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Abstract—In this paper, we present an approximation 
algorithm achieving approximation guarantee of 2 for the 
classical uncapacitated facility location problem. The 
distinguishing feature of our designed algorithm is the 
overall low running time of ( log )O m m , where c fm n n= × , 

cn and fn are the number of cities and facilities. Though the 

approximation factor is 1.61 in Ref.[1], whereas the running 

time is 3( )O n , where
c f

n n n= + . Compared with the 
approximation algorithm in Ref.[1], the advantage of our 
algorithm is it has more applications with lower running 
time.  
 
Index Terms—facility location problem, approximation 
algorithm, dual fitting, linear programming 
 

I.  INTRODUCTION 

Uncapacitated facility location problem (UFL) [17] is a 
classical problem that has been widely studied in 
operations research, such as strategically choosing 
placement of routers and caches in the network design in 
order to minimize the total cost under satisfying all 
clients’ demands [18,19]. Many facility location models 
are built around the UFL problem that has been proven 
NP-hard. There has been renewed interest in tackling this 
problem from the perspective of approximation 
algorithms. Correspondingly, a couple of different 
techniques are used to analyze approximation ratio for the 
UFL problem and its variants, there are several main 
algorithm design techniques: linear programming 
rounding [13], primal-dual schema [11], greedy method 
[12], local search technique [10] and combinations of 
these methods with cost scaling and greedy post 
processing.  

In the (uncapacitated) facility location problem, we are 
given a finite set of clients C  that require a certain 
service. To provide such a service, we need to open a 
potential subset of facilities F . For each facility i F∈ , 
opening it costs a non-negative number if ; and for each 

facility-city pair ( , )i j , serving a client j C∈  by 

facility i  costs jic . We assume that the jic ’s satisfies the 
triangle inequality. The distance function is metric, which 
means that it satisfies the following triangle inequality:  

ij ij i j i jd d d d′ ′ ′ ′+ + ≥ , for all i , i F′∈ and j , j C′∈ .  

That is, connecting i′ to j  directly is cheaper than taking 
the detour via j′  and i . Given such a problem, the task 
is to open a subset of the facilities in F , and connect 
each city to open facilities, such that the total cost of 
opening facilities and connecting cities to open facilities 
is minimized.  Afterwards, researchers extend the UFL 
problem by proposing Fault-Tolerant Facility Location 
problem [14]. The fault-tolerant facility location is a 
generalization of the UFL problem where each client has 
independent fault-tolerance requirement on connectivity. 
In many setting, it is essential to provide safeguards 
against failures by designing fault-tolerant solutions. For 
example, in a distributed network, we want to place 
caches and assign data requests to caches so as to be 
resistant against caches becoming unavailable due to 
node or link failures. At present, a practical extension of 
the fault-tolerant facility location problem is provided 
[15]. The differences of the fault-tolerant facility location 
problem is that a set of sites equipped with number of 
facilities as resources, and a set of cities with set R as 
corresponding connection requirements. This model 
provides optimal resource allocation between enterprises 
and clients in today’s cloud platforms, which becomes 
essential in many contemporary applications [18, 24, 
25,27].  

In addition, some other extension versions of the 
uncapacitated facility location problem are considered. Its 
variants of the problem have resulted in much progress in 
recent years. There is often a capacitated version of UFL. 
Each facility i  can be assigned to serve at most iμ  cities, 
that indicates the capacity of this facility, i.e., the number 
of cities it can serve, where iμ  is a positive integer, if 

facility i  is opened iy  times, it can serve at most i iyμ  
cities.  And we also consider the k-median problem 
which is similar to the facility location problem [28,29]. 
Two differences from the facility location problem are 
considered: there is no cost for opening facilities, and 
there is an upper bound k  on the number of facilities, 
where k is an input parameter that is not fixed. The k-
median problem has numerous applications, especially in 
the context of clustering. This problem has found new 
clustering applications in the area of data mining. Clearly, 
some variants of the facility location problem are 
applicable to a number of industrial situations.   

In this paper, we consider the uncapacitated facility 
location problem from the view of applications, though 
the approximation factor of the approximation algorithm Manuscript received September 2, 2012.  
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in the literature [1] for the UFL problem is low, our 
designed algorithm has a particularly lower running time. 
The differences of our algorithm are as follows: at first, 
we sort all the facility costs and connection costs, and 
then each time we choose one facility to open according 
to a set of cities at the first rank of connection costs with 
the most cost-effectiveness, and connect this set of cities 
to the opened facility. Similarly, a set of cities at the 
second rank of connection costs do the same events, and 
so on, until all unconnected cities have connected to some 
opened facilities. At the same time, the corresponding 
dual algorithm also has a simple description below: the 
algorithm starts at time 0, at this time, all cities at the first 
rank of connection costs increase the total cost until two 
following events occur. One is that for some closed 
facility i , when it receives from cities at the first rank is 
equal to the cost of opening i , we open facility i , and 
connect these cities to i . The other is that for some 
unconnected city j but some facility i  has already 
opened, when the total cost of j  is equal to the 
connection cost between j  and i , we connect city j  to 
facility i . Then until all cities at the last rank have been 
connected the algorithm terminates.  

This paper is organized as follows. Section II reviews 
some related works about the facility location problem. In 
Section Ⅲ, we provide a fast algorithm for the UFL 
problem. In addition, a case study is illustrated to explain 
the proposed algorithm. In Section Ⅳ, we use dual fitting 
to analyze the approximation factor of the designed 
algorithm. Section Ⅴpresents conclusions and outlines 
our further research trends. 

II. RELATED WORKS 

The UFL problem has attracted great interest of 
researchers in both theoretical computer science and 
operations research. We now briefly review past work on 
UFL and related problems. The first constant factor 
algorithm for the metric uncapacitated facility location 
problem was given by Shmoys, Tardos and Aardal [3] 
based on the filtering and rounding technique of Lin and 
Vitter [20]. Their approximation guarantee was 3.16. LP 
rounding was among the very first techniques that yield 
non-trivial approximation guarantees for metric facility 
location. Using the randomized rounding technique, 
Chudak and Shmoys [4] gave an algorithm with 
approximation ratio (1 2 / ) 1.736e+ ≈ , which is a 
significant improvement on the previously approximation 
guarantees. Recently, Byrka [5] used the idea of scaling-
up fractional solution and techniques from [6] to obtain 
another LP-rounding algorithm with approximation ratio 
of 1.5. The currently best known approximation ratio is 
achieved by the 1.488-approximation algorithm of Li [7]. 
The drawback of these algorithms based on LP-rounding 
is that they have prohibitive running times for most 
applications because they need to solve large linear 
programs. Charikar and Guha obtained 1.853-
apprximation and 1.728-approximation algorithms [21] 
by using primal-dual theory and greedy augmentation. 

Chudak and Sviridenko improve the approximation ratio 
to 1.736 [4] and 1.582 [23] also by rounding an optimal 
fractional solution to a linear program. These results are 
achieved through linear programming and rounding. 
Regarding hardness results, Guha and Khuller [2] proved 
that it is impossible to get an approximation factor 1.463 
for the metric facility location problem, unless NP ⊆  

(log log )[ ]O nDTIME n . A different approach local search  
was used by Korupolu, Plaxton and Rajarama [8]. Local 
search techniques have been very popular as heuristics 
for hard combinatorial optimization problems. They 
analyzed a well known local search heuristic and showed 
that it achieves an approximation guarantee of (5 )ε+ . 
However, the algorithm has a fairly high running time of 

6( log / )O n n ε . At the same time, Jain and Vazirani [16, 
3] substantiates the primal-dual schema has its full 
potential to realize in the area of approximation 
algorithms. And their algorithm runs a quasi-linear time 
whose running time is ( log )O m m . Another greedy 
approach is used to improve the solution: iteratively open 
facility at a time if it improves the cost of the solution. 
And it also showed that greedy improvement can be used 
as a post-processing step to improve the approximation 
guarantee of certain facility location algorithms. In paper 
[2], a simple greedy heuristic with the algorithm by 
Shmoys, Tardos and Aardal [3] can be used to obtain an 
approximation guarantee of 2.408. In paper [1], an 
improvement of the greedy algorithm of [9] is presented 
for the facility location problem, achieving an 
approximation factor of 1.61 with the running time 

3( )O n . Sometimes, it is hard to carry out the algorithm 
with high running time in real-world tasks.  In this paper, 
our contribution is to reduce the time complexity of 
solving the facility location problem.  

Ⅲ. FAST ALGORITHM FOR FACILITY LOCATION PROBLEM 

In this section, we first recall the uncapacitated facility 
location problem as integer linear programming. Then we 
design an algorithm with running time ( log )O m m , 

where c fm n n= × , cn and fn  are the number of cities 
and facilities. And a case study illustrates the feasibility 
and validity of the proposed algorithm. Finally, we use 
dual fitting technique to analyze the approximation factor 
of the proposed algorithm.  
A.  Problem Formulation  
The Uncapacitated Facility Location (UFL) problem 
seeks a minimum cost way of connecting cities to open 
facilities, which can be formulated by the following 
integer linear program. This problem has occupied a 
central place in operations research since the early 60’s, 
and has been studied from the perspectives of worst case 
analysis, probabilistic analysis, polyhedral combinatorics 
and empirical heuristics.  

Minimize 
,

ji ji i i
i F j C i F

c x f y
∈ ∈ ∈

+∑ ∑  
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Subjected to : 1ji
i F

j C x
∈

∀ ∈ =∑                        (1) 

                     , : 0i jii F j C y x∀ ∈ ∈ − ≥          (2) 

                     : {0,1}ii F y∀ ∈ ∈                        (3) 

                     , : {0,1}jii F j C x∀ ∈ ∈ ∈            (4) 

In the above formulation, iy  is an indicator variable 

denoting whether facility i  is open, and jix is an indicator 

variable denoting whether city j  is connected to facility i . 
The first constraint ensures that each city is connected to 
at least one facility, and the second ensures that this 
facility must be open.  The objective is to open a subset 
of the facilities in F , and connect each city to an open 
facility so that the total cost is minimized. To reduce the 
time complexity of solving the facility location problem, 
our designed algorithm is developed as follows.   

B.  The Algorithm  
Our designed algorithm is shown in the following. At 
first, we sort all the facility costs and connection costs, 
and then each time we choose one facility to open 
according to a set of cities at the ranks of connection 
costs with the most cost-effectiveness, and connect the set 
of cities to the opened facility. The idea of cost 
effectiveness essentially stems from a similar notion in 
the greedy algorithm for the set cover problem; the cost-
effectiveness is measured as the ratio of the cost incurred 
to the number of new cities served. In addition, delete the 
connected cities from the set of cities then remove the 
cost-effectiveness of the chosen facility, and update the 
minimum cost-effectiveness to a certain facility. The 
most cost-effective set can be found either by using direct 
computation, or by using the dual program of the linear 
programming formulation for the problem. This process 
terminates until all cities have been connected. Note that 
once a city gets connected to a facility, its budget remains 
constant and it cannot revoke its contribution to a facility, 
so it can never get connected to another facility with a 
higher connection cost. And a facility can be chosen 
again after being opened, but its opening cost is counted 
only once since we set if  to zero after the first time the 
facility is picked by the algorithm. As far as cities are 
concerned, every city j  is removed from C , when 
connected to an open facility, and is not taken into 
consideration again.  
 Algorithm: A fast algorithm for facility location 
problem  
Input: i F∀ ∈ , j C∈ ,opening cost of 

facility if ,connection cost jic  between i  and j . 

SetU C= , i∀ , j , 0iy = , 0jix = , 1t = . 

Output: i∀ , j , iy , jix . 

Step1: i F∀ ∈ , Sort the opening cost if  of all facilities;  

Step2: i F∀ ∈ , j C∈ , Sort the connection cost jic  of 
all facility-city pairs;   

Step 3: WhileU ≠ ∅ , do:  
Step3.1: For the cities at the rank t  of connection 

costs, count the number of connections to each 
facility i  denoting as k ,and calculate the cost-

effectiveness it
i jir

f c
k

=
+∑ ( Note that if 

facility i has already been opened, then consider 

the cost-effectiveness it

jir
c

k
=
∑ ); choose the 

most cost-effectiveness of the facility to open 
from the set of cost-effectiveness R , set 1iy =  

when satisfies the condition min i F itr∈ , and set 

0if = ;if two facilities have the same cost-
effectiveness, we choose one facility to open 
according to the number of connection; 

Step3.2: Delete a set of cities that correspond the most 
cost-effectiveness to a certain facility i ,   
i.e. { }U U j= − , and remove the cost-effectiveness 
from the set of cost-effectiveness R ; 

Step3.3: Update the most cost-effectiveness that 
facility i  corresponds to;// Reserve the lowest 
connection cost between cities and facility each 
time. 

Step3.4: If all cities get connected to an open facility, 
the algorithm terminates; else t + + , turns to 
Step 3.1; 

The time complexity of the proposed algorithm is 
analyzed as follows: the time of Step 1 for sorting all the 
facility costs in ascender order is ( log )f fO n n , where 

fn  is the number of facilities; the time of Step 2 for 
sorting all the connection costs in ascender order is 

( ( ))c f c fO n n log n n× × , where cn  is the number of 
cities; the total events of Step 3 is completed at most 

( )c fO n n× . So the time complexity of the proposed 

algorithm is ( log )O m m , where c fm n n= × .  Therefore 
the algorithm can be finished efficiently in polynominal 
time.  

C.  Case study  
Assume we are given a set of facilities F consists of 

five facilities, and the set of cities C consists of seven 
cities, for each facility i F∈ , the facilities cost 

( 1,2, ,5)if i = and connection cost ( 1,2, ,7)jic j = are 

shown below, respectively. All clients in C  require a 
certain service, to provide such a service, we need to 
open a subset of facilities F , such that the total cost of 
opening facilities and connecting cities to open facilities 
is minimized. Here we are given all the sorted facilities 
costs and connection costs. Note that jic  denotes the 
connection cost between the j -th city and i -th facility.  
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4 5f = , 1 6f = , 5 8f = , 2 10f = , 3 12f =  

  12 2c = , 11 4c = , 13 5c = , 15 6c = , 14 8c =  

  22 2c = , 21 3c = , 23 6c = , 24 7c = , 25 9c =  

  33 1c = , 34 4c = , 31 6c = , 35 7c = , 32 8c =  

  43 2c = , 44 3c = , 45 4c = , 41 5c = , 42 7c =  

  55 3c = , 52 4c = , 51 7c = , 54 9c = , 53 10c =  

  61 1c = , 64 3c = , 65 6c = , 63 8c = , 62 9c =  

  74 3c = , 72 5c = , 75 7c = , 73 8c = , 71 12c =  
For the given case, we use the above algorithm to 

calculate which facilities to open and all the cities 
connect to which opened facilities. Due to the above 
facilities costs and the connection costs have been 
ordered. According to Step 3, do the first loop, we 
have 12 2c = , 22 2c = , 2 10f = ; 33 1c = , 43 2c = , 

3 12f = ; 55 3c = , 5 8f = ; 61 1c = , 1 6f = ; 74 3c = , 

4 5f = . The cost-effectiveness of the second, third, fifth, 
first and fourth facility is computed as:   

2 12 22
21

10 2 2
7

2 2
f c c

r
+ + + +

= = = ,  

 3 33 43
31

12 1 2
7.5

2 2
f c c

r
+ + + +

= = = ,  

5 55
51

8 3
11

1 1
f c

r
+ +

= = = ,  

1 61
11

6 1
7

1 1
f c

r
+ +

= = = ,  

4 74
41

5 3
8

1 1
f c

r
+ +

= = = .  

Where 1ir represents the cost-effectiveness for the i -th 
facility at the first rank of connection costs. During this 
process, the cost-effectiveness of 21r and 11r are the same, 
but the second facility is to open, because the number of 
connected cities is more than that of the first facility. In 
addition,  

 
(a) 1p =  

Figure 1.  The p-th of contributions to open the second facility 

we connect the first and second city to the second 
facility, then delete them from the set of cities and 
remove the cost-effectiveness 21r  from the set of cost-
effectiveness.  As shown in Figure 1, the first and second 
cities have minimum cost-effectiveness to connect the 
second facility. 

For the second loop, we have 34 4c = , 44 3c = , 64 3c = , 

4 5f = ; 52 4c = , 72 5c = , 2 0f = . The cost-effectiveness 
of the fourth and second facility is computed as:   

 4 34 44 64
42

5 3 3 4
5

3 3
f c c c

r
+ + + + + +

= = = ,  

2 52 72
22

0 5 4
4.5

2 2
f c c

r
′ + + + +

= = = .  

During this process, the cost-effectiveness of 22r  is 
minimum, we connect the fifth and seventh city to the 
second facility, then delete them from the set of cities and 
remove the cost-effectiveness 22r  from the set of cost-
effectiveness. In addition, we update the minimum cost-
effectiveness 42r  for the fourth facility.  As shown in 
Figure 1, the fifth city and seventh city have enough 
minimum cost-effectiveness to connect the second 
facility, and the cost of the second facility is 0, because at 
the first phase, the second facility is open.  
 

 
  (b) 2p =  

Figure 2.  The p-th of connections to the second facility 

For the third loop, we have 31 6c = , 1 6f = ; 

45 4c = , 65 6c = , 5 8f = . The cost-effectiveness of the 
first and fifth facility is computed as:  

1 31
13

6 6
12

1 1
f c

r
+ +

= = = ,  

5 45 65
53

4 6 8
9

2 2
f c c

r
+ + + +

= = = .  

During this process, because the preserved cost-
effectiveness of 42r  is minimum, we open the fourth 
facility, then connect the third, fourth and sixth city to the 
fourth facility as shown in Figure 3 and delete them from 
the set of cities and remove the cost-effectiveness 42r  

× 

3i

× 

4i

7h =5j =

 

2p =   

 
 

×

× 

1i  

× 

2i  

5i

1h =2j =  

 

12 2c =  
22 2c =  

1p =  
 

× 

× 

3i
× 

2i  5i
× 

4i  
1i  

× × 
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from the set of cost-effectiveness. In addition, we update 
the minimum cost-effectiveness 53r  for the fifth facility. 
Because all unconnected cities have been connected to 
some opened facilities, the algorithm terminates.   

 
  (b) 3p =  

Figure 3.  The p-th of contributions to open the fourth 
facility 

  The outputs of the algorithm: 2y , 4 1y = , that is the 

second and fourth facility are open; 12x , 22x , 52x , 72x , 

34x , 44x , 64 1x = , that is the first, second, fifth, and 
seventh city are connected to the second facility, and the 
third, fourth, and sixth city are connected to the fourth 
facility.  

Ⅳ. ANALYSIS OF THE PROPOSED ALGORITHM 

After designing the algorithm for the UFL problem, a 
case study shows the feasibility and validity of the 
proposed algorithm. We will use dual fitting to analyze 
the approximation factor of above algorithm. The method 
of dual fitting can be described as follows, assuming a 
minimization problem: the basic algorithm is 
combinatorial--in the case of set cover it is in fact a 
simple greedy algorithm. Using the linear programming 
relaxation of the problem and its dual, one first interprets 
the combinatorial algorithm as a primal-dual-type 
algorithm--an algorithm that is iteratively making primal 
and dual updates. Strictly speaking, this is not a primal-
dual algorithm, since the dual solution computed is, in 
general, infeasible. However, one shows that the primal 
integral solution found by the algorithm is fully paid for 
by the dual computed. By fully paid for we mean that the 
objective function value of the primal solution is bounded 
by that of the dual. The main step in the analysis consists 
of dividing the dual by a suitable factor, say r , and 
showing that the shrunk dual is feasible, i.e., it fits into 
the given instance. The shrunk dual is then a lower bound 
on OPT, and r is the approximation guarantee of the 
algorithm.  

Different from prima-dual schema [16, 22], dual fitting 
relax the feasibility of the dual solution. Assume the dual 
solution become feasible after shrunk by a factor, then 
this factor is the approximation factor of the algorithm. 
The technique that we used in this paper seems to be 

useful tool for analyzing heuristic and local search 
algorithms. At first, by relaxing the integrality constraints 
of above integer programming shown in Section Ⅲ, we 
get the following linear program.   

Minimize 
,

ji ji i i
i F j C i F

c x f y
∈ ∈ ∈

+∑ ∑  

Subjected to : 1ji
i F

j C x
∈

∀ ∈ =∑                    (1) 

                    , : 0i jii F j C y x∀ ∈ ∈ − ≥     (2) 

                    : 0ii F y∀ ∈ ≥                         (3) 

                    , : 0jii F j C x∀ ∈ ∈ ≥             (4) 
Recall the dual program of the uncapacitated facility 
location problem, in which jv  and ijw  are dual variables.  
The dual program can also be used to prove the 
approximation factor of the algorithm. Similarly, we will 
use the LP-formulation of facility location to analyze our 
algorithm. As we will see, the dual formulation of the 
problem helps us to understand the nature of the problem 
and the proposed algorithm.  

max mize j
j C

v
∈
∑  

Subject to ji i
j C

w f
∈

≤∑ , i F∀ ∈                     (1) 

                  j ji ijv w c− ≤ , i F∀ ∈ , j C∀ ∈      (2) 

                   0jiw ≥ , i F∀ ∈ , j C∀ ∈ .             (3) 
Based on the complementary slackness condition, a 

very nice interpretation to the dual can be given.  
Each open facility is fully paid for, i.e., if i F∈ , then 

ji i
j C

w f
∈

=∑ . This interpretation is that for a facility i  to 

be opened, the cities have to pay the entire cost if . 

City j  is connected to facility i , i.e, j ji ijv w c− = . jv  can 
be interpreted as the total cost by city j is willing to pay, 

and jiw  can be interpreted as the amount that j  is willing 

to contribute for opening facility i .  
  Here we think of jv as the total of cost paid by city 

j (the cost of opening facility and connecting city to 
facility), the algorithm is described as follows:  

Step1: At the beginning 0t = , let all facilities be 

unopened, and set ˆ 2i if f= , and let each city 

be unconnected, and set 0jα = ; 

Step2: WhileU ≠ ∅ , do:  
For each city j C∈  in each rank of connection 

costs, raise jα  for each unconnected city j   

uniformly at unite rate until ( )j jij C
cα

∈
−∑  

× 

3i

× 

5i  

4h =3j =  

 

6j =  

 

 
3p =

 

× 

× 

1i  

× 

4i

2i  
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îf=  ,if facility i  is opened, raise jα  until 

j jicα = ; 
Step2.1: Some unopened facility i  receive enough 

paid to open itself, that is ( )j jij C
cα

∈
−∑ . 

îf= In this case, set 1iy =  and if the 

cities satisfy j jicα ≥ , set 1jix = ,then 
delete the cities that have been connected 
to open facility from each rank of 
connection costs; 

Step 2.2: For some city j C∈ , its cost is enough is 
connect an open facility i  which is not 
connected before, i.e., j jicα = .  In this case, 

set 1jix = ,then delete the cities from each 
rank of connection costs; 

Step 3: If all cities get connected to an open facility, 
the algorithm terminates; else turns to Step 2. 

 
 Figure 4．Cost Offers for Opening a Facility 

In above algorithm, each facility has a list of cities 
that are ordered according to their connection costs to the 
facility. As showed in Figure 4, the most cost-
effectiveness will consist of a facility and a set, 
containing the first k cities in this order. Crucial to this 
algorithm is a subselection step, which ensures that every 
facility and the clients that connect to it are adequately 
accounted for in the dual-fitting analysis. We describe the 
above algorithm very briefly. The graph can be assumed 
to a complete bipartite graph between the facilities and 
the demand nodes. This algorithm maintains dual values 
for each demand node jv  and each edge jiw .  Initially all 
these variables are set to zero. The algorithm grows the 
dual variables corresponding to the demand nodes. At 
various times some of the dual variables jv stop growing, 
to maintain feasibility of the dual solution.  

To evaluate the performance guarantee of the 
algorithm, we can get the following Theorem 1 to analyze 
the approximation factor of this facility location problem. 
An approximation algorithm with a factor of ρ is a 
polynomial time algorithm that produces a solution 

whose total cost of opening facilities and connecting 
cities to open facilities is at most ρ  times the optimal 
solution cost. The proposed algorithm achieves an 
approximation factor of 2 for the UFL problem.  

Theorem 1. The above algorithm achieves an 
approximation factor of 2 for the facility location 
problem.  

Proof: For above algorithm, we can easily obtain 
that

,
ˆ)j ji ij C j C i F i F

c fα
′ ′∈ ∈ ∈ ∈

= +∑ ∑ ∑ ,where F ′  is 

the set of facilities opened by the algorithm. Because in 
each rank of connection costs, we delete the cities that 
have been connected some open facilities such that 

ji i
j C

w f
∈

>∑ ,which does not satisfy the conditions of dual 

problem ji i
j C

w f
∈

≤∑ . To get dual feasible solutions for 

the dual linear program, set ˆ 2i if f= , so that ( , )v w  is in 

feasible for the dual problem, where / 2j jv α= , 

max( , 0)ji j jiw v c= − . The total cost of facilities costs 

and connection costs is 
, ji ij C i F i F

c f
′ ′∈ ∈ ∈

+ ≤∑ ∑  

,
2ji ij C i F i F

c f
′ ′∈ ∈ ∈

+∑ ∑ = jj C
α

∈∑ =2 jj C
v

∈∑ , by 

weak duality, jj C
v OPT

∈
≤∑ , thus

, jij C i F
c
′∈ ∈

+∑  

2ii F
f OPT

′∈
≤∑ .  

Ⅴ. CONCLUSION AND FUTURE WORK 

The facility location problem has been proved NP-hard. 
A large fraction of the theory of approximation algorithm, 
as we know it today, is built around linear programming, 
which provides some main algorithm design techniques. 
Some of the techniques have yielded algorithms with 
good approximation guarantees. However, with respect to 
the running times of the algorithms derived, the methods 
differ. The algorithms with low running time but not too 
high approximation guarantees have more practical 
applications. In this paper, we provided an algorithm with 
running time of ( log )O m m , achieving approximation 
guarantee of 2 by the dual fitting technique. The 
distinguishing feature of our algorithm is the lower 
running time compared with that of algorithm in Ref. [1]. 
At the same time, the proposed solution of the UFL 
problems will provide useful knowledge and experience 
for further optimal resource allocation strategies on the 
contemporary cloud platforms. In the future work, we 
will use this algorithm as a subroutine to solve some 
related variants of the facility location problem, such as 
the k-median problem. 
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