
Mobile-C Based Agent System for Detecting
Improper Computer Usage at Computer

Laboratories
Zhixin Tie

School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, P. R. China
Email: tiezx@zstu.edu.cn

Abstract—Mobile agent based computing is one of the
powerful technologies for the development of distributed
complex systems. There is little research regarding the
effectiveness of mobile agent based detecting of improper
computer usage at computer laboratories. This paper
presents a Mobile-C Based Agent System (MCBAS) for
Detecting Improper Computer Usage at Computer
Laboratories. Based on the Mobile-C library, the MABAS
supports the dynamic sending and executing of control
command, dynamic data exchange, and dynamic
deployment of mobile code in C/C++, and thus can detect
improper computer usage conveniently and efficiently. The
experiment was conducted at number of computer
laboratories in a university computer center to detect
improper usage of the computer workstations, such as
playing computer games. The experiment shows that the
mobile agent based monitoring system is an effective method
for detecting and interacting with students playing
computer games at public computer laboratories.

Index Terms—mobile-C library, mobile agents, computer
laboratories, improper computer usage detecting, key and
mouse event sequence

I. INTRODUCTION

University computer laboratories usually have
hundreds of computers with many different hardware
configurations. They are typically used by all university
students for campus-wide courses, tests, web surfing, and
other education related tasks. Because computers in these
laboratories are widely used, there are a lot of different
kinds of software installed on these computers and
students can also install their favorite software on them.
The issue, how to detect if someone is using the computer
improperly or for non-educational purposes, such as
playing computer games, is one of the most outstanding
one that contribute to the highest amount of workload for
the computer center staff.

The common way to find improper computer users is
by means of manual inspections. Manual inspection of
these public computer laboratories is time consuming.
New technology is needed to solve this problem. The best
way to solve this problem is by running some monitoring

programs on the computers. Such monitoring programs
should have the following characteristics:

(1) Can be deployed easily, quickly, and dynamically.
(2) Have a small footprint.
(3) Can regularly send result to the server or send

result when asked for.
The most common way to solve this problem is to

develop a system with Client/Server architecture [1] [1].
In this method, the server polls the client to gather the
monitoring data. This kind of monitoring system has
several disadvantages. For instance, polling clients will
result in high server load, clients reporting the monitoring
data will use more network bandwidth, and the
monitoring programs running on the clients will need to
be upgraded on a regular basis. There are several ways to
avoid these disadvantages, such as using freeware tools
from Sysinternals[1][2], which can remotely execute a
program on the client node. However, it requires
heightened access privileges, which tend to cause safety
problems.

Another possible way to detect a computer game
player is to monitor and analyze the network traffic on a
gateway. The major advantage of this method is that the
detecting program only needs to run on the gateway.
However, it has some disadvantages. For instance, it
cannot catch non-network computer games, and it must
analyze many network packets in order to be effective.
This will cause a high load on the gateway. It must also
have the right to access to the gateway, and in some
network topologies, it will be hard to implement to sniff
the network traffic.

Based on the above conditions, mobile agent
technology is ideal for the task. Mobile agent technology
has shown great potential for solving problems in large
scale distributed systems. It has been successfully used in
a variety of distributed applications, such as
manufacturing[3][4], computer vision [5], power
electronic systems [6][7], data mining [8][9][10], e-
commerce [11][12][13], network management [14][15],
Intrusion Detection System[16][17][18], transportation
systems [19][20][21], distributed sensor networks
[22][23][24], information management [25][26], supply
chain management[27][28], and structural health
monitoring [29][30]. It can significantly enhance the
design and analysis of systems whose problem domain is
geographically distributed, and whose subsystems exist in

Manuscript received January 18, 2013; revised March 13, 2013;
accepted April 6, 2013.

2262 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.9.2262-2271

a dynamic environment and need to interact with each
other more flexibly [31]. Its benefits are known, as Lange
listed seven good reasons in [32].

To the best of our knowledge, there have been no
mobile agent-based works on monitoring the computing
usage of computers. In this paper, we present a Mobile-C
Based Agent System (MCBAS), which is based on the
Mobile-C library to detect improper computer usage at
computer Laboratories. In MCBAS, an agency starts on
each of computers during boot time. Monitoring agents
are dynamically sent to a group of or all of computers
from a monitoring server when monitoring tasks are
needed. Monitoring results are taken from computers to
monitoring server by the agent itself.

The rest of the paper is organized as follows. Section II
introduces the monitoring environment. Section III
presents a Mobile-C Based Agent System (MCBAS)
based on the Mobile-C agent. Section IV demonstrates an
application of the system. Finally, conclusions are drawn
in Section V.

II. MOBILE-C BASED AGENT SYSTEM (MCBAS)

A. Mobile C library
The Mobile-C [33][34][35] was originally developed

as a standalone, FIPA compliant mobile agent system. It
uses an embeddable C/C++ interpreter, Ch [36][37][38],
as the Agent Execution Engine (AEE) to support the
interpretive execution of C/C++ mobile agent codes.

The major components of the Mobile-C library include
Agency, Agent Management System (AMS), Agent
Communication Channel (ACC), Agent Security
Manager (ASM), Directory Facilitator (DF), the Agent
Execution Engine (AEE), Agent, Synchronization, and
Miscellaneous APIs. The Mobile-C library has extended
most of the API functions from the host program space to
the mobile agent space. The mobile agent space APIs
allow a mobile agent to interact with an agency, different
modules of an agency, and other agents. The right part of
Fig. 1 shows how mobile agent code interfaces with the
Mobile-C library. When the function mc_Function() is
called in mobile agent code, Ch searches the
corresponding interface function MC_Function_chdl() in
the Mobile-C library, and passes arguments to it by
calling the function. Subsequently, the interface function
MC_Function_chdl() invokes the target function
MC_Function(), and passes the return value back to the
mobile agent space.

Since the AEE of the Mobile-C is based on Ch and Ch
is capable of calling functions in binary static and
dynamic libraries without recompilation [39][40][41], all
existing binary static and dynamic C libraries and
modules can be used as the Mobile-C agent code. For
example, functions in OpenGL and XML libraries can be
called from Ch directly [42][43], Ch communicates with
the functions in binary libraries using a dynamically
loaded library, as shown in the left part of Fig. 1. The
example shows how mobile agent code invokes the
functions in the C dynamic library called

HookKeyMouse.dll, which is developed to hook key and
mouse events by using Microsoft Visual Studio.net.

B. Architecture of MCBAS
The architecture of the MCBAS is shown in Fig. 2.

Each computer in the computer center, known as a client
node, runs a monitoring program that encompasses a
Mobile-C agency. Multiple mobile agents can run in the
agency at the same time. When the agency receives a
mobile agent that is sent from a monitoring server, the
agent is executed immediately. If the monitoring server
needs some results, the result will be sent to the
monitoring server automatically after the agent is
executed. If the agent has a migration task, it will migrate
to its next destination automatically after its task on the
current client node is completed. When the agent is
running on the client node, it can access all the client
node resources via the method mentioned in Part A of
this section.

There is a monitoring server program running on the
monitoring server. The monitoring server program
includes the monitoring knowledge management module
(MKM), mobile agent module (MAM), and monitoring
result management module (MRM).

The functions of MKM are to add, delete, modify, and
retrieve the monitoring knowledge. For example, if a
sequence of key and mouse events is the shortcut for a
computer game “GA”, we can add it to the monitoring
knowledge database via this module. Then, this sequence
can be sent to client nodes by a mobile agent to find if
there is anyone who is playing the game “GA”.

Figure 1. Interface of mobile agent code with the Mobile-C library and

common C dynamic library

Mobile

Agent

NetworkNetwork

Figure 2. Mobile agent monitoring system architecture

© 2013 ACADEMY PUBLISHER 2263

© 2013 ACADEMY PUBLISHER

The functions of MAM are to manage mobile agent
code, send mobile agent to client nodes, and receive the
monitoring result data by inspecting returning mobile
agents and store data in the monitoring knowledge
database. For example, if a new computer improper usage
detecting algorithm has been developed, we can use this
module to store the new algorithm code in the monitoring
knowledge database. We can send it to client nodes by
mobile agents for testing. Then, we can get the testing
results from the return data of the mobile agent.

The MRM is used to analyze the monitoring data and
generate reports. By accessing the computer information
database, student information database, and monitoring
knowledge database, the report of who played games on
which computer at what time will be generated. More
information regarding the game player may be obtained
in real time. Using the same system, a report about the
computing resource usage of the server will be
automatically generated and sent to the designated
recipients daily.

III. APPLICATION: DETECTING IMPROPER USAGE OF
COMPUTERS AT COMPUTER LABORATORIES

Computer laboratories are accessible to all university
students. Students may use computers to do anything.
However, some activities are forbidden in computer
laboratories during certain hours, like playing computer
games. Thus, a monitoring program is desirable. It can
monitor computers to prevent improper usage of
computers. Our general strategy is as follows.

(1) Record the entire key and mouse event to the
client node’s main memory after the user logs on to that
client node.

(2) Detect the game player. Scanning the record of
key and mouse events of a client node, if shortcuts for
games occurred many times in a given time periodT , we
can determine if the computer user is playing a game.

(3) Send a warning message to the game player to
warn him not to play the game any more.

(4) For users that continue to play games, disrupt
the game play by intercepting signals to the game
application process.

A. Monitoring Environment Introduction
The network topology of the computer laboratories that

we use for experiments is shown in Fig. 3. It has one
server machine room and nine computer laboratories
which are numbered from 1 to 8. For computer
laboratories 1, 2, 3, and 7, each contains 100 computers.
For computer laboratories 4, 5, 6, and 8, each has 80
computers. The computer center network is connected to
the campus network through a firewall. Computers are
connected to switches of computer laboratories through
100M super category 5 twisted pair line. Switches of
computer laboratories are connected to the main switch
through 1000M fiber cable. Computers in the same
computer laboratory are in the same Virtual Local Area
Network (VLAN), and computers in the different
computer laboratories are in the different VLANs.

Figure 3. Network topology of the computer center.

All computer laboratories are available from 8:00am to
9:00pm, 7 days a week. There are laboratory hours for
some lessons from 8:00am to 4:00pm on weekdays.
During these laboratory hours, the computers should be
used for teaching and learning. All non-academic related
activities are prohibited in computer laboratories.

B. System Hook Implementation
A hook is a mechanism by which an application can

intercept events, such as messages, mouse actions, and
keystrokes. A function that intercepts a particular type of
event is known as a hook procedure. A hook procedure
can act on each event it receives, and then modify or
discard the event [44]. Among 13 types of hooks that
Microsoft Windows provides, only two of them,
WH_MOUSE and WH_KEYBOARD, are chosen to
implement in the hook dynamic library
HookKeyMouse.dll. When one key or mouse event takes
place, it will use the Windows API function
PostMessage() to post the message to the monitoring
program MAMonitor. MAMonitor is launched at system
startup and placed into the system tray in the client node.
The monitoring program records the received event using
format as defined in Fig. 4 to the client node main
memory. Key events are recorded using their virtual key
codes [45]. Mouse events’ virtual key codes are shown in
TABLE I. For the event combinations, such as [Ctrl] +
[C], [Shift] + [LBUTTONDOWN], which include
modifiers, the modifiers are logically OR’d with the
modifier’s logical mask, as described in TABLE II. [46].

There are eight functions exported by the hook
dynamic library HookKeyMouse.dll, as described in
TABLE III. Mobile agents can call them to control the
start or stop of event hooking and to configure what key
and/or mouse event(s) to hook.
typedef struct {

DWORD dwTicks; //CPU TICKS
HWND hwnd; //windows ID that the key or
 // the mouse event will be sending to
WORD uCode; // Virtual key code of the key

 // or the mouse event
WORD x; //Coordinate X, if it is a mouse event
WORD y; // Coordinate Y, if it is a mouse event

} LOG_RECORD;

Figure 4. Key and mouse event record structure

2264 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

C. Mobile Agents Design
The Mobile-C mobile agent is composed of mobile agent
code in Ch, encapsulated in XML format. For detailed
format, please refer to [28][29]. Each Mobile-C agent has
several attributes, including the name, owner, home
address, and tasks of the agent. Each agent task has
attributes such as the ordinal number of the task, return
variable, completeness, persistence, execution host of the
task, and agent code of the task. The persistence attribute
can be enabled to create an agent that will not be removed
from the agency after the agent code is executed. This
way, the variables and functions in the agent code can
still be accessed later on. The Mobile-C agents can have
sophisticated dynamically generated task lists and can
move around a network autonomously.

In this application, multiple mobile agents are designed
to fulfill the monitoring task. They are described as
follows.

TABLE I.
VIRTUAL-KEY CODES OF MOUSE EVENTS

Mouse events Virtual-Key Codes
WM_MOUSEMOVE 0x88
WM_LBUTTONDOWN 0x89
WM_LBUTTONUP 0x8a
WM_LBUTTONDBLCLK 0x8b
WM_RBUTTONDOWN 0x8c
WM_RBUTTONUP 0x8d
WM_RBUTTONDBLCLK 0x8e
WM_MBUTTONDOWN 0x8f
WM_MBUTTONUP 0x97
WM_MBUTTONDBLCLK 0x98
WM_MOUSEWHEEL 0x99
WM_XBUTTONDOWN 0x9a
WM_XBUTTONUP 0x9b
WM_XBUTTONDBLCLK 0x9c

TABLE II.
KEYBOARD MODIFIER MASKS

Modifier Logical Mask
Ctrl 0x100
Alt 0x200
Shift 0x400

TABLE III.
HOOK DYNAMIC LIBRARY EXPORTED FUNCTIONS

Function name Function’s function
StartHookKey Start key event hook
StopHookKey Stop key event hook
AddKeyHookEntry Add a key hook entry
DeleteKeyHookEntry Delete a key hook entry
StartHookMouse Start mouse event hook
StopHookMouse Stop mouse event hook
AddMouseHookEntry Add a mouse hook entry
DeleteMouseHookEntry Delete a mouse hook entry

• Monitoring Start Agent (MSA)
The task of the monitoring start agent is to start a hook

procedure on a client node. When the agency, which is
embedded in the client node monitoring program
MAMonitor, receives the monitoring start agent, the
function StartHookKey() and StartHookMouse() in the
hook dynamic library HookKeyMouse.dll are called to
start key and mouse event hooking. Thus, a sequence of
key and mouse events, denoted byS , will be stored into
the client node’s main memory.

• Mining Sequential Patterns Agent (MSPA)
The mining sequential patterns agent is designed to

mine frequent sequential patterns in key and mouse event
sequence S . Mining frequent sequential patterns in a
large database has been studied by several researchers
[47][48][49]. Many algorithms were proposed, such as
AprioriAll, AprioriSome, and Dynamicsome in [47], and
GSP in [48], and WINEPI and MINEPI in [49]. All these
algorithms can be implemented to find the user frequently
inputted key and mouse event sequence that is named
interesting patterns (IPs). They can be sent to monitored
clients by means of mobile agents. Using the mobile
agent technology, these algorithms can be switched
dynamically, and there is no need to reinstall the
monitored clients’ program.

We are only interested in IPs which are associated with
computer gameplay. We define an interesting pattern
used for playing games as a game shortcut sequence
(GSS). Appropriate GSSes should not be long IPs so that
we do not need to find long sequence patterns in key and
mouse event sequenceS . In this paper, the GSSes that
only have no more than three key or mouse events are
considered. Therefore, it appears that the algorithms that
we mentioned above are a little complex. A simple
algorithm Mining Sequential Patterns (MSP), as shown in
Fig. 5, is presented to find the IPs in key and mouse event
sequence S . In algorithm MSP, we use

},...,,{ 21 LSSSS = denoting key and mouse event
sequence that the monitoring program MAMonitor record.
Each event),...,2,1(LiSi = has the structure that
is shown in Fig. 4. We call the number of events in an
event sequence its size, and call an event sequence of size
k a k-event sequence. Thus S is a L-event sequence. We
use)3,2,1(=kIk to denote the set of the IPs, each

element of)3,2,1(=kIk is a k-event sequence. We

call the occurring times of a k-event sequence in S its
support count. The notation I is used to denote the set of
the IPs that are found in a client node. The notation

)3,2,1(=kCk is used to demote the candidate of the
set of the IP. When the support count of an element of

)3,2,1(=kCk is no less than MinSup , which will be
selected by the user for the different cases, then it is an
element of)3,2,1(=kIk , otherwise, it does not.

© 2013 ACADEMY PUBLISHER 2265

© 2013 ACADEMY PUBLISHER

for i=0 to L-1 do begin
if (x=S(i).uCode ∈ I1) then

x.sup ++;
else

x.sup =1; Add x to C1;
endif

endfor
for any x∈C1 do begin

if (x.sup <MinSup) then
Add x to I1;

end if
endfor
for i=0 to L-1 do begin

for any p,q,r∈ I1 do begin
CountSup(S,i,p,q,r);
CountSup(S,i,q,r,p);
CountSup(S,i,r,p,q);

Endfor
Endfor
for any x∈C2 do begin

if (x.sup >MinSup) then
Add x to I2;

end if
endfor
for any x∈C3 do begin

if (x.sup >=MinSup) then
Add x to I3;

end if
endfor
output ,I1, I2, I3;

Procedure CountSup(S,i,p,q,r)

if (S(i).uCode <>p) then exit;
if (i+1>=L) then exit;
if (S(i+1).uCode==q) then

if (x =(p,q) ∈C2) then
x.sup ++;

Else
x.sup =1; Add x to C2;

Endif
if (i+2>=L) then exit
if (S(i+2).uCode==r) then

if (x =(p,q,r) ∈C3) then
x.sup ++;

Else
x.sup =1; Add x to C3;

Endif
Endif

elseif (S(i+1).uCode ==r) then
if (x =(p,r) ∈C2) then

x.sup ++;
Else

x.sup =1; Add x to C2;
Endif
if (i+2>=L) then exit
if (S(i+2).uCode ==q) then

if (x =(p,q,r) ∈C3) then
x.sup ++;

Else
x.sup =1; Add x to C3;

Endif
Endif

Endif

Figure 5. The algorithm MSP used in the MSPA to find the IPs.

The main idea of the algorithm MSP is to scan S ,
which is recorded in a client node, twice to find the IPs. It
consists three steps. First, it scans S to determine 1I .

Second, it scans S for the second time, when at the
event),...,2,1(LiSi = , for any three element of 1I ,
say rqp ,, , the algorithm MSP check all possible
combination of any two of rqp ,, and all possible

combination of rqp ,, to get)3,2(=kCk . Third,

put any element)3,2(=∈ kCx k , which support
count is greater than or equal than
MinSup to)3,2(=kIk .

In the monitoring server system, we manually
determine which IP is the GSS and save it in the
monitoring knowledge database. Algorithms that can
automatically find the GSSes from the IPs need to be
considered in the future.

• Game Player Finding Agent (GPFA)
The task of the game player finding agent is to send the

GSSes to client nodes to monitor whether someone is
playing games or not. The Game Player Find (GPF)
algorithm, which is used to find game player on client
nodes, is shown in Fig. 6.

In algorithm GPF, the sequence
},...,,{ 21 LSSSS = is the key and mouse event

sequence that the monitoring program MAMonitor record
which is also used in the algorithm MSP shown in Fig. 5.
We use },...,,{ 21 MGGGG = to denote the set of the

GSSes. Each of the M elements of G demotes a GSS, its
structure is shown in Fig. 7. We call the times that a GSS
occurs in S the support count.

The main idea of the algorithm GPF is to scan S ,
which is recorded in a client node, to find the support
count of each GSS. When the support count of a GSS is
greater than the given frequency thresholdmconf , and
the support count of this GSS in S in last ST minutes
greater than one, then the one who are using this client
node is suspected to play games.

There may be many programs running in a client node
at the same time. Each program is analyzed separately
using the Algorithm shown in Fig. 5. When the game
player is detected, the program’s windows ID will be
recorded for later use. In this application, a ring memory
buffer, whose length is L that can be defined by the
system administrator, is employed to store the key and
mouse event sequenceS . The recorded data in memory
over the length of L will be replaced by the new data.
Furthermore, upon a successful detection of a game
player, a screenshot of the client node will be taken and
saved in a temporary file. Finally, the GPFA will report
its findings back to its originating server.

• Collecting Information Agent (CIA)
The collecting information agent is designed to

perform following tasks:
(1) To find client nodes that did not enter the

monitoring state
(2) To collect the frequent key and mouse event

sequences that the MSPA found in client nodes.

• Get Screenshot Agent (GSA)
The get screenshot agent will be sent to the client node

when the return value of the GPFA for that node is true.

2266 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

The GSA will get back the temporary file that the GPFA
saved on that node to the monitoring sever. Thus, as an
option, the administrator can use this screenshot to verify
whether the user on that node is playing games or not.

• Warning Agent (WA)
The warning agent is used to send a warning message

to the one who is detected playing computer games. The
warning message box will be the topmost window on the
client node so that the game player can see the warning
message.

• Game Play Disruption Agent (GPDA)
The game play disruption agent is used if a user

ignores the warning messages generated by the warning
agent. At this time, a GPDA is send to the client node to
inform the monitoring program to drop some key or
mouse event for the window on which the IP’s were
detected. For example, if we find someone playing
computer games on a client node with a GSS of “ABC”,
we use the hook dynamic library HookKeyMouse.dll to
drop the keystroke “C” on the computer game window.
However, other programs will not be affected because the
key or mouse event is only dropped in the game program
window that is recorded by the GPFA.
Let F = false;
for all GSS g in G do begin

g.sup = g.sup1=0;
end for
Let T= Current CPU ticks;
for i=L-1 to 0 do begin

for all GSS g in G do begin
for j=0 to g.nLen - 1

if (i+j>=L) then exit for
if (g.nCode[j] != S(i+j)) then exit for
if (j == g.nLen-1) then begin

g.sup ++;
if (T - S(i).dwTicks <= TS) then

g.sup1 ++;
endif

endif
if (g.sup>=mconf && g.sup1>=1) then begin

F = true;
exit for;

endif
end for
if (F == true) then exit for;

end for
if (F == true) then exit for;

end for

Figure 6. The algorithm GPF used in the GPFA to detect game players.

typedef struct {
WORD nCode[3]; // Virtual key code of the key

 // or the mouse event
WORD nLen; // The number of key or mouse event

 // in the GSS
WORD nSup; //the GSS’s support count in the whole

 //key and mouse event sequenceS
WORD nSup1; // the GSS’s support count in S

// in last TS minutes
} GSS_t;

Figure 7. The GSS structure.

• Monitoring End Agent (MEA)
The function of the monitoring end agent is stopping a

hook procedure on a client node.

D. Mobile agents’ migration process
Among these eight kinds of agent, the MSA and

MSPA are persistent, and others are non-persistent. Thus
the MSA and MSPA do not migrate while the others
migrate from one node to the next. Fig. 8 shows mobile
agents migration process from the monitoring server to a
node client.

(1) The monitoring server sends the MSA to the
client node. The key and mouse hooking procedure will
be started.

(2) In order to get the client node monitored status,
the monitoring server sends the CIA to the client node to
get monitored status.

(3) If the client node is in monitored status, then go
on to the next step. Otherwise, the monitoring server may
resend the MSA.

(4) The monitoring server sends the MSPA to the
client node. The MSPA uses the WINEPI algorithm to
find IPs.

(5) The monitoring server sends the CIA to get IPs
that the client node found.

(6) The monitoring server sends the GPFA to find
that there is someone playing games on the node or not. If
a game player was found, the GPFA takes a screenshot of
that node and saves it to a temporary file. The agent saves
the result to its persistent status and migrates to the next
target node, or home if there are no remaining target
nodes.

(7) If the return value of the GPFA indicates a user
may be playing a game, the monitoring server sends the
GSA to retrieve the screenshot file. The administrator can
use this file to determine whether the user of that client
node is playing games or not.

Figure 8. Agents migration process

© 2013 ACADEMY PUBLISHER 2267

© 2013 ACADEMY PUBLISHER

(8) If the user of the client node is determined to be
playing a game, the WA will be sent to the node. If the
user does not stop playing games, the administrator can
directly ask him/her to stop playing it or enter next step
automatically.

(9) The monitoring server sends the GPDA to the
client node to try to stop the user playing games.

(10) If monitoring is no longer needed, the
monitoring server may send the MEA to the client node
to stop the monitor.

Described above is a general process. In some special
cases, this may not be the appropriate process. The GPFA
can be sent several times for different GSS’s. Each new
GPFA agent will replace the old one automatically. The
CIA can be sent to client nodes anytime that we need to
get the information. Client nodes may not need to be
monitored in some times, for example, during weekends.
Thus, the MEA can be sent to client nodes to stop
monitoring.

Although a sequence of key and mouse event S is
stored in main memory of the client node, the application
preserves students’ privacy as well. In this system, we
consider the student’s passwords to be private data.
Therefore, in order to preserve a student’s privacy, it
must be considered impossible for even a system
administrator to retrieve a student’s plaintext passwords.

In this system, the system only scans S to find
interesting patterns (IPs), and transfers the IPs to the
monitoring server. No other key patterns are recorded or
transferred. During processing, all the data is stored inS ,
and the IPs is stored in binary format and never appears
as plaintext on the screen. No one can access this data
using normal methods. Low level attacks such as buffer
overflow attacks are beyond the scope of this paper and
the operating system is assumed to have secure virtual
memory. Because the IPs are calculated from the user’s
frequently inputted key and mouse events, the private
data is not normally contained in the IPs.

Also because a fixed length buffer in the monitored
clients’ main memory is used to store the key and mouse
events, the oldest event records will be overwritten by the
new ones. Furthermore, the buffer will disappear when
the user logs off or the computer is restarted or powered
off.

F. Experiment on Two Computers
Before testing the MCBAS in the computer

laboratories, a small experiment has been carried out on
two computers. One computer serves as the monitoring
server, the other serves as the monitored client node. The
experiment follows the steps described in part E of this
section. The tester used the monitored client node to play
the game “3D Pinball”. Only a few keys, including keys
‘Z’, ‘/’, ‘X’, ‘.’, are used in this game. When the CIA is
sent to get the IPs after five minutes, part of the IPs that
were obtained from the monitored client node are shown
in TABLE IV. We defined the third IP as the GSS and
send the GPFA to the client node. The GPFA returns true,
which means we found a potential game player. Then, the
GSA is sent to the client node to retrieve the screenshot

file which includes the interface of the game “3D Pinball”.
Next, the WA is sent to the client node. The tester using
the client node continued playing the game “3D Pinball”
until the GPDA arrived. Afterwards, the tester found that
the keys ‘Z’ and ‘/’ fail to respond within the “3D
Pinball” game. Finally, to test the effectiveness of the
MEA, the MEA is sent to the client node, the monitor is
stopped. The tester was able to smoothly play the game
“3D Pinball” again.

G. Experiment in the Computer Center
A large scale real environment experiment was carried

out in a university computer center part A of this section
to validate the performance of the MCBAS. The
monitoring server program is installed and runs on one of
PC server machines. Its interface is shown in Fig. 9. The
client node program MAMonitor is installed on each
computer in computer laboratories.

In the experiment, there were computer programming
classes in computer laboratories 1 to 8, more than ninety
percent of computers in these computer laboratories were
used by students. Twenty testing volunteers were
assigned to computer laboratories 1 to 4, five volunteers
for each computer laboratory. The game Warcraft III,
which is popular among students, was selected to perform
the experiment. Each volunteer played the game Warcraft
III on assigned computer.

The experiment steps are described in part E of this
section. It was divided into two phases. Each phase lasted
for one hour. The first five steps were performed in phase
I in order to collect the IPs. In phase II, all steps were
performed.

In the experiment, theMinSup is selected to 30. Some
of the IPs that were detected in phase I were shown in
TABLE V. Ten of them, which is shown in TABLE V
with value “Yes” in the third column, are to defined as
the GSSes to find the game Warcraft III player in phase II.

In the phase II, the parameter in algorithm GPF, which
is shown in Fig. 6, is selected as follows:

TABLE IV.
THE IPS FOUND IN TEST

NO The IP Corresponding key GSS or not
1 0x5a ‘Z’ No
2 0xbf ‘/’ No
3 0x5a, 0xbf ‘Z’, ‘/’ Yes
4 0xbf ,0x5a ‘/’, ‘Z’ No

Figure 9. The interface of the monitoring server program.

2268 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

 10=mconf
3600=L
MinT 2=

The MCBAS successfully detected all twenty
volunteers playing the game, as well as five additional
students who were not among the volunteers. Because we
do not know when the students started to play the game
and how often did the students use the GSSes that we
defined in TABLE V, the playing game detected time of
each student is recorded. The playing game detected time
of a game player is defined as the time elapses between
the beginning of the Phase II and the time when he is
detected. The playing game detected time of these 25
students is shown in Fig. 10. The minimum detected time
is 8 minutes 22 seconds and the maximum detected time
is 58 minutes 11 seconds.

In this experiment, all used computers can start or stop
the hook procedure when they receive the MSA or MEA.
The agent MSPA and CIA worked very well, thus the IPs
were got, as shown in TABLE V. When the GSSes are
determined, the agent GPFA is sent to all used computers
with these GSSes. Then 25 game players were detected at

TABLE V.
THE IPS FOUND IN THE EXPERIMENT.

NO. The IPs GSS or not
1 F1 No
2 F2 No
3 F3 No
4 F6 Yes
5 # No
6 F1, A No
7 F2, A No
8 F3, A No
9 F1, C No
10 #, A No
11 F1, RBUTTONDOWN Yes
12 F2, RBUTTONDOWN Yes
13 F3, RBUTTONDOWN Yes
14 #, RBUTTONDOWN Yes
15 F1, A, LBUTTONDOWN Yes
16 F2, A, LBUTTONDOWN Yes
17 F2, A, LBUTTONDOWN Yes
18 F1, C, LBUTTONDOWN Yes
19 #, A, LBUTTONDOWN Yes
20 LBUTTONDOWN No
21 RBUTTONDOWN No

22
LBUTTONDOWN,
RBUTTONDOWN

No

23
RBUTTONDOWN,
LBUTTONDOWN

No

24
LBUTTONDOWN,
RBUTTONDOWN,
LBUTTONDOWN

No

25
RBUTTONDOWN,
LBUTTONDOWN,
RBUTTONDOWN

No

different time, as shown in Fig. 10. After game players
were detected in a client node, the system automatically
sent the agent WA to that client node every one minute.
All 25 detected game playing client nodes received the
agent WA several times, and each WA popped up a
warning message window, which is shown in Fig. 11, to
try to persuade the user not to play game any more. All
20 testing volunteers were instructed to continue playing
the game. The other five students stopped playing the
game on their own. After the second warning message
was displayed on their windows, all 20 testing volunteers
noticed that the mouse that they were using for the game
window does not respond suddenly. This is because the
system sent the agent GPDA, which drops the last key or
mouse event when the user input key or mouse sequence
matching one of the GSSes, to the game playing client
node.

The client node program MAMonitor has a small
footprint. Because except the 25 game playing students,
no one found that a test was carrying out on his computer,
and computer programming lab classes went normally
and smoothly.

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

Test computer NO.

M
in
.

Figure 10. The game player detected time.

Figure 11. The warning message box.

V. CONCLUSIONS

A mobile agent-based system called the Mobile-C
Based Agent System (MCBAS) for monitoring of
computer usage at public computer laboratories was

© 2013 ACADEMY PUBLISHER 2269

© 2013 ACADEMY PUBLISHER

presented. An IEEE FIPA compliant mobile agent system
called the Mobile-C is used as the base for the MCBAS.
The monitoring server can send control command,
exchange data, and deploy data mining algorithms to any
group of or all of monitored client nodes easily, quickly,
dynamically, and silently. An experiment in a university
computer center with hundreds of computer workstations
has been conducted to validate this system. The
experimental results show that it is an effective way for
dynamic software component deployment in public
computer laboratories. It is also an effective way for
detecting and stopping improper usage of computers in
computer laboratory classes’. Future works include
designing more improper usage detection algorithms and
applying this system to detect computer failure.

ACKNOWLEDGMENTS

This work is supported by the Qianjiang Talent Project
of Zhejiang Province under Grant No. 2012R10056 and
the Zhejiang Provincial Natural Science Foundation of
China.

REFERENCES

[1] Patrício Domingues, Luís Silva and João Gabriel Silva.
“DRMonitor – A Distributed Resource Monitoring System”,
Proceedings of the Eleventh Euromicro Conference on
Parallel,Distributed and Network-Based Processing (Euro-
PDP’03), Genova, Italy, Feb 2003, pp. 127-133.

[2] Patrício Domingues, Paulo Marques and Luís Silva.
“Distributed Data Collection through Remote Probing in
Windows Environments”, Proceedings of the 13th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing (Euromicro-PDP’05), Lugano,
Switzerland, Feb 2005, pp. 59-65.

[3] Mark Russinovich and Bryce Cogswell “Windows
Sysinternals”. http://technet.microsoft.com/en-
us/sysinternals.

[4] Antonella Di Stefano and Corrado Santoro, “A3M: an agent
architecture for automated manufacturing”, Softw. Pract.
Exper, Vol. 39, No. 2, Feb. 2009, pp. 137–162.

[5] Stephen S. Nestinger, Bo Chen, Harry H. Cheng, “A
Mobile Agent-Based Framework for Flexible Automation
Systems”, IEEE/ASME Transactions on Mechatronics, Vol.
15, No. 6, Dec 2010, pp 942-951.

[6] Stephen S. Nestinger and Harry H. Cheng, “Flexibile
Vision: Mobile Agent Approach to Distributed Vision
Sensor Fusion”, IEEE Robotics and Automation Magazine,
Vol. 17, No. 3, Sept. 2010, pp. 66-77.

[7] S. D. J. McArthur, M. Davidson, V. M. Catterson, A. L.
Dimeas, N. D. Hatziargyriou, F. Ponci, and T. Funabashi,
“Multi-agent systems for power engineering applications—
Part I: Concepts, approaches, and technical challenges”,
IEEE Trans. Power Syst., vol. 22, no. 4, Nov. 2007, pp.
1743–1752.

[8] Ferdinanda Ponci and Aalhad A. Deshmukh “A Mobile
Agent for Measurements in Distributed Power Electronic
Systems”, IEEE Transactions on instrumentation and
measurement, Vol. 58, No. 5, May 2009, pp. 1657-1669.

[9] Matthias Klusch, Stefano Lodi, and Gianluca Moro,
“Agent-Based Distributed Data Mining-The KDEC
Scheme”, Lecture Notes in Computer Science, Vol.
2586/2003, 2003, pp. 104-122.

[10] S. Krishnaswamy, A. Zaslavsky1, S.W. Loke, “An
Architecture to Support Distributed Data Mining Services
in E-Commerce Environments”, In Second International
Workshop on Advance Issues of E-Commerce and Web-
Based Information Systems, Milpitas, California, USA,
June 08 - 09, pp. 239–246.

[11] Khalil Amiri, David Petrou, Gregory R. Ganger, Garth A.
Gibson, “Dynamic function placement for data-intensive
cluster computing”, Proceeding ATEC '00 Proceedings of
the annual conference on USENIX Annual Technical
Conference. USENIX Association Berkeley, CA, USA,
June 2000, pp. 25-25.

[12] P. Maes, R. H. Guttman, and A. G. Moukas. “Agents that
buy and sell”, Communications of the ACM, Vol. 42, No. 3,
Mar. 1999, pp. 81–91.

[13] M. Yokoo, S. Fujita, “Trends of internet auctions and
agent-mediated web commerce”, New Generation
Computing, Vol. 19, No. 4, 2001, pp. 369–388.

[14] T. Sandholm, “eMediator: a next generation electronic
commerce server”, Computational Intelligence, Vol. 18, No.
4, 2002, pp. 656–676.

[15] Bieszczad, A., Pagurek, B. and White, T., “Mobile agents
for network management”, IEEE Communications Surveys,
Vol. 1 No. 1, 1998, pp. 1-9.

[16] Jinho Ahn, “Fault-tolerant Mobile Agent-based Monitoring
Mechanism for Highly Dynamic Distributed Networks”,
International Journal of Computer Science Issues, Vol. 7,
No 3, May 2010, pp. 1-7.

[17] O Kachirski, R Guha, “Intrusion detection using mobile
agents in wireless ad hoc networks”, Proceedings. IEEE
Workshop on Knowledge Media Networking, 2002, Kyoto,
Japan, July 2002, pp. 127-133.

[18] Akyazi, Ugur, Uyar, A. Sima, “Distributed detection of
ddos attacks during the intermediate phase through mobile
agents”, Computing and Informatics, Vol. 31, No. 4, 2012,
pp. 759-778.

[19] Wenjuan Wang, Weihui Dai, Weidong Zhao, et.al,
“Research on Mobile Agent System for Agile Supply Chain
Management”, Journal of Computers, Vol. 6, No. 8, 2011,
pp. 1498-1505.

[20] J.L. Adler, V.J. Blue, “A cooperative multi-agent
transportation management and route guidance system”,
Transportation Research Part C: Emerging Technologies,
Vol. 10, No. 5–6, Oct. – Dec. 2002 pp. 433–454.

[21] Bo Chen, Harry H, Cheng, Joe Palen, “Integrating Mobile
Agent Technology with Multi-Agent Systems for
Distributed Traffic Detection and Management Systems”,
Transportation Research Part C: Emerging Technologies,
Feb. 2009, Vol. 17, No. 1, pp. 1-10.

[22] Bo Chen and Harry H. Cheng, “A Review of the
Applications of Agent Technology in Traffic and
Transportation Systems”, IEEE Transactions on Intelligent
Transportation Systems, Vol. 11, No. 2, June 2010, pp.
485-497.

[23] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu,
“Rapid Development and Flexible Deployment of Adaptive
Wireless Sensor Network Applications”, Proceedings of the
25th IEEE International Conference on Distributed
Computing Systems, Columbus, Ohio, USA, June 2005, pp.
6-10.

[24] Qishi Wu, Nageswara S.V. Rao, Jacob Barhen, et al, On
Computing Mobile Agent Routes for Data Fusion in
Distributed Sensor Networks, IEEE Transactions on
Knowledge and Data Engineering, VOL. 16, NO. 6, JUNE
2004.

[25] Nan Zhang, Jianhua Zhang, “A Self-adapted Anycast
Routing Algorithm Based on Mobile Agent in Wireless

2270 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

Sensor Network”, Journal of Networks, Vol. 6, No. 2, 2011,
pp. 206-213.

[26] K. Stathis, O. DeBruijn, S. Macedo, “Living memory:
agent-based information management for connected local
communities”, Interacting with Computers, Vol. 14, No. 6,
Dec. 2002, pp. 663–688.

[27] H. Tu, J. Hsiung, “An architecture and category knowledge
for intelligent information retrieval agents”, Decision
Support Systems, Vol. 28, No. 3, May 2000, pp. 255–268.

[28] Zhisong Hou, Zhou Yu, Wei Zheng, and Xiangang Zuo,
“Research on Distributed Intrusion Detection System Based
on Mobile Agent”, Journal of Computers, Vol. 7, No. 8,
2012, pp. 1919-1926.

[29] Weidong Zhao, Haifeng Wu, Weihui Dai, et.al, “Multi-
agent Middleware for the Integration of Mobile Supply
Chain”, Journal of Computers, Vol. 6, No. 7, 2011, pp.
1469-1476.

[30] Bo Chen,Wenjia Liu, “Mobile Agent Computing Paradigm
for Building a Flexible Structural Health Monitoring Sensor
Network”, Computer-Aided Civil and Infrastructure
Engineering, Vol. 25, No. 7, Oct. 2010, pp. 504–516.

[31] Stuart G Taylor, Kevin M Farinholt, Eric B Flynn et al, “A
mobile-agent-based wireless sensing network for structural
monitoring applications”, Measurement Science and
Technology, Vol. 20, No. 4, Apr. 2009, pp. 1-14.

[32] N. R. Jennings, “An agent-based approach for building
complex software systems - why agent-oriented approaches
are well suited for developing complex, distributed
systems”, Communications of the ACM, Vol. 44, No. 4,
April 2001, pp. 35-41.

[33] D. B. Lange and M. Oshima, “Seven good reasons for
mobile agents,” Commun. ACM, Vol. 42, No. 3, Mar. 1999,
pp. 88–89.

[34] Mobile-C: A Multi-Agent Platform for Mobile C/C++ Code.
(2005). [Online]. Available: http://www.mobilec.org.

[35] Bo Chen, Harry H. Cheng, Joe Palen, “Mobile-C: A Mobile
Agent Platform for Mobile C/C++ Code”, Software
Practice & Experience, Vol. 36, No. 15, 2006, pp. 1711-
1733.

[36] Yu-Cheng Chou, David Ko, Harry H. Cheng, “An
embeddable mobile agent platform supporting runtime code
mobility, interaction and coordination of mobile agents and
host systems”, Information and Software Technology, Vol.
52, No. 2, Feb. 2010, pp. 185–196.

[37] H.H. Cheng, “Scientific computing in the Ch programming
language”, Scientific Programming, Vol. 2, No. 3, 1993, pp.
49–75.

[38] H.H. Cheng, “Ch: A C/C++ interpreter for script
computing”, C/C++ User’s Journal, Vol. 24, No. 1, 2006,
pp. 6–12.

[39] H.H. Cheng, “Ch — an Embeddable C/C++ Interpreter”,
[Online]. Available: http://www.softintegration.com.

[40] Softintegration Inc, Ch – an embeddable C/C++ interpreter,
Available: htth://www.softintergration.com/.

[41] Softintegration, “The Ch Language Environment – SDK
User’s Guide”, Softintegration, Inc, Available:
http//www.softintegration.com.

[42] Embedded Ch User’s Guide, Softintegration, Inc. [Online].
Available:
http://www.softintegration.com/products/sdk/embedded ch/

[43] Bo Chen, Harry H. Cheng, “Interpretive OpenGL for
Computer Graphics,” Computers & Graphics, Vol. 29, No.
3, June 2005, pp. 331-339.

[44] Z. Wang, H.H Cheng, “Portable C/C++ Code for Portable
XML Data”, IEEE Software, Vol. 23, No. 1, 2006, pp. 76 –
81.

[45] Microsoft Corporation, Hooks Overview, Available:
http://msdn.microsoft.com/en-
us/library/ms644959(v=VS.85).aspx.

[46] Microsoft Corporation, Virtual-Key Codes, Available:
http://msdn.microsoft.com/en-
us/library/dd375731(v=vs.85).aspx.

[47] Jason Alexander, Andy Cockburn, and Richard Lobb,
“AppMonitor: A tool for recording user actions in
unmodified Windows applications”, Behavior Research
Methods, Vol. 40, No. 2, 2008, pp. 413-421.

[48] R. Agrawal and R. Srikant. “Mining Sequential Patterns”,
Proc. of the 11th Int'l Conference on Data Engineering,
Taipei, Taiwan, March 1995, pp. 3-14.

[49] R. Srikant and R. Agrawal. “Mining sequential patterns:
generalizations and performance improvements”, Lecture
Notes in Computer Science, Vol. 1057/1996, 1996, pp. 1-17.

[50] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo,
“Discovery of frequent episodes in event sequences”, Data
Mining and Knowledge Discovery, Vol. 1, No. 3, 1997, pp.
259-289.

Zhixin Tie received his Ph.D. degree in computer science from
Zhejiang University in 2000. He is an Associate Professor in the
School of Information Science and Technology at Zhejiang Sci-
Tech University (ZSTU). His research interests include mobile
agent systems, embedded systems, data mining, and power
automation systems.

© 2013 ACADEMY PUBLISHER 2271

© 2013 ACADEMY PUBLISHER

