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Abstract—Hand-based biometric techniques, such as the 
ones based on palmprint, hand vein and hand shape, is 
becoming more important because of their convenience and 
high performance. Hand segmentation is one of the most 
important steps in these techniques. It is a challenge task to 
accurately segment hand in complex environment because 
of the complex background, varying illuminance and other 
unexpected interference factors. This paper proposes a 
novel approach to segment hand in complex environment 
using color and boundary information. In the proposed 
approach, the hand skin color model (HSCM) is firstly 
constructed by using artificial neural network (ANN). Then 
the HSCM is used to generate a probability map (PM) and 
the hand is roughly segmented from the complex 
background by thresholding PM. After that, the hand 
boundary is extracted from the original image by edge 
detecting and voting techniques. Finally, the hand boundary 
is employed to cut the roughly segmented hand to get the 
final segmented hand. The experimental results show that 
the proposed approach can effectively segment hand in 
complex environment. 
 
Index Terms—hand segmentation, complex environment, 
skin color model, boundary extraction 
 

I.  INTRODUCTION 

Hand-based biometric techniques are becoming 
increasingly important because of their convenience and 
high performance. In recent years, researchers gradually 
focus their interests on contactless hand-based biometrics 
which have higher user friendliness than the traditional 
contact ones. One of the most important steps of such 
techniques is to segment hand from complex scenarios 
with uncontrolled background, various lighting 
conditions, and unrestricted hand poses. 

Hand segmentation from complex scenarios has long 
been an active research area in computer vision. It can be 
implemented in both videos and static images. The 
advantage of hand segmentation in videos is that the 
motion information can be integrated into the 
segmentation, and some successful tracking algorithms 
can be applied. Lee segmented hands from videos 
through frame difference for gesture recognition [1]. 

Ribeiro made a study on hand segmentation from videos 
by using the Gaussian mixture model (GMM) [2] to 
model the background pixels [3]. Hand segmentation 
from videos has been successfully used in gesture 
recognition, sign language, human computer interactions 
(HCI), robot control, etc. Hand-based biometric 
applications require a steady hand pose for feature 
extraction, and hence most hand-based biometric methods 
are performed on static images. Hand segmentation from 
static images can be roughly categorized into color-based 
and appearance-based methods. 

Color-based method is one of the most frequently used 
methods in segmenting skin-colored objects in color 
image. It usually constructed a skin color model in a 
specific color space using parametric or non-parametric 
classifiers. Based on the learnt skin color model, each 
pixel in an image is classified as a skin-pixel or not. 
Color-based segmentation has been successfully 
employed in face detection. Chaves-González performed 
a performance evaluation on face detection over various 
color spaces [4]. They used the k-means algorithm as the 
classifier, and in their experiments, the HSV space 
provided the best result. Jones used a large dataset as the 
training data to establish a GMM for skin classification 
[5]. Their experiments demonstrated that there existed a 
significant degree of separability between the skin and 
non-skin distributions. Pham proposed to detect hands 
from complex background for HCI [6]. They also trained 
a GMM in the LUV color space neglecting the luminance 
part, and segmented hands by incorporating stereo 
information. Lee performed skin color detection using 
their proposed elliptical boundary model [7]. Their 
experiments in six chrominance spaces outperformed the 
single Gaussian model and the GMM. Yin developed a 
hand segmentation method for robot control based on 
restricted coulomb energy (RCE) neural network, and 
claimed that the HSI and L*a*b* color spaces are more 
suitable for hand segmentation than the RGB color space 
[8]. Besides, Jedynak considered three models in their 
work for skin detection, including the baseline, Hidden 
Markov, and the color gradient [9]. Brand performed a 
performance evaluation of three different methods for 
skin detection [10]. 

Appearance-based methods extract appearance features 
of hands (shape, texture, intensity, etc.) in gray scale * Corresponding author. 
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images for classification. Ong presented an unsupervised 
approach for hand detection and hand shape recognition 
by using a two-layered boosted hand detectors tree [11]. 
Caglar detected hands by exploiting the geometric 
properties of the finger edges and fingertips [12]. Nguyen 
[13], Kolsch [14], and Zondag [15] respectively proposed 
to employ Ada-boost algorithm to detect hands from 
complex background. By using the concept of integral 
image, the detection is very efficient and it is sufficient 
for real-time applications. Recently, Song [16] proposed a 
method for detecting and tracking moving hand based on 
hand edge. Feng [17] established 3D hand model for 
human hand detection and tracking.  

Besides, combinations of multiple features can be used 
to promote the hand segmentation accuracy. Mittal 
integrated color-based and appearance-based methods for 
hand segmentation, and achieved accuracy much higher 
than any single method [18]. 

In hand-based biometrics, such as palmprint and hand 
shape recognition, accurate detection of key points is 
required for precise region of interest (ROI) extraction. 
The detection of key points relies on the tracing of hand 
boundaries. Hence, clear and accurate hand boundaries 
are required in hand segmentation. However, most 
existing hand segmentation algorithms from static images 
focus on segmenting a hand region without precise hand 
boundaries. Thus, they are not preferred in hand-based 
biometrics. This paper proposes a hand segmentation 
method from complex scenarios, which combines skin 
color model and boundary information. 

The remainder of this paper is organized as follows: 
Section 2 gives an overview of the framework of the 

proposed approach; Section 3 describes the construction 
of skin color model; Section 4 presents the procedure of 
rough hand segmentation; Section 5 provides the 
refinement of the segmentation using boundary vote map 
and boundary cutting; Section 6 demonstrates the 
experimental result and proposes a new evaluation 
criterion, and then makes some discussion and 
comparisons; and finally, we conclude the whole work in 
Section 7. 

II.  FRAMEWORK OF THE PROPOSED APPROACH 

The framework of the proposed method is depicted as 
Figure 1. The proposed approach is composed of three 
stages: hand skin color model (HSCM) construction, 
rough segmentation and fine segmentation.  

At the HSCM construction stage, the HSCM is 
constructed by using a four-layered back propagation (BP) 
ANN. Each pixel in an image is classified by the ANN as 
skin or non-hand skin. 

At the rough segmentation stage, a probability map 
(PM) of hand image is firstly generated by using the 
HSCM, and then the hand is roughly segmented from the 
complex background by binarizing PM. 

At the fine segmentation stage, the hand boundary is 
extracted from the original image by edge detection in 
various color channels to obtain redundancy hand 
boundary information. A voting method is proposed to 
get a final hand boundary from the multi-color-channel 
edges. Finally, the hand boundary is employed to cut the 
roughly segmented hand to get the final segmented hand. 

 

Figure 1. The framework of the proposed approach. 
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III. HSCM CONSTRUCTION 

Skin color has been proven to be robust information 
for hand detection and tracking [20]. Hand skin color 
model is a classifier which can be used to classify each 
pixel in an image as hand skin or non-hand skin. 

Let ܫ denote the original image. Each pixel in ܫ can be 
represented with different color space, such as RGB and 
L*a*b*, etc. The different channels of the different 
representations of the image reflect different property of 
the image. This work uses the normalized R, G, B 
channels in RGB color space and a*, b* channels in CIE 
L*a*b* color space to represent each pixel of the image. 
That is, the feature vector V of the pixels in the image are 
defined as Equations (1)-(3). 

 Vଵ ൌ ൤ ܴܴ ൅ ܩ ൅ ܤ , ܴܩ ൅ ܩ ൅ ܤ , ܴܤ ൅ ܩ ൅ ൨ (1)ܤ

 Vଶ ൌ ൤ ܽ ܮ∗ ∗ ൅ܽ ∗ ൅ܾ ∗ , ܾ ܮ∗ ∗ ൅ܽ ∗ ൅ܾ ∗൨ (2)

 V ൌ ሾVଵ, Vଶሿ (3)
 
We will use the feature vectors to train the HSCM. In 

this paper, a four-layered BP neural network is used to 
construct the skin color model. The number of input 
neurons is 5. Both of the two hidden layers have 32 
neurons. And output layer has only one neuron, which 
gives the probability ݌ of the input pixel to a skin pixel. 
The values of ݌  range between [0, 1]. The larger the 
value of ݌ is, the more likely the pixel is to be a skin 
pixel. The first and second hidden layer respectively has a 
transfer function of sigmoid and hyperbolic tangent. 
Figure 2 shows the structure of this ANN. 

During the training of the HSCM, a set of training 
color hand images is used for training this ANN. As a 
supervised learning strategy, the pixels of the training 
images are labeled as skin or non-skin manually. The 
network is trained based on gradient decreased back 
propagation with momentum. When training, the input 
sequence of the images is random.  

Figure 2. The structure of the ANN used in this paper. 
 

 

IV. ROUGH SEGMENTATION 

For the input image ܫ, the feature vector of each pixel ܫሺ݅, ݆ሻ  is constructed and fed to the ANN. The output is 
denoted as ܲሺ݅, ݆ሻ. ܲሺ݅, ݆ሻ ranges between [0, 1], which 
describes a probability of a pixel is on hand. The larger  ܲሺ݅, ݆ሻ is, the more likely ܫሺ݅, ݆ሻ is on hand. We name ܲ 
as the probability map (PM) of the original image, as 
shown in Figure 4(b).  

PM can be regarded as a gray scale image, in which 
high-intensity pixels correspond to skin-colored objects. 
Hand can be roughly segmented by binarizing PM with a 
threshold. Here we use entropic thresholding method to 
binarize PM.  

Let ௜ܲ  be the intensity of pixel ݅ , തܲ  is the average 
intensity value of pixels of PM, i.e. ̅݌ ൌ ሺ∑ ௜ே௜ୀଵ݌ ሻ/ܰ  
where ܰ is the number of pixels. The intensity values of 
all pixels in PM are amended using Equation (4) so that 
the average intensity value of PM is 0.5. 

௜ᇱ݌  ൌ 0.5 ൈ ̅݌௜݌ ൌ ௜2݌ ̅݌ ൌ ∑௜2݌ܰ ௜ே௞ୀଵ݌  (4)

 
Let ௜݂  be the number of pixels in PM with value ݅, ݅ ∈ ሾ0,ܯሿ , and ܯ  the largest value of the PM. 

Probabilities of two pixel classes, i.e. background and 
foreground (hand) are denoted as ௕ܲሺ݅ሻ  and ௙ܲሺ݅ሻ . 
Entropies for background and foreground pixels are 
computed by Equations (7) and (8). തܶ  is the optimal 
threshold computed by criterion as Equation (9). 

 

௕ܲሺ݅ሻ ൌ ௜݂∑ ௝݂௝்ୀ଴ , 0 ൑ ݅ ൑ ܶ (5)

 

௙ܲሺ݅ሻ ൌ ௜݂∑ ௝݂ெ௝ୀ்ାଵ , T ൅ 1 ൑ ݅ ൑ (6) ܯ

௕ሺܶሻܪ  ൌ െ෍ ௕ܲሺ݅ሻ log ௕ܲሺ݅ሻ்
௜ୀ଴  (7)

௙ሺܶሻܪ  ൌ െ ෍ ௙ܲሺ݅ሻ log ௙ܲሺ݅ሻெ
௜ୀ்ାଵ  (8)

 തܶ ൌ arg଴ஸ்ஸெ ቄ max்ୀ଴,ଵ,⋯,ெሼܪ௕ሺܶሻ ൅ ௙ሺܶሻሽቅ (9)ܪ
 

The time complexity of the algorithm is Oሺܯଶሻ. While 
fast entropic thresholding algorithm [21] can achieve a Oሺܯሻ  time complexity by calculating the renormalized 
part repeatedly.  

To obtain a lower false negative rate, a lower threshold 
is needed for binarization. In this paper we apply a weight 
that less than 1 to തܶ , and get the final threshold by ܶᇱ ൌ ܥ ൈ തܶ . For the selection of ܥ , an experiment is 
carried out on a training dataset. Different values of ܥ is 
applied and the segmentation is performed. The 
summation of false positive rate (FPR) and false negative 
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Image level evaluation is then performed using the 
combination of the two criterions, and the results are 
listed in Table 2. An image can be determined “well-
located” and “well-segmented” by two thresholds that are 
respectively center distance and Youden’s index. The rate 
of well segmentation is shown in Figure.9. 

TABLE 2. 

 EXPERIMENTAL RESULT AT IMAGE LEVEL  

Evaluation of Location Evaluation of Segmentation 

Average 
distance 

Standard 
deviation Average Y.’s index Standard 

deviation 

0.0923 0.0118 0.9270 0.0025 

C. Discussion 
From the experimental results, it can be seen that the 

proposed method can achieve prominent accuracies at 
both pixel level and image level. The results indicate that 
color information plays an important role and is effective 
in hand segmentation. The proposed BVM method can 
effectively refine the rough segmentation generated by 
color information. 

Different color spaces and different combinations of 
color channels may lead to different results. As a 
comparison study, Table 3 lists the experimental results 
using different color spaces and different combinations of 
color channels as input of ANN to train HSCM. From the 
results we can see that the RGB color space is more 
effective for training the HSCM than other color spaces.  

 

(a) Criterion - distance of inscribed circle center

(b) Criterion – Youden’s index 
Figure 9. Evaluation at the level of image 

 

Another comparison study is carried out to evaluate the 
performance of learning algorithms for constructing 
HSCM, and the results are listed in Table 4. The results 
show that compared with the considered algorithms, 
ANN gets a better performance despite the influence of 
complex environment. 

Gaussian mixture model (GMM) is one of the most 
popular methods to build skin color model. As a 
comparison, this paper trains the Gaussian mixture model 
with the same training data set as used by ANN and 
evaluates under the same test data set. Table 5 lists the 
results of segmentation using GMM. The Results of 
GMM show lower sensitivity and higher specificity, 
which is because of high threshold when binarization. 
However, thresholding method for segmentation using 
GMM shares the same with segmentation using ANN. 
Figure 10 shows comparisons of PMs between 
segmentations using GMM and ANN. 

Variable illumination condition is the most difficult 
problem in complex environment segmentation. The hand 
under exposure of the camera flash is well segmented 
using our algorithm (refer to Figure 8). However, the 
phenomenon of uneven lighting condition within the 
palm area remains troublesome. Besides, discoloration of 
hand area makes skin color model falsely refuse skin 
pixels. 

TABLE  3.  

DIFFERENT COLOR SPACE AND CORRESPONDING PERFORMANCE 

Color space sensitivity specificity Predictive 
value 

misclassified 
proportion

L*a*b 95.31% 94.93% 92.25% 3.11% 

HSV 78.35% 97.64% 95.47% 1.44% 

RGB 93.35% 96.65% 94.64% 2.05% 

RGB,HSV 88.18% 96.52% 94.14% 2.13% 

HS(HSV), 
a*b*, CbCr 86.48% 83.19% 76.53% 10.29% 

RGB, a*b* 96.54% 96.92% 95.21% 1.89% 

 

TABLE  4. 

 PERFORMANCE OF DIFFERENT SKIN DETECTORS REPORTED BY THE 
AUTHORS 

Method Sensitivity Specificity

Thresholding of I axis in YIO [10] 94.7% 69.8% 

Bayes SPM in RGB [10] 93.4% 85.2% 

Single Gaussian in CbCr [7] 90% 66.7% 

Gaussian Mixture in IQ [7] 90% 70% 

Elliptical boundary model in CIE [7] 90% 79.1% 

Gaussian Mixture models in RGB [5] 80% 
90% 

90.5 
84.5% 
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Bayes SPM in RGB [5] 80% 
90% 

91.5% 
85.8% 

SOM in TS [5] 78% 68% 

Maximum Entropy Model in RGB [9] 80% 92% 

The proposed method 96.64% 96.92% 

TABLE 5.   

SEGMENTATION PERFORMANCE OF GAUSSIAN MIXTURE MODEL AS 
SKIN COLOR MODEL 

 sensitivity specificity 
Positive 

predictive 
value 

misclassified 
proportion

HSV 50.85% 99.03% 97.07% 0.59% 

RGB 64.49% 99.18% 98.02% 0.50% 

L*a*b* 63.89% 99.17% 98% 0.51% 

YCbCr 64.49% 99.18% 98.02% 0.50% 

ANN+RGB 
+L*a*b* 96.54% 96.92% 95.21% 1.89% 

 

VII. CONCLUSIONS 

A novel approach to segment hand in complex 
environment using color and boundary information is 
proposed in this paper. In the proposed approach, the 
hand skin color model is constructed by using artificial 
neural network. Then the hand skin color model is used to 
generate a probability map and the hand is roughly 
segmented from the complex background by thresholding 
the probability map. The rough segmentation can 
effectively remove most of the non-skin-colored 
background objects. After that, the hand boundary is 
extracted from the original image by edge detection and 
voting technique. The voting technique combines various 
color spaces and hence can dismiss false positives and 
discontinuity of edges. Finally, the hand boundary is 
employed to cut the roughly segmented hand to get the 
final segmented hand. Experimental results show that the 
proposed method can achieve a relatively high sensitivity 
and specificity. The method can be applied for hand-
based biometrics, and it is also suitable for various 
occasions requiring hand segmentation, for example, 
human machine interface, etc. 
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Figure 10. PMs produced by two different skin color model 
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