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Abstract—This paper presents a new Algorithm to analyze 
the Electroencephalography (EEG) signal, which is 
regarded as an important way to analyze the alcoholism. In 
order to distinguish the nonlinear characteristics of EEG 
with alcoholic people and the control, an exponential power 
ratio index (EPRI) is proposed to quantify the slow wave 
and fast wave power features of the EEG signal, and the 
Independent Component Analysis (ICA) and Support 
Vector Machine (SVM) are combined for analysis. The 
proposed method is implemented on the real data sets 
acquired from UCI common databases, which have been 
studied by some research groups. The results suggest that 
the proposed method is valid for analysis of EEG signal in 
alcoholism. 
 
Index Terms—Electroencephalography (EEG), Independent 
Component Analysis (ICA), Support Vector Machine 
(SVM), Time Series, Feature Analysis 
 

I.  INTRODUCTION 

Since ancient times, the great interest on the Human brain 
has been generated and lots of researches have been held. 
However, there are many unresolved issues and 
difficulties to be overcome because of the complexity and 
uncertainty of the brain system. Electroencephalography 
(EEG), the electrical activity of cerebral cortex, exhibits 
the brain function and the status of the whole body, which 
is as a kind of effective means to study the brain [1]. As 
is known to all, Hans Berger (1873-1941), the one is as 
the electroencephalographers, who discovered the 
existence of human EEG signals. Since Berger studied 
EEG in 1920 [2], the analysis of EEG signal plays a more 
and more important role in clinical medicine, biology, 
psychology and other areas. It provides the motivation to 
apply advanced digital signal processing methods to the 
EEG signals measured from the brain of a human subject, 
and thereby underpins the later section of the paper [3-4]. 
Analysis of the Electroencephalography (EEG) is proved 
valid to monitoring the patient state [5] among various 
methods, and it is an effective tool to research and 
analyze the feature of alcoholism.  

There are a lot of algorithms and parameters proposed 
to judge whether the brain performance be abnormal or 
not. In England, W. Gray Walter firstly discovers the foci 

of slow brain activity (delta waves), which initiates 
enormous clinical interest in the diagnosis of brain 
abnormalities. In North America, Hallowell Davis starts 
research activities related to EEG and illustrates a good 
alpha rhythm for himself. A cathode ray oscilloscope is 
used around this date by the group in St Louis University 
in Washington, in the study of peripheral nerve potentials 
[3]. Since Berger and Dietch apply Fourier analysis to 
EEG sequences, it is rapidly developed. Nagata proposes 
the power ratio index (PRI) to study topographic 
electroencephalographic and applies to the research of 
malignant brain tumors [6]. Claassen lists twelve 
parameters including total power (TP, 1-30Hz), alpha 
power (AP, 8-13Hz), delta power (DP, 1-4 Hz), beta 
power (BP, 14-30Hz), fast power (FP, 8-30Hz), 
alpha/total power (RA, 8-13/1-30Hz), delta/total power 
(RD, 1-4/1-30Hz), alpha/delta power (AD, 8-13/1-4Hz), 
fast/delta power (FD, 8-30/1-4Hz), alpha power (CA, 8-
13Hz left vs. 8-13Hz right),  delta power (CD, 1-4Hz left 
vs. 1-4Hz right), average frequency total (AF, average 
FFT frequency 1-30) [7]. On these bases, Finnigan 
changes AD to DAR and combines it with PRI and 
NIHSS to study the EEG signal in sub-acute stroke [8]. 
Nowadays, the features of different frequency waves are 
always the important points of the clinical interest. 
Besides the traditional indices, nonlinear parameters are 
increasingly developed and widely used to analyze the 
EEG signal, such as correlation dimension, Lyapunov 
exponent[9], approximate entropy[10], and so on. 
Modern research methods, for example, principal 
component analysis (PCA), independent component 
analysis (ICA), wavelet transformation analysis, support 
vector machine (SVM), hidden Markov models (HMM), 
dynamic Bayesian networks, artificial neural networks 
(ANN), etc.[11-18] are also used to study the EEG 
sequences. The research of EEG has brought daily 
development of clinical, experimental, and computational 
studies for discovery, recognition, diagnosis, and 
treatment of a great number of neurological and 
physiological abnormalities of the brain and the rest of 
the central nervous system (CNS) of human beings.  

 This paper proposes a new method for analysis of 
EEG in alcoholism. Firstly, the Independent Component 
Analysis (ICA) is used to separate EEG sequences into 
independent signals. Then, an index based on the existing 
parameters describes the nonlinear characteristics of EEG 
signals by quantifying the slow wave and fast wave 
power features, which is proved viable in distinguishing 
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the alcoholic people and the control. For a change, it is 
not derived from a simple ratio of different frequency 
power bounds but introduces the exponential function in 
accord with customary practice. Then, support vector 
machine (SVM) is as the method of classification 
algorithm. 

The paper is organized as follows: Section 2 proposes 
the new methodology which extracts the features of EEG 
in alcoholic. The exponential power ratio index (EPRI) 
and the discriminant analysis method of EEG signals are 
proposed in this part. Section 3 gives the experimental 
results which are over real public datasets. Section 4 is 
the conclusion. 

II.  METHODOLOGY 

A.  Independent Component Analysis 
Independent Component Analysis (ICA) is a feature 

extraction analysis tool derived from the "source 
separation" signal processing techniques, and its 
characteristic is to decompose mixed signals into 
independent components. Some research results show 
that ICA algorithm can extract the multi-channel EEG 
signals from the interference of other biological electrical 
signals, and can also separate the basic rhythms of the 
EEG signals (such as alpha waves, beta waves etc.) into 
different independent components respectively. 

Let ( )1iS i M≤ ≤  be the original signals and 

 be the observations, where each 
observation is a mixture of the original signals. Under the 
assumption that the original signals are statistically 
independent and it is possible to recover the original 
signals from the observations under mild conditions on 
the mixture. This technique making this task possible is 
often called ICA, as they factorize the observations as a 
combination of original sources. For the linear mixture, 
ICA estimates the inverse of the mixing matrix. It is 
worth noting that the number of observations N must be 
at least equal to the number of original signals M. 
Generally, it is assumed that N=M. It is not necessary to 
have signals 

(1jX j≤ ≤ )N

X to consider using ICA: X  may also be 
multidimensional vectors. Assuming that each jX  is an 
unknown, different combination of original "source 
vectors" , ICA will expand each signal iS jX  into a 

weighted sum of source vectors  (ICA estimates both 

the source vectors  and the coefficients of the weighted 
sum) [19]. 

iS
S

Suppose that the original vector is observed at each 
moment, 
  (1) X A S= ⋅
where A is a M N scalar matrix, and below we shall 
require M N. The task of independent component 
analysis is to recover the source signals from the 
observed signals. More specifically, a real matrix W is 
required as 

×
≤

  (2) 'S W X W A S= ⋅ = ⋅ ⋅

where  is the estimate of the sources . Obviously, if 'S S
1W A−= , the estimated signals will be just equal to the 

original signals. However, neither A nor its inverse W are 
known to us. To solve this problem, matrix A could be 
determined by maximum-likelihood techniques. We use 
an estimate of the density, parameterized by ( )ˆ ;p x a  
and seek the parameter vector a  that minimizes the 
difference between the source distribution and the 
estimate. That is, a  is the basis vector of A and thus 

( )ˆ ;p x a  is an estimate of the p(x) [20]. Details are given 
in [21]. 

B.  Exponential Power Ratio Index 
Brain patterns from wave shapes are commonly 

sinusoidal. Usually, they are measured from peak to peak 
and normally range from 0.5 to 100 μV in amplitude. By 
means of fast Fourier transform (FFT) power spectrum 
from the row EEG signal is derived. In Power spectrum 
contribution of sine waves with different frequencies are 
visible. Although the spectrum is continuous, ranging 
from 0 Hz up to one half of sampling frequency, the brain 
state of the individual may make certain frequencies more 
dominate. As a general rule, the brain waves over all 
channels have been categorized into four basic groups: 
δ  (0.5-3.5Hz), θ (4-7.5Hz), α (8-13Hz), β (14-30) and 
γ (>30 Hz) [22]. Normally, the delta waves and theta 
waves are collectively known as slow waves, while the 
alpha waves and beta waves are called fast waves. As a 
measure for the power ratio, we consider the spectral 
density of the right and left hemisphere in the frequency 
range from 1 to 30 Hz. A new definition of slow-fast 
wave power ratio is defined as the exponential power 
ratio index (EPRI): 

 

( )
( )1

M
s

fi

p i
TM p iEPRI e
λ

=

− ∑
=  (3) 

where λ  is a constant, M is the number of the channels 
and T is the length of time which specified in seconds. 
The ps and pf represent power spectral density of slow 
waves ( δ θ+ ) and that of fast waves ( α β+ ), 
respectively. According to the above formula, the range 
of EPRI is 0 to 1, and it can be deduced that EPRI =1 
means entire fast waves no slow waves and EPRI=0 
means the reverse case. 

C.  Support Vector Machine 
Support Vector Machine (SVM) is a popular 

classification algorithm which uses a discriminant 
hyperplane to identify classes. As shown in Fig. 1, the 
selected hyperplane is the one that maximizes the 
distance from the nearest training points which is so 
called margins. It is known that maximizing the margins 
is to increase the generalization capabilities. SVM uses a 
regularization parameter that enables accommodation to 
outliers and allows errors on the training set. 

As shown in Fig. 1, the SVM classification with linear 
decision boundaries is known as linear SVM [23-24]. 
However, there are many ways to create all kinds of 
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nonlinear decision boundaries, with only a low increase 
of the complexity, by using the “kernel trick”. It consists 
in implicitly mapping the data to another space, generally 
of much higher dimensionality, using a kernel function 
K(x,y).  Among all the kind of kernel functions, the most 
commonly used is the Gaussian kernel, which is also 
named Radial Basis Function (RBF) kernel. The 
corresponding SVM is known as Gaussian SVM or RBF 
SVM, and it gives very good results for EEG signal 
analysis. The kernel function can be calculated as: 

 

2

2( , )
x y

K x y e σ
−

−
=  (4) 

 
D.  Discriminant Analysis 

A discriminant analysis method of EEG signal in 
alcoholism is proposed in this paper, where the ICA 
algorithm, SVM classification and the EPRI mentioned 
above are introduced to analyze the alcoholic EEG 
features.  

The analysis steps of this discriminant method as 
follows: 
Step1 Partition each subject’s multi-dimensional EEG 
signal into a data matrix in per second, where the rows 
represent the sampling points and the columns represent 
the channels; 
Step2 Decompose each mixed matrix of multi-channel 
signals and seek the source matrices by ICA; 
Step3 Compute the EPRI of each processed matrix; 
Step4 Use SVM classification algorithm to distinguish 
the alcoholic subjects from the controls. 

It can be seen that the clearest characteristic of this 
discriminant analysis method is series segmentation in 
Step 1. That is to say, maybe not every EEG signal in per 
second shows same characteristics. 

It is worth noting that the Step 4 is not limited to the 
particular SVM classification algorithm. We can choose 
such as the classification tree method, Linear 
Discriminant Analysis (LDA), Neural Networks (NN), 
Bayesian classifier and any other proper methods to 
perform the classification step. If it is possible, we can 
even set a threshold to distinguish the two cases under 
some circumstances. It depends entirely on the data and 
the application environment. 

III.  EXPERIMENTS AND MAIN RESULTS 

A.  Subjects  and Datasets 
The experimental data in this paper are multi-electrode 

EEG time series under a variety of conditions, which are 
obtained from University of California (UC) Irvine 
Machine Learning Repository and sponsored by the 
National Institute on Alcohol Abuse and Alcoholism 
(NIAAA) project. This data arises from a large study to 
examine EEG correlates of genetic predisposition to 
alcoholism. It contains measurements from 64 electrodes 
placed on subject's scalps which are sampled at 256 Hz 
(3.9-msec epoch) for 1 second. The positions of 64 
electrodes are shown as Fig. 2. 
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Figure 1. SVM find the optimal hyperplane for generalization. 

 
There are two groups of subjects: alcoholic people and 

the control. Each subject is exposed to either a single 
stimulus (S1) or to two stimuli (S1 and S2) which are 
pictures of objects chosen from the 1980 Snodgrass and 
Vander wart picture set. When two stimuli are shown, 
they are presented in either a matched condition where S1 
is identical to S2 or in a non-matched condition where S1 
differed from S2. 

 
Figure 2. Positions of 64 electrodes. 

There are two data sets used here. One is a small data 
set which contains data for the 2 subjects: alcoholic and 
control. For each of the 3 matching paradigms, one 
presentation only, match to previous presentation and no-
match to previous presentation, 10 runs are shown. The 
other is a large data set which contains data for 10 
alcoholic and 10 control subjects, with 10 runs per 
subject per paradigm. The test data used the same 10 
alcoholic and 10 control subjects as with the training data, 
but with 10 out-of-sample runs per subject per paradigm. 

B.  Experiments and Main Results 
This section presents the experimental results on the 

above-motioned EEG datasets. All procedures are written 
and implemented by adopting Matlab7.0 combined with 
EEG Anywhere 2.1 on the windows platform in the 
microcomputer equipped with Pentium (R) Core Dual-
Core CPU E5800 @3.20GHz 3.20GHz and 2GB RAM. 

1) The small data set which contains data for the 2 
subjects: the alcoholic people and the control. 

 According to section 2, transform each subject’s EEG 
signals into 10 scalar matrices with 256 rows and 64 
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columns. Each matrix refers to one second, a row represents a sampling point and a column represents a 
channel. The discriminant analysis method of EEG 
signal is executed. In equation 3, the constant T equals to 
1 (each matrix refer to a second) and M equals to 64 (64 
electrodes). We set another constant 0.001λ = .  

In order to display the importance and necessity of 
ICA, the experimental results without including ICA are 
given as the comparison to those of including ICA. The 
results without including ICA are shown as Fig. 3-Fig. 5, 

and those under the case of including ICA are shown as 
Fig. 6- Fig. 8.  

Concerning Fig. 3-Fig. 5, it is can be seen that the red 
lines of the alcoholic and the blue lines of the control 
twist together especially under two matched stimuli trials. 
The advantages of both the fast waves and the slow 
waves of the alcoholic subject are not obviously. It is 
difficult to distinguish the alcoholic EEG EPRI from the 
normal. 
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Figure 8. Two non-matched stimuli in 10 seconds (including ICA). 
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Figure 3. One single stimulus in 10 seconds (not including ICA). 
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Figure 6. One single stimulus in 10 seconds (including ICA). 
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Figure 7. Two matched stimuli in 10 seconds (including ICA). 
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Figure 4. Two matched stimuli in 10 seconds (not including ICA). 
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Figure 5. Two non-matched stimuli in 10 seconds (not including ICA).
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Comparing with the above mentioned three figures, the 
results of Fig. 6-Fig. 8 show another case. The results of 
the alcoholic subject are clearly separated from those of 
the control subject. The function of ICA is to find the 
latent variables which are assumed to be statistically 
independent. The features of the independent components 
are more separable than those of dependent. So it can be 
known that the decomposing step with ICA is necessary 
for this discriminant analysis method. 

Fig. 6-Fig. 8 are results of one single stimulus, two 
stimuli in matched condition and two stimuli in non-
matched condition respectively. From those three figures, 
it is shown that the EPRI of the alcoholic people is 
usually higher than that of the control, no matter how 
many stimuli there are and no matter whether the stimuli 
are matched or not. The higher EPRI indicates the more 
fast waves and less slow waves in alcoholic cases. 
Combined with the clinical manifestation, alcohol is a 
stimulant and causes mental excited within a short time, 
and then causes mental depression and dehydration. 
During the excitement, the EEG signal of the subject 
becomes active than usual, and the fast wave increases 
accordingly. That keeps with the experimental results in 
this section. 

Now that we obtain the results of two groups in three 
kinds of conditions, it may be more interesting whether 
there is a borderline between the alcoholic people and the 
control. If we set threshold EPRI=0.85, it will be quite 
easy to distinguish the alcoholic subjects from the 
controls. That is to say, EPRI does not be affected by the 
number of stimulus. 

2) The large data set which contains data for the 20 
subjects: the alcoholic people and the control. 

There are 10 alcoholic people and 10 matched control 
subjects. Each subject’s EEG signals are corresponding to 
10 scalar matrices with 256 rows and 64 columns.  

For the discriminant analysis method in section 2, Step 
1 to Step 3 are executed and the parameters are set as 
same as the previous experiment: T=1, M=64 
and 0.001λ = . We work out the EPRI of each matrix 
and obtain the averages of every subject in 10 trials.  For 
all practical purposes, another index, sample entropy, is 
also taken as the association indications to study the 
subjects’ condition. The research suggests that the 
alcoholic people tend to have higher entropy than the 
controls. The computational method of sample entropy is 
detailed in paper [25]. With respect to Step 4, support 
vector machine (SVM) algorithm is used here and the 
typical Gaussian RBF kernel with 1σ =  is adopted [26].  

From Fig. 9-Fig. 11, it shows the classification results 
between the two groups in the above-mentioned 
experiments. Those figures illustrate that the two groups 
of EEG signal could be distinguished by the proposed 
method entirely.  

The experiments on the small data set and the existing 
related studies implement the comparison and analysis 
between the alcoholic people and the controls and the 
results suggest that the former subjects tend to have higher 
EPRI and entropy than the latter ones. Judging from the 
experiments on the large data set, it provides a new 

characterization method.  The experiment results show 
that the proposed method could effectively distinguish the 
state of brain activity between an alcoholic person and a 
normal. 

According to the results in previous experiments, the 
number of stimulus does not much affect the discriminant 
analysis in alcoholism, so we can analyze any condition 
of them (one single stimulus, two matched stimuli and 
two non-matched stimuli) to discuss in the real 
applications. 

 

 

 

 

 
Figure 11. Classification result of 20 subjects in two non-matched 

stimuli trials (blue points refer to the alcoholic people and red ones refer 
to the controls). 

 
Figure 10. Classification result of 20 subjects in two matched stimuli 

trials (blue points refer to the alcoholic people and red ones refer to the 
controls). 

 
Figure 9. Classification result of 20 subjects in one stimulus trials (blue 
points refer to the alcoholic people and red ones refer to the controls).
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IV.  DISCUSSION AND CONCLUSION 

This paper proposes an exponential power ratio index 
and a discriminant analysis method to analysis the 
characteristic of EEG signal, which makes use of the 
Independent Component Analysis for decomposing the 
mixed matrix and the Support Vector Machine for 
classifying the different data groups. The method could 
be seen as a general frame for the study of EEG time 
series. In the case of SVM algorithm, the experimental 
results reflect the validity of the proposed method but it is 
not limited to the particular SVM. In future work, other 
classification algorithms such as Neural Networks would 
be explored in the Step 4 to make the best experimental 
results.  

As a new developed methodology, it can be used to the 
detection of drunk driving for the traffic management 
department. 
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