks
only while some others duplicate every possible
predecessor tasks. Comparing with other scheduling
techniques, this type of algorithms have higher time
complexity, and in most situations require unlimited
number of processors, however they are most likely to
produce the optimal solution.

Three stages are included in Levelized Heavily
Communicating Node First （ LHCNF) algorithm:
hierarchization, task prioritization, and task duplication.
In the first stage, the tasks of each level are independent,
which means the tasks in the same level have no data
dependence on each other and could be executed in
parallel. Assume a task graph G=(T, E), then level 0
contains the entry node, and level i includes all tasks with
task ID number tj , all edges (tk, tj) , task tk is on the upper
level of level i, leve i-1, containing at least one edge (tk, tj)
the last level contains the exit node. In the second stage,
priorities are assigned to each Directed Acyclic Graph
(DAG) task including the exit node according to their
average communication time. Tasks with the longest
communication time are assigned to the highest priority,
and for tasks with the same communication time, they are
distinguished by execution time; the priority of the exit

node is calculated by the average execution time. In the
third stage, the Critical Immediate Parent (CIP) nodes and
the Critical Immediate Grand Parent (CIGP) nodes or
only the CIP nodes of a node are duplicated in order to
move up the EFT (Earliest Finish Time) of the task. If the
EST of a task could not be moved up, no duplication
should be performed.

For existing algorithms like TDS[1,2], STDS[3,4],
LDBS[6], and LHCNF[5], they require the processors be
fully linked between each other; however in practice
processors are only randomly linked. Targeting at this
shortcoming, this article proposes DIBS algorithm.

II. TASK DUPLICATION BASED SCHEDULING

Task duplication is to execute the same task on
different processors, where a task can be distributed to
more than one processor at one time, so that the
communication time between tasks could be reduced, and
the start time and finish time of tasks could be moved up.
While retaining the original parallelism of applications,
task duplication can also help reduce the time cost of the
communication between tasks. Thus, task duplication is a
very effective way to eliminate communication cost
between tasks.

The central idea of task duplication based scheduling
algorithms is to redundantly mapping some of the tasks in
the task plan to some processors in order to reduce the
communication between processors. This means by
making use of the processors’ idle time to duplicate
predecessor tasks, the communication data between some
predecessor tasks does not need to be transmitted, and
thereby the waiting time of processors could be saved.
Based on different strategies of selecting the tasks to be
duplicated, different scheduling algorithms could form,
some of which duplicate the immediate predecessor tasks
only while some others duplicate every possible
predecessor tasks. Comparing with other scheduling
techniques, this type of algorithms have higher time
complexity, and in most situations require unlimited
number of processors, however they are most likely to
produce the optimal solution.

III. DIBS ALGORITHM

A Establishment of Target System
The heterogeneous system referred to in this article

means processors with different computing capacities and
processors with different communication capacities
between each other. The target system of task scheduling
is composed of Processor Elements (PEs) networks with
certain degree of topology, and each PE consists of one
processor and local memory. Target systems could be
indicated by array P=（Vp, Ep） , where Vp is the
collection of processors, Ep is the collection of the links
between processors, and ep(pi, pj) is the link between
processors pi and pj, as shown in Figure 1. In this article
we made the following assumptions about the target
system:

2448 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

(1) Each processor could carry out computation and
communication at the same time.

(2) If a task is transmitted through several links, its
communication time is the sum of the communication
time costs of each link. The communication time of link
Ci,k could be represented by Formula (1).

,
, [(), ()]

i k
i k

D
C

R p i p k
=

 (1)
where Di,k is the data volume transmitted from task ti

to task tk, R([p(i), p(k)] is the bandwidth between
processors p(i) and p(j).

(3) The topology of the target grid system is relatively
stable in a period of time.

In grid environments, the links between processors are
random, thus finding the path with the minimal
communication time cost between two processors is
crucially related to the efficiency of data transmission.
Here we use Dijkstra’s algorithm to find the minimum
weight between any two nodes in an undirected graph,
and create a list to store the nodes that the shortest path
goes through.

The fundamental idea of Dijkstra’s algorithm is to
start from start point s and gradually search for the
shortest path outward. During the execution, for each
node, record the number (called the notation of this node)
which is either the weight of the shortest path from s to
this node (called notation P), or the upper bound of this
weight (called notation T). Specifically, after each
extension, change the node of notation T to the node of
notation P, so that the vertices in directed graph D with
notation P have one more member. Repeat these steps
and the shortest path from s to each node could be
obtained. The minimum communication between
processors could be represented by the array showed in
Figure 2. Listed in Table 1 are the nodes that the shortest
path between two processors goes through, where “---”
indicates that the two processors are directly reachable.
The data in Table 1 could help to reduce the transmission
time, and this table is updated regularly.

Fig1. Target system

0 6 3 8 10 10 14
6 0 8 3 4 14 10
3 8 0 5 7 7 11
8 3 5 0 2 12 8

10 4 7 2 0 10 6
10 14 7 12 10 0 4
14 10 11 8 6 4 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Fig2. Minimum communication time among processors

B Definitions
The model of the scheduling system consists of

applications, target system, and performance indicators.
Each application could be indicated by one DAG, which
could be represented by array G, and G= (V, E, P, T, C),
where V is the node collection, E is the edge collection, P
is the processor collection, E(vi, vj) is the edge between
nodes vi and vj, T(vi, pj) is the execution time on
processor pj for task vi, and C(vi, vj) is the
communication time of the data transmission between
tasks vi and vj. When two tasks vi and vj are executed on
the same processor, C(vi, vj)=0. We define pred(vi) as the
collection of all predecessor nodes of task vi, and succ(vi)
as the collection of all the successor nodes of it. Avail (pj)
indicates the earliest available time of processor pj, est(vi,
pj) indicates the earliest execution start time of task vi on
processor pj, eft(vi, pj) indicates the earliest finish time of
task vi on processor pj, EST(vi) and EFT(vi) indicate
respectively the earliest start time and finish time of task
vi on any processor, AFT(vi) indicates the actual finish
time of task vi, and Time(pi) indicates the spare time
between the finish time of the last task and the start time
of the next task for processor pi, as presented by Formula
(2).

() (,) ()i k i iTime p EST t p Avail p= − (2)

TABLE 1.

MINIMUM ACCESS AMONG PROCESSORS

P1 P2 P3 P4 P5 P6 P7

P1 --- --- --- P2 P2 P3 P3,P6

P2 --- --- P4 --- --- P5,P7 P5

P3 --- P4 --- --- P4 ---

P4 P2 --- --- --- --- P3 P5

P5 P2 --- P4 --- --- P7 ---

P6 P3 P5,P7 --- P3 P7 --- ---

P7 P3,P6 P5 P6 P5 --- --- ---

Definition 1 (Critical Path) The critical path of an

application means the longest path from the entry node
(the node with no predecessor node) to the exit node (the
node with no successor node); the length of this path is
the sum of the weights of the nodes and edges on this
path.

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2449

© 2013 ACADEMY PUBLISHER

In this paper we calculate the critical path with the
average execution costs of a task on all processors. A
node’s top distance is the longest distance from this node
to the entry node, excluding the computing cost of the
node. A node’s bottom distance is the longest distance
from this node to the exit node, including the computing
cost of the node.

Definition 2 (Decisive Path) Decisive Path (DP) is the
sum of the top distance and bottom distance of a node.

Each DAG node has its decisive distance, and the
critical path is the maximum decisive distance of the exit
node.

C DIBS Algorithm
In this article we propose a heuristic scheduling

algorithm based on duplication and insertion. The core
idea of the algorithm is to try to shorten the total
execution time of tasks, move up the earliest finish time
of tasks .The fundamental method is to put the entry node
(the node with no predecessor nodes) of the DAGs of
multiple applications into the ready queue SCH according
to their priorities. Applications are given different
priorities, while within the same application the nodes
with higher DP values are assigned higher priorities
because the nodes with higher DP values are more likely
to be on the longest path. Nodes with higher priorities are
then distributed to more appropriate processors in order
to reduce the total execution time. If the duplication of
the predecessor node of a node could move up the earliest
finish time of the task, duplicate the predecessor task to
the processor for execution, otherwise no duplication is
needed. After the nodes of the SCH queue are distributed,
if none of the predecessor nodes of this node’s successor
nodes are in the SCH queue, put the successor nodes of
this node to the REA queue.

Algorithm 1 Task Scheduling Algorithm DIBS
Inputs： Directed Acyclic Graph sequence DAGs

Outputs： Task Scheduling Queue SCH
DIBS(DAGs)
Begin
Calculate the DP values for all nodes
Put the head nodes of all DAGs into the SCH queue by

their priorities
While (SCH!=∅)
Extract the first node vmn from SCH queue, and

remove this node from the queue; // vmn indicates the n-
th task node in the m-th DAG

For all pj∈P do
pk=pj; eft(vmn, pj)；

For vmi∈ npred(vmn) do
eft1=max{Avail[pj],AFT(vmn)+c(vmn, vmi)}
+T(vmn, pj)；
If eft1==eft(vmn, pj) then if Time(pj)>Time(pk) then

{U=vmi; pk=pj;}
If eft1<eft(vmn, pj) then {U=vmi; pk=pj; eft(vmn,

pk)=eft1;}
Endfor
Endfor

If (U≠ ∅) then duplicate the tasks into processor pk
for execution

Else no duplication is needed
endif
If (SCH!=∅) then
For vmk ∈ succ(vmn) do
If all pred(vmk)∉SCH then Put vmn into the REA

queue
Endfor
Else Sort the tasks in REA queue by their priorities

and put them into SCH queue
Endif
End while
End

D Analysis of Algorithm
Comparing with LHCNF algorithm, DIBS algorithm

has the following improvements.
LHCNF algorithm determines the priority of a task

based on its average communication time, however the
tasks with long communication time are not necessarily
on the critical path, and assigning higher priority to them
does not guarantee the reduction the total execution time.
The proposed DIBS algorithm determines the priorities of
tasks based on their DP values, because the nodes with
higher DP values are more likely to be on the longest path.
By assigning tasks with higher priorities to the most
appropriate processors, the total execution time is
reduced.

Fig 3. DAG G1 with average intertask communication times

 (2) LHCNF algorithm duplicates the critical

immediate parent nodes and critical immediate grand
nodes or only the CIP of a task to move up the earliest
finish time of the task. However, CIP is the immediate
predecessor task of the task with the latest start time, as
illustrated in Figure 4 and 5 which are generated from
Figure 3 and Table 2, where CIP nodes are duplicated in
Figure 4 and the most appropriate nodes in the
predecessor nodes are duplicated in Figure 5, it can be
seen that duplicating the critical immediate parent node
and critical immediate grant nodes or only the CIP of the
task does not necessarily move up the earliest finish time
of the task. Algorithm 1 duplicates the most suitable

2450 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

predecessor nodes to move up the earliest finish time of a
task.

TABLE 2.

EXECUTION TIMES OF TASKS IN G1 ON THREE DIFFERENT PROCESSORS

Task P1 P2 P3

1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

(3) LHCN algorithm uses depth-first traversing in the

hierarchization stage, and its time complexity is O(v+e).
The proposed algorithm adopts the approach that assigns
one node first, if the predecessor nodes of this node’s
successor nodes are not in the SCH queue, put the
successor nodes of this node to the REA queue; only
when the SCH queue is empty, assign the nodes in REA
queue to it for distribution; and the time complexity is
O(v).

(4) When several applications are executed at the
same time, LHCNF algorithm can only execute each
application in sequence, whereas the proposed algorithm
could execute them in parallel.

Fig 4. Gantt chart for G1 using LHCNF

(5) When the earliest finish time of a task on two or
more processors are the same, this algorithm assigns the
task to the processor with the longest Time(pj).

Fig 5. Gantt chart for G1 using DIBS

IV THE SIMULATION TEST BASED ON SIMGRID

A SimGrid Simulation Package and Its Structure
The role of grid simulator is to imitate a grid

environment, where various issues can be studied, such as
the feasibility and the performance of the algorithm. A
well configuration parameter can contribute to a more
real simulation environment and more reliable results. In
addition, the algorithm can be constantly improved and
optimized by analyzing the results of the test in the
simulator.

In this paper,SimGrid toolkit is used for the simulation
analysis of the algorithm proposed in chapter 3. SimGrid
was dominantly developed by the Grid Research and
Innovation Laboratory in the University of California San
Diego and its goal is to provide an appropriate model for
distributed parallel application under the grid
environment, abstract and generate correct analog result.
In fact, SimGrid simulation package is a simulation
toolkit, a simulator providing a series of core functions to
build specific computing environments and application
fields. The distributed environment here can be a simple
network composed of workstations, or a complicated grid
environment made up of workstations, PC and other
nodes. In SimGrid review, resource model comprises
processor and network connection while task model
includes computation tasks consuming processor
resources, data transmission resources consuming
network connection and execution order created by
dependency between tasks. In addition, some functions
like scheduling, predication, resource trace, time and
simulation are provided. These API functions can rapidly
build and evaluate the studied scheduling algorithm. As
SimGrid execution is an event-driven simulation, whose

LHCNF

0
10
20
30
40
50
60
70
80
90

1 2 3
Processors

Duplicated Idle Task

①

⑥

⑤

①

③

④

⑨

⑦

⑩

①

②

④

⑧

⑦

T
im
e
(S
e
c)

DIBS

0

10

20

30

40

50

60

70

80

90

1 2 3
Processor

T
i
m
e
(
S
e
c
)

Duplicated Idle Task

①

②

⑥

⑧

①

④
⑤

⑨

⑧

⑩

①

③
⑥
⑦

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2451

© 2013 ACADEMY PUBLISHER

process only requires one host and whose results are
given in the form of virtual time, the simulation results
refrain from

the impact of the performance of the host. The most
remarkable characteristic of SimGrid simulation package
is that the simulation is available to the complex platform
in consistent with the real situation and is rapid in
simulating. In general, the simulation lasts about 6s to 10s.

B The Structure of SimGrid Simulation Package
SimGrid Simulation Package can be divided into three

layers
(1) Programmation Environments Layer
SimGrid provides several programming environments

in simulation kernel. MSG is more prone to build real
multi-agent simulations. The main target of the
environment is not the reality, but to build many real
platforms. GRAS(Grid Reality And Simulation)
contributes to the development of a real distributed
application.

SimGrid simulation toolkit has two API, one on the
top of SURF, which allows to develop and test your
application program in an appropriate simulator; the other
is suitable for real platform and is very efficient.

SimDag is to provide framework for DAGs parallel
tasks. The chapter focuses on the simulation test of DIBS
algorithm in SimDag programming environment.

(2) Simulation Kernel Layer
The role of Kernel Layer is to simulate a virtual

platform by SURF model. It lies in the low layer, is
rejected by terminal user and serves as the base for high-
level users. The main feature of SURF is a resolver with
maximum celerity and minimum linear, which can easily
change the model to describe the platform. It is very easy
to compare the models in the references.

(3) Base Layer
Base Layer is compose of XBT(eXtended Bundle of

Tools) and provides some basic features like Logging
support, Exception support and Configuration support.

C Sage of Simulation Package
SimGrid package usually runs on the Linux or Unix

platform with gcc as the compiler. The simulation
package can be achieved by static library and dynamic
linking library. The format using static library is Gcc
libSimgrid.a –o MainProgram MainProgram.c. Under
such circumstances, all the SimGrid functions are
included in MainProgram, thus resulting in a large binary
file, while by using dynamic linking library, the format is
Gcc –lsimgrid –o MainProgram MainProgram.c, where
all SimGrid functions are not included in MainProgram
directly. Libsimgrid.so can be found by setting the
environment variable: export
LD_LIBRARY_PATH=$HOME/lib/:$LD_LIBRARY_P
A-TH. The latter method is more common.

In compiling simulated program, makefile should be
corrected by setting the variable of top_srcdir into the
catalog of installing SimGrid and the variable of
top_builddir into the path to be compiled; if the program

includes other libraries, the libraries should be added after
the variable of LIBS in Makefile

 V MULATION AND EVALUATION

A Simulation
In this study, SimGrid[7] toolkit is used for the

simulation analysis of the proposed DIBS algorithm. The
simulation program runs on Redhat Linux 9.0 platform
with gcc as the compiler. The SimDag module of the
SimGrid toolkit is the main module used in this study.
The flow chart of the algorithm is presented in Figure 6.

Fig. 6 Simulation process flow chart
Below are the explanations for the core codes of the

program.
(1) SimGrid Initialization function SG_init(). This

function must be called before calling other simulation
functions of SimGrid.

(2) Processor creation function Host[i]=SG_new
Host(buffer, 1.0, SG_SEQUENTIAL_I-N_ORDER,
NULL, 0.0,1.0, NULL,NULL,0.0,NULL). This function
creates the host resource. The first parameter is a string
that defines the name of the processor, the second
indicates that the relative processing speed of the host is 1,
and the ninth parameter indicates that the possibility of
host failure is 0.0.

(3) Network connection creation function
SG_newLink(buffer, SG_TIME_SLICED, NULL, 0.0,

Y

N

Create processors and network connection

Create calculation and data transmission tasks

Create dependences between tasks

Schedule the tasks to the resources

Start simulation

Obtain the virtual time of the process

Restore all resources, reset the virtual clock

Next simulation
awaiting?

Initialize simulation

Release memory

2452 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

1.0, NULL, 0.0, 100.0,NULL). The first parameter of this
function is the name of one of the connections.

(4) Computing task creation function
SG_newTask(SG_COMPUTATION, buffer, cost,
NULL). This function creates a commutating task, the
second parameter is the name of the task to be created,
and the third parameter sets the execution time of the task.

(5) Data transmission task creation function
SG_newTask(SG_TRANSFER, buffer, 0.0, NULL). This
function creates a data transmission task, the second
parameter is the name of the task to be created, and the
third parameter indicates the volume of the data that
needs to be transmitted.

(6) Inter-task dependency setup function
SG_addDependency(task[i], compution[j]). This function
adds data dependency between two tasks.

(7) Task to resource scheduling function
SG_scheduleTaskOnResource(task[i], host[i]). This
function schedules a task task[i] to a host resource host[i].

(8) Simulation function SG_simulate(-1.0,
SG_ALL_TASKS, SG_SOME). This function runs the
simulation until all the tasks are completed.

(9) Simulation ending function SG_clear(). This
function ends the simulation program and releases the
memories occupied by the simulation tool.

B Aalysis to the Simulation Result
 First, the algorithm was tested with different degrees of
heterogeneity of the hosts, 100 times of simulation tests
were performed with 200 randomly generated tasks and
given execution time of each task used in each test, the
average time cost of the tests are calculated. The results
are as shown in Figure 7, 8 and 9.

Different scheduling algorithms have different
prerequisites. the DIBS algorithm proposed in this paper
focuses on multiple applications. As shown in Figure 7,
when there is only one application in DIBS, the total
execution time of DIBS when the number of tasks
increase is longer than that of LHCNF algorithm.
However, as shown in Figure 8 when there are multiple
applications, the LNCNF algorithm executes them by
repeatedly calling itself, thereby its total execution time
when the number of task increases is significantly longer
than that of DIBS. It can be seen from Figure 9 that the
performance of DIBS algorithm is slightly better than
LHCNF algorithm, where performance refers to the ratio
of accelerated speed to the number of processors, and the
accelerated speed is the ratio of the time cost of
sequential execution to the time cost of parallel execution.

Fig. 7 The comparision in makespan between DIBS and LHCNF,

When only an application is executed

Fig.8 The comparision in makespan between DIBS and LHCNF, When

only an application is execute

Fig. 9 The performance cooperation of between DIBS and LHCNF
Through the simulation of the LHCNF algorithm and

DIBS algorithm, the analysis to the obtained data, and the
comparison with related algorithms, the proposed DIBS
algorithm is proved feasible, effective, and stable.

CONCLUSIONS

The goal of grid computing is to provide a convenient
and effective way to make use of widely spread resources
[8,9,10,11]. Scheduling strategy, as a means of the
effective utilization of grid resources, is one of the core
functions that the underlying software of grid systems
ought to provide. In this study, discussion and in-depth
research on the scheduling strategy are conducted, the
DIBS algorithm is proposed. This algorithm determines
the priorities of tasks based on the decisive paths of them,
and duplicates the predecessor nodes that can move up

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25

number of processors

e
f
f
i
c
i
e
n
c
y

LHCNF
DIBS

0

20

40

60

80

100

120

140

5 10 15 20 25

number of DAGs

m
a
k
e
s
p
a
n

DIBS

LHCNF

0

20

40

60

80

100

120

140

100 200 300 400 500
number of tasks

m
ak
e
sp
a
n

LHCNF
DIBS

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2453

© 2013 ACADEMY PUBLISHER

the earliest finish time of tasks, thereby shortening the
total execution time.

ACKNOWLEDGEMENT

This work was financially supported by hall of Hebei
province science and technology research (12270140),

REFERENCES
[1] Y. Kwok, I. Ahmad. FASTEST, “a practical low-

complexity algorithm for compile-time assignment of
parallel programs to multiprocessors”, IEEE Trans. Parallel
Distrib. Comput., 10(2) ,pp.147-159,1999

[2] H. Casanova, A. Legrand, and L, Marchal. “Scheduling
Distributed Applications: the SimGrid Simulation
Framework”, 3rd IEEE Int'l Symposium on Cluster
Computing and the Grid (CCGrid'03), 2003

[3] E. Ilavarasan, P. Thambidurai, “Levelized Scheduling of
Directed A-cyclic Precedence Constrained Task Graphs
onto Heterogeneous Computing System”,pp. 262-269,2005

[4] Atakan Dogan and Fusun Ozguner, “LDBS: A Duplication
Based Scheduling Algorithm for Heterogeneous
Computing Systems”,Proc. of Int’l Parallel Processing
(ICPP’02), 2002

[5] E. Ilavarasan, P. Thambidurai, “Low Complexity
Performance Effective Task Scheduling Algorithm for
Heterogeneous Computing Environments”, Journal of
Computer Sciences, 3(2): pp.94-103, 2007

[6] Z.G.Chen, Q.S.Hua, EZDCP, “A new static task
scheduling algorithm with edge-zeroing based on dynamic
critical paths”, Journal of Central South University of
Technology, 10(2), pp.140-144, 2003

[7] Henri Casanova, “SimGrid: A Toolkit for the Simulation
of Application Scheduling”, First IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp.430-
437,2001

[8] Hatice Tekiner-Mogulkoc, David W. Coit, Frank A. Felder,
“Electric power system generation expansion plans
considering the impact of Smart Grid
technologies”, International Journal of Electrical Power &
Energy Systems, Vol. 42, no. 1, November, pp. 229-
239,2012

[9] Ahmad Usman, Sajjad Haider Shami , “Evolution of
Communication Technologies for
Smart Grid applications ”,Review Article.Renewable and
Sustainable Energy Reviews, Vol.19, March, pp. 191-199,
2013

[10] A.P, Malozemoff, “New Material Requirements for
Superconductor Grid Technology”, Original Research
Article.Physics Procedia, Vol. 36, pp. 1429-1433, 2012

[11] Vincenzo Giordano, Gianluca Fulli, “A business case for
Smart Grid technologies”,A systemic perspective Original
Research Article.Energy Policy, Vol. 40, January , pp.252-
259,2012

[12] Microsoft.Windows Malicious Software Removal
Tool[EB/OLI].[2007-12-20]
http://www.microsoft.corn/seeurity/malwareremoge/.

[13] The adore-ng Rootkit[EB/OLI].[2012-02-23].
http://stealth.openwall.net/rootkits/.

[14] Wanglina, gaohanjn, liuwei, pengyang. Detection and
management of virtual machine monitor. Research and
development process of [J]. computer. 2011. pp:1534-1541

[15] Rising computer virus statistics. [EB/OLI]. [2008-03-05].
http://www.rising.com.cn/2007/annual/index.htm

[16] Yinghua Xue, Hongpeng Liu ,Intelligent Storage and
Retrieval Systems Based on RFID and Vision in

Automated Warehouse. Journal of Network.Vol 7, No 2
(2012),pp：365-369

[17] Haipeng Qu, Lili Wen, Yanfei Xu, Ning Wang, LCCWS:
Lightweight Copyfree Cross-layer Web Server, Journal of
Network Vol 8, No 1 (2013),pp：165-173

[18] Huan Zhao, Kai Zhao, He Liu, Fei Yu, Improved MFCC
Feature Extraction Combining Symmetric ICA Algorithm
for Robust Speech Recognition, Journal of Network
multimedia ,Vol 7, No 1.2012.pp:7

[19] Luo Y., Li L., Zhang B.S., Yang H.M. Video Hand
Tracking Algorithm Based on Hybrid CamShift and
Kalman Filter. Application Research of Computers, Vol.26,
No.3, pp.1163-1165, 2009.

Lijun Cao, Born in 1971 , master,
associate professor, college of
mathematics and information science of
Hebei Normal University of Science and
Technology, main research directions are:
data mining, grid technology.

Xiyin Liu, Born in 1970 , master,
associate professor, College of
mechanical and electrical engineering, of
Hebei Normal University of Science and
Technology, main research directions are:
data mining, grid technology.

Hans-Georg Torkel, Born in 1960,
Master engineers, patent engineer,
Principal Of Vocational College of
Technology and computer science(BTI).

2454 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

