
Quantitative Analysis of Design Decisions for
Dynamic Reconfiguration

Zhikun Zhao and Pengfei Zhao

School of Computer Science and Technology, Shandong University of Finance and Economics
Jinan, Shandong, China, 250014

zhaozk@sdfi.edu.cn, zhaopf@sdfi.edu.cn

Wei Li
School of Computer Science, Central Queensland University

Rockhampton, Australia, 4702
 w.li@cqu.edu.au

Abstract—Dynamic reconfiguration is becoming an
important requirement of current software systems as they
have a trend towards running continuously and updating
frequently. The main purpose is to reduce the update cost
caused by system shutdown or restart. Controlling the
influence of dynamic reconfiguration on system
performance is an essential yet difficult issue. Many factors
have to be considered and various methods could be chosen
to use, including underlying component model, state
transfer, connector type, reconfiguration algorithm and
reconfiguration execution. These issues are analyzed in this
paper and special attention is focused on how these design
decisions affect the influence of dynamic reconfiguration on
system performance. A DSE system is used as a case to
analyze the design choices for dynamic reconfiguration
through out this paper. A comparison of the influences
resulted from different design choices is made through
recording the influence parameters of the system in
reconfiguration under different design choices.

Index Terms—dynamic reconfiguration, design decisions,
influence control

I. INTRODUCTION

The widespread use of continuously-running
applications has raised the need for dynamic
reconfiguration, i.e. changing system architecture at
runtime [10]. These applications, such as banking
systems and web services [17], need to be updated
frequently because of the evolving user requirements,
hardware technology, or outside environment [11]. Both
users and service providers of these systems do not want
to suffer the cost of system shutdown during the period of
update [12]. Therefore, dynamic reconfiguration is the
best solution.

One of the most important problems of dynamic
reconfiguration is its severe threat to system performance,
or in other words QoS (Quality of Service) [4]. If a
dynamic reconfiguration causes the QoS of a system
decline to zero and lasts for a relatively long period,

dynamic reconfiguration will lose its significance because
it has no much difference with system shutdown or restart
[14]. Therefore, in many performance-critical systems, it
is necessary to control the influence of dynamic
reconfiguration on system QoS [8].

However, it is not easy to design a dynamic
reconfiguration with QoS management. From underlying
component model to reconfiguration plan, many factors
have to be considered carefully. And for each factor,
various methods could be chosen to use. Therefore a
series of decisions need to be made in designing a system
being dynamic reconfigurable. The problem is that it
lacks of a systematic analysis of these factors that could
help designers in making the appropriate decisions.
Although many researchers have made their contributions
to the area of dynamic reconfiguration since Kramer and
Magee’s early work [7], only a few works have been
focused on the influence control for dynamic
reconfiguration. So far as we know, Hillman and Warren
have compared several reconfiguration algorithms [6],
but the analysis has been restricted to the reconfiguration
algorithms and other factors have not been considered.

Based on the previous works, different design choices
and their influence on system QoS are analyzed in this
paper. These design choices include: what component
model can be used to construct a system, what algorithm
can be used to achieve a reconfiguration, what method
can be used to preserve transaction integrity, what policy
can be used to schedule resources, and what interaction
protocol can be used to synchronize reconfiguration
operations among geographically distributed components.
A real world application, the DSE (Digital Signature and
Encryption) system, is used as a case throughout this
paper to test the QoS influence of different design choices.
Reconfiguration designers can benefit from this work in
modeling dynamic reconfiguration and controlling the
influence.

II. THE DIGITAL SIGNATURE AND ENCRYPTION SYSTEM

To analyze the design choices for a dynamic
reconfiguration, the DSE system is used as an example

Manuscript received July 8, 2012.

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2391

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2391-2396

through out this paper. A comparison of the influences
resulted from different design choices can be achieved
through recording the influence parameters of the system
in reconfiguration under different design choices. This
comparison can help find out which design choice can
result to a small influence.

The DSE system is used to secure electronic
communications. Data encryption helps the sender protect
the information from being known by unauthorized users.
And digital signature helps the receiver verify the
authenticity of the information. The working progress of
the DSE system is shown in Fig.1. To send a data
package, the sender encrypts the data and attaches a
digital signature. The package transferred is composed of
two parts, the encrypted data and the digital signature.
When receiving a package, the receiver can decrypt the
data and verify the digital signature.

Figure 1. The DSE System.

The response time and reconfiguration time are chosen
as the influence parameters. Increase in response time
reflects how severe the influence is and reconfiguration
time reflects how long the influence lasts. For the DSE
system, the response time is the time interval between the
instance at which a data package becomes ready to be
sent at the sender and the instance at which the
verification for the data package is finished at the receiver.
Reconfiguration time is the time interval between the
instance at which a reconfiguration starts and the instance
at which the reconfiguration ends.

In some applications, throughput may be chosen as the
QoS parameter. Throughput is the amount of data that
pass through the system per time unit. A reconfiguration
that has influence on response time also has influence on
throughput. Longer response time means lower
throughput. The length of the time unit also is an
important parameter for throughput statistic. If the time
unit is far longer than the reconfiguration period, the

influence of the reconfiguration is hard to detect. In this
paper, response time is chosen as the QoS parameter.

III. DESIGN DECISIONS

Almost all the existing systems that support dynamic
reconfiguration are component based systems.
Component is suitable to be the elementary operational
unit for structural reconfiguration because of its
modularity, well-defined interfaces, and interconnection
independence [15]. A component-based system is
composed of components and connectors. A structural
reconfiguration to such a system can be achieved through
a series of operations that add and/or remove components
and/or connectors.

Design decisions for dynamic reconfiguration to a
component based system include decisions for
component model and decisions for dynamic change.
There are dependent relationships among these decisions,
e.g. some decisions for dynamic change depend on the
component model.

A. Design Decisions for Component Model

Figure 2. Design Decisions for Component Model

Briefly, component models can be divided into two
categories: procedure-call model such as Fractal[1],
Rapide[9], SOFA[13] and flow model such as Data Flow
Network[2]. In a procedure-call model, components
interact with each other through procedure-calls.
Therefore a component has request/provide services as
external interface and a connector represents procedure-
calls. In a flow model, components are as filters and
connectors are as pipes. Correspondingly the external
interface of a component is the entrances and exits and a
connector represents communication paths. What
transferred through communication paths can be data,
control, or mixture of these two. To show their difference,
the DSE system based on different component models is
shown in Fig.3.

Communication path is the basic connector between
components. A procedure-call can be simulated by two
communication paths that transfer the mixture of control
and data. The caller transfers the control and the
parameters to the callee through one path and the callee
returns the control and the result to the caller through
another path. More complicated connectors also can be
simulated by communication paths.

State Stateful
Stateless

Request/provide
Entrance/exit

Connector
Communication
path

Procedure call

Type

Message
 type

Data
Control
Mixture

Interface

Object Dimension Choices Sub-dimension Subchoices

Component

Decrypt the data
 private key

Encrypt
 private key

1011…. 0010….
Data
….

BDA0….

Hash

Encrypt the data
 public key

Pack the encrypted
hashcode and data

into a package

BDA0….

0010…. 1011….

Data
….

1011….

Unpack

Decrypt
public key

Calculate
hashcode

Verification

Send the package to the receiver

2392 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

Another important design decision for component
model is whether components should be stateful or
stateless [5]. A stateful component maintains an internal
state, which makes the component possible to accumulate
information over operations. And this information might
be used in future operations. If a stateful component
needs to be substituted in a reconfiguration, its internal
state needs to be transferred to the new one to keep the
system running correctly. On the contrary, a stateless
component has no internal state and thereby there is no
need for state transfer in reconfiguration.

a) The Flow Model

b) The Procedure-call Model

Figure 3. Different Component Models of the DSE System

B. Design Decisions for Dynamic Change

Figure 4. Design Decisions for Dynamic Change

Design decisions for dynamic change include what
reconfiguration algorithm is used to achieve the change,
what method is used to preserve transaction integrity,
what policy is used to schedule resources, and what
interaction protocol is used to synchronize
reconfiguration operations among geographically
distributed components.

Reconfiguration algorithm determines how
reconfiguration is achieved by reconfiguration operations
step by step. The reconfiguration algorithms currently in
use can be classified into two classes, blocking algorithm
and non-blocking algorithm. The blocking algorithm
firstly waits or drives the system into a consistent state by
blocking the components or connectors involved in the
reconfiguration. Then it switches the system from the
original configuration to the new configuration. Finally it
resumes the system by non-blocking the involved
components and connectors. The non-blocking algorithm
firstly activates the new configuration by starting the new
components and establishing the new connectors. And
then it closes the entrance of the original configuration so
that it can wait the transactions belonging to the original
configuration to be completed. Finally it removes the part
that belongs to the original configuration. The blocking
algorithm provides a consistent system state for stateful
components to transfer their states, but it may cause a
severe influence on system QoS because new requests are
suspended during the period of waiting for the consistent
state and transferring components’ internal state. On the
contrary, the non-blocking algorithm does not support
state transfer between original and new components
because they need to run in parallel, but it is possible to
achieve a zero-influence reconfiguration because the
system keeps running during the whole reconfiguration
period.

Preserving transaction integrity is a necessary
prerequisite to ensure the functional correctness of a
system [15]. A transaction usually means a sequence of
work that the system must treat as a unit for the purpose
of satisfying a request and for ensuring data integrity.
Two constraints - non-interleaving and completeness -
should be satisfied for transaction integrity preservation
in reconfiguration. Transaction non-interleaving means
that transactions belonging to the original configuration
and transactions belonging to the new configuration
should not interfere with each other. Transaction
completeness means that a transaction should be
guaranteed to complete once it starts. The optional
methods to protecting transaction non-interleaving
include isolation and version control. Isolation prevents
transaction interleaving through avoiding the coexistence
of original transactions and new transactions spatially or
temporally. Version control solves this problem through
assigning a version tag on every data. To ensure
transaction completeness, reference counting [3] or flow
tracing [16] can be used. Reference counting is known as
a garbage collection algorithm mainly used in procedure-
call systems where each component contains a count of
the number of references to it held by other components.
A component becomes removable when its reference

Algorithm
Blocking
Non-blocking

Transaction
integrity

preservation
Completeness

Version control
Isolation

Scheduling

Non-interleaving

Flow trace
Reference count

Centralized
Decentralized

Preemptive
Round-Robin

Dimension Sub-dimension Choices

Interaction
protocol

dataEncryption
mDigest1

sender

component

procedure-call

Legend dataSignature

send

dataDecryption

receiver

receive

digestEncryption

verification

digestDecryption

mDigest2

dispatcher

dataEncryption

mDigest1 digestEncryption

packer

unpacker

digestDecryption

dataDecryption mDigest2

verifier

…

(to one receiver)
(to other receivers)

component communication
-path

Legend

data

data

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2393

© 2013 ACADEMY PUBLISHER

count reaches zero and it is currently idle. Flow tracing is
a method used in flow model where a component
becomes removable when it is not being used or is never
to be used by any flow.

Reconfiguration scheduling refers to the way that
procedures are assigned priorities to run, including
functional procedures and reconfiguration procedures. In
functional procedures execute the functional codes of the
system and in reconfiguration procedures execute the
reconfiguration codes. The management is usually carried
out by a scheduler. There are two typical classes of
schedulers, preemptive and round-robin. A preemptive
scheduler always arranges functional procedures run first,
i.e. reconfiguration processes are suspended at any time a
functional process arrives and are resumed after all
running functional procedures are completed. A round-
robin scheduler assigns time slice to each procedures in
equal portion and in order, i.e. all procedures run in turn.

In distributed environment, interaction protocol
determines how reconfiguration operations are
synchronized among geographically distributed
components. The protocol can be centralized or
decentralized. In a centralized protocol, a central
controller manages the reconfiguration progress. It
interprets the reconfiguration plan, sends commands to
components, and monitors the results of operations. In a
decentralized protocol, every component knows how to
behave and interact with others based on its role in
reconfiguration. There is a coordinator who takes charge
of the role assignment and component administration.

C. Dependency between Design Decisions

Figure 5. Dependencies between Design Decisions

There are dependencies between design decisions,
which means some design decisions may become the
reasons of other design decisions. these dependencies are
shown in Fig.5.

If there are stateful components to be replaced in a
reconfiguration, blocking algorithm should be chosen
because a consistent system state is necessary for the state
transfer between components. And thereby transaction
non-interleaving is naturally guaranteed by isolation, i.e.
transactions of new version and transactions of original
version run in different period of time. If all the
components to be replaced in reconfiguration are stateless,

both blocking algorithm and non-blocking algorithm
could be used. And if non-blocking algorithm is used,
transaction interleaving could be avoided by isolation or
version control.

What type of connector could be used depends on the
interface that components provide. If components provide
service-oriented interfaces, connectors should be
procedure-calls. And correspondingly transaction
completeness should be guaranteed using reference
counting method. If components provide flow oriented
interfaces, connectors should be communication paths
and flow tracing should be used to ensure transaction
completeness.

IV. DESIGN DECISIONS AND INFLUENCE OF DYNAMIC
RECONFIGURATION

Three design decisions have severe influence on the
influence of dynamic reconfiguration. Reconfiguration
algorithm has influence on system response time because
the system may be blocked in reconfiguration.
Reconfiguration scheduling also has influence on system
response time because reconfiguration procedures may
compete with functional procedures on CPU time.
Interaction protocol for reconfiguration has influence on
reconfiguration time because operations may be executed
sequentially or in parallel.

To compare the influence of different design choices,
all methods need to be executed under the same running
environment. However, such comparison is very hard
because existing implementations for these methods are
embedded in different component models or middleware
technologies. One solution is simulating these methods
on the RDF (Reconfigurable Data Flow) model [16]. The
RDF model is an extension to the widely used Data Flow
Network model [2]. Several improvements make it a
component model that supports dynamic reconfiguration.

Constructed on the RDF model, the structure of the
DSE system is shown in Fig.6. Two structural changes
are set for the reconfiguration, including replacing the
message digesting algorithm and pulling in data
compression/depression function. See the objects drawn
with dashed line in Fig.6.

Figure 6. The DSE System Constructed on The RDF Model

d1

d2 d3

d4 d5 d6

d7

dispatcher

dataEncryption

mDigest1 digestEncryption
packer

unpacker

digestDecryption

dataDecryption mDigest2
verifier

d8 d9

d10 d11 d12

d13

…

(to one receiver)

(to other receivers)
…

newMDigest2

newMDigest1

dataDecompression

dataCompression d14

d15

process data-store data-path

Legend

Stateful Stateless

Request/provide
services

Communication
path

Procedure
call

Blocking Non-blocking

Reference
counting

Flow
tracing

Entrance/exit

Isolation Version
control

2394 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

A. Reconfiguration Algorithm and System Response Time
As mentioned previously, two categories of

reconfiguration algorithms are currently in use. Both of
them are tested on the RDF model and their influence on
system QoS are compared. To exclude other factors that
may influence the influence on QoS, the test is carried out
with the following settings:

1) Two reconfigurations have been done to achieve the
same structural change, one for the blocking algorithm
and another for the non-blocking algorithm.

2) Every reconfiguration has taken place in a single
node so that there is no influence from the interaction
protocol.

3) Time-consuming reconfiguration operations are
simulated with thread sleeping. Therefore the
reconfiguration procedure does not compete with
functional procedures on CPU time and there is no
influence from the scheduling policy.

Figure 7. Influence of Different Reconfiguration Algorithms

The response time has been recorded during the system
running period. See Fig.7. From the results, we can see
that the system response time has an obvious increase in
the test that uses the blocking algorithm. Therefore, to
minimize the influence on system QoS, the non-blocking
algorithm is prefered. And because the precondition for
non-blocking algorithm is there is no state transfer
between components, a principle for component design is
every component that can be stateless should be stateless.

B. Reconfiguration Scheduling and System Response
Time

To compare the QoS influence of preemptive policy
and round-robin policy for reconfiguration scheduling,
the following tests have been done:

1) Two reconfigurations have been done to achieve the
same structural change, one for preemptive scheduling
and another for round-robin scheduling. Reconfiguration
operations really consume CPU time so that the influence
of the scheduling policy will be reflected in the result.

2) These two reconfigurations use the same
coexistence algorithm to exclude the influence of
reconfiguration algorithm.

3) The reconfiguration has taken place in a single node
so that there is no influence from the interaction protocol.

Figure 8. Influence of different scheduling policies

The result is shown in Fig.8. Using preemptive
scheduling, the reconfiguration has no influence on the
system response time. On the contrary, round-robin
scheduling results to a severe influence on the system
response time. The reason is preemptive scheduling can
prevent functional procedures from being competed by
the reconfiguration procedure. Therefore, preemptive
scheduling is a good policy for reconfiguration
scheduling, but the side effect is a longer reconfiguration
time because the CPU time spent on the reconfiguration
in a time unit is less than the round-robin scheduling.

C. Interaction Protocol and Reconfiguration Time
To examine the influence of centralized protocol and

decentralized protocol on reconfiguration time, the
following tests have been done:

1) Two series of tests have been done in a distributed
environment, one for centralized protocol and another for
decentralized protocol. In each series of tests, we
recorded the reconfiguration time under different system
sizes. Here we use different numbers of receivers to
simulate different system sizes.

2) These two tests achieve the same reconfiguration
with the same coexistence algorithm. This setting can
exclude the influence of the reconfiguration algorithm.

3) Time-consuming reconfiguration operations are
simulated with thread sleeping on each node. Therefore
the influence from the scheduling policy is excluded.

Figure 9. Influence of different interaction protocols

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2395

© 2013 ACADEMY PUBLISHER

The result in Fig.9 shows that decentralized protocol
has a much shorter reconfiguration time. This is because
the reconfiguration can be carried out in a fully
concurrent way in decentralized protocol. In centralized
protocol, the reconfiguration operations are executed one
by one sequentially. In decentralized protocol, several
flows of reconfiguration operations can be executed in
parallel. The disadvantage of decentralized protocol is its
complication therefore it is harder to design and develop
than the centralized one.

V. CONCLUSION AND FUTURE WORKS

Dynamic reconfiguration is a good solution for
software systems that need to run 24 hours a day and 7
days a week and need to be updated frequently.
Controlling the influence of dynamic reconfiguration is
an important yet difficult work. Many factors need to be
considered and various methods can be used. A
systematic analysis of these factors and a comparison of
theses methods can help designers in modeling dynamic
reconfigurable systems.

The factors that need to be considered in designing
dynamic reconfiguration have been analyzed in this paper.
From the component interface, connector meaning to the
reconfiguration algorithm, consistency preservation,
scheduling policy, and interaction protocol, the key
problems and the possible design choices for each of
these factors are explained. Using the DSE system as an
example and based on our RDF component model, the
relationship between some design choices and the
influence of dynamic reconfiguration are illustrated.

Future work will be focused on advanced tool support
for analysis of dynamic reconfiguration. Besides
influence, other aspects of dynamic reconfiguration such
as memory usage and coding cost will also be considered.
A richer analysis of the relationship between system
properties and different design choices for dynamic
reconfiguration will provide much aid to the
reconfiguration designers.

ACKNOWLEDGMENT

This work was supported in part by the International
Cooperation Program for Excellent Lecturers of 2011 by
Shandong Provincial Education Department, P.R. China.

REFERENCES

[1] E. Bruneton, e.t.al, “An open component model and its
support in Java”, Proc. 7th International Symposium on
Component-Based Software Engineering, Edinburgh, UK,
May 2004, pp.7-22.

[2] T. Demarco, Structured Analysis and System Specification,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[3] Divid F. Bacon, Perry Cheng, and V.T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. Proc. 30th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages,
ACM Press 2003, pp.285-298.

[4] J. Gorinsek, S. Van Baelen, Y. Berbers, and K. De
Vlaminck, Managing quality of service during evolution
using component contracts, Proc. 2nd international

workshop on unanticipated software evolution, Warsaw,
Poland, 2003, pp.57-62.

[5] Handte, Marcus; Schiele, Gregor; Urbanski, Stephan;
Becker, Christian: Adaptation Support for Stateful
Components in PCOM. Workshop on Software
Architectures for Self-Organization: Beyond Ad-Hoc
Networking at Pervasive 2005, München, Germany, 2005.

[6] Hillman, J., Warren, I.. Quantitative Analysis of Dynamic
Reconfiguration Algorithms. Proc. of the International
Conference on Design, Analysis and Simulation of
Distributed (DASD) Systems, Virginia, USA (2004)

[7] Kramer J., Magee J.. The evolving philosophers problem:
Dynamic change management. IEEE Transactions on
Software Engineering, 16,11 (1990),1293-1306

[8] Linhai Cui, A Novel Approach to Hardware/Software
Partitioning for Reconfigurable Embedded Systems,
Journal of Computers, Vol 7, No 10 (2012), pp.2518-2525.

[9] D.C. Luckham et al, “Specification and analysis of
software architecture using Rapide”, IEEE Transactions on
Software Engineering, 21(4), April 1995, pp.336-355.

[10] N. Medvidovic and R. N. Taylor, A classification and
comparison framework for software architecture
description languages. IEEE Trans. on Software
Engineering, 26(1), 2000, 70–93.

[11] Paul Laird and Stephen Barrett, Towards Dynamic
Evolution of Domain Specific Languages, Lecture Notes in
Computer Science, 2010, Volume 5969/2010, 144-153.

[12] Peng Xiao, Zhigang Hu, Workload-aware Reliability
Evaluation Model in Grid Computing, Journal of
Computers, Vol 7, No 1 (2012), pp.141-146.

[13] F. Plasil, D. Balek, and R. Janecek, “SOFA/DCUP:
Architecture for component trading and dynamic updating”,
Proc. International Conference on Configurable Distributed
Systems, Annapolis, Maryland, USA, 1998, pp.43–52.

[14] Santambrogio M.D., Hoffmann H., Eastep J., Agarwal A.,
Enabling technologies for self-aware adaptive systems,
2010 NASA/ESA Conference on Adaptive Hardware and
Systems, June 2010, Anaheim, CA, pp.149-156.

[15] Ian Warren B.Sc. A Model for Dynamic Configuration
which Preserves Application Integrity, PhD thesis,
Lancaster University, UK. 2000.

[16] Wei Li, Zhikun Zhao, Influence Control for Dynamic
Reconfiguration of Dataflow Systems, Journal of Software,
2007(12).

[17] Ye Du, Jiqiang Liu, Ruhui Zhang, Jieyuan Li, A Dynamic
Security Mechanism for Web Services Based on NDIS
Intermediate Drivers, Journal of Computers, Vol 6, No 10
(2011), pp.2021-2028.

Zhikun Zhao was born in Qingzhou,
Shandong province, China in 1975. He
received his Ph.D. degree on computer
software theory from the Graduate
University of Chinese Academy of
Sciences, Beijing, China in 2003.
He was an Associate Professor of the
Graduate University of Chinese Academy
of Sciences from 2003 to 2005. He worked

as a Postdoctoral Research Fellow of Central Queensland
University from 2006 to 2008. Currently he is an Associate
Professor of Shandong University of Finance and Economics in
Jinan, Shandong province, China. His research interests include
dynamic software reconfiguration and multi-agent systems.

2396 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

