
A Generic Framework for Automated Quality

Assurance of Software Models Supporting

Languages of Multiple Paradigms

Darryl Owens and Mark Anderson
Department of Computing, Edge Hill University, Ormskirk, Lancashire

Email: darryl.owens@edgehill.ac.uk


Abstract—Software Quality Assurance (QA) is a key area in

the development and maintenance of scientific software

systems in order to ensure the reliability of the output

generated by such systems. Approaches taken in

implementing QA within the lifecycle include manual

techniques, which require developer intervention, and

automated techniques, which can be completed by analysis

toolsets. Manual QA techniques are labour intensive and

time-consuming to complete. This paper highlights the main

areas of software quality assurance and assesses the area in

terms of tools that exist to automate these techniques. These

tools are evaluated at a high level to allow general

statements to be made and the key issue of non-generic tools

that are applied across multiple language paradigms.

Reviewing the background of automated software quality

assurance and general software quality assurance. A

framework is then proposed to fill the gap in automated

software quality assurance, with the proposal to develop this

framework.

Index Terms—software quality assurance, software testing,

automated software engineering, programming language

paradigms

I. INTRODUCTION

Quality Assurance (QA) can be seen to cover a wide

area, thereby there lies a need to define QA within the

context of this work. The focus of this paper is to consider

the implementation of software quality assurance

techniques which are automated rather than requiring end

user intervention. The reasoning underpinning this is

driven by the reduction in workload that can be brought

about through the automation of such techniques. The

figure below shows a structure in which software testing

and quality assurance is relative to overall quality

assurance engineering, which itself is a field within

software engineering [1].

Opinion is divided in realtion to the application of

quality assurance techniques within the software

development lifecycle. A traditional view is that this is a

practice that takes the form of testing at the end of

development and is a independent part of software

engineering [2]. As quality of software has increasingly

become a necessity of scientific software development,

Manuscript received October 12, 2012; revised March 7, 2013.

growing opinion has identified the need to apply quality

assurance techniques, such as testing techniques,

throughout the developmental lifecycle [3].

Figure 1. Scope and content hierarchy [1]

A definition for quality software is said to be a piece of

software that meets or exceeds a customers specification

when considering functionality, performance, reliability,

availability and supportability at a cost less than or equal

what the customer expects to pay [4]. Rather then define

software quality Krutz et al [5] states that “There is a lack

of commonly agreed-upon definitions for software quality,

but it is possible to refer to software quality by its

common attributes”, which is also supported by the work

of Tian [1]. The important feature for software quality are

identified as usability, efficiency, maintainability and

portability and less important are performance, availability

and supportability. However, contradictory views would

suggest that functionality, performance, reliability,

availability and supportability are the critical deterministic

values when considering the quality of software [4]. The

former definition aligns well with the ISO-9126 standard.

However, it is acknowledged that other frameworks exist

and that ISO-9126 does not completely cover all areas of

software quality [1]. An example of such a framework is

“CUPRIMDS (capability, usability, performance,

reliability, installation, maintenance, documentation and

service)” [1] used by IBM in the software development

lifecycle. It has also been identified that “many companies

and communities associated with different application

domains have adapted and customised existing quality

frameworks to define” [1]. An example of such a

community is BITS financial services who have

developed a software quality assurance framework for

financial institutions focusing on software security with

context specific key area such as; IT risk controls

embedded within core business processes; techniques,

practices, and tools that identify security vulnerabilities;

© 2013 ACADEMY PUBLISHER 2191

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.9.2191-2196

integrating software from third parties; and investment in

the development of resilient software components [6].

Although there are many opinions surrounding quality

assurance standards, the fundamental conceptual

underpinnings of the ideals are the same. Quality is a

measurement based on end user expectations. However, it

is the criteria to be measured which are a cause for

discussion. The areas that are listed for each standard or

definition of QA can be generalized and the range of areas

is based on several factors including client, industry and

software purpose. For example a software product made

for the financial sector retains a significant focus on

security and may require high levels of usability.

Alternatively, a software application which batch

processes files without user intervention yet still designed

for the financial sector will retain the security measure but

will not be reliant upon the usability. This would appear to

demonstrate that for software to be determined to be of

quality then the metrics to be adopted must be determined

from the outset of its design and development.

We can therefore derive three critical areas of QA on

which this paper shall focus; functionality, reliability and

maintainability can be extracted from ISO-9126 and

driven by software testing that is related to quality

assurance. Usability will not be considered as this paper is

focused on the batch processing elements of software

systems. Furthermore, it has been determined that”

projects pertaining to the scientific area differ in their

quality assurance and testing process compared to other

organizations” [1][7].

II. STATIC AND DYNAMIC ANALYSIS

There are two categories of analysis that shall be

considered when looking at software testing; static and

dynamic testing. Static analysis is the evaluation of a code

base without that code base being executed [8]. This may

be undertaken by automated toolsets. Static analysis

allows for identification of such potential issues as

memory corruption errors, buffer overruns, out-of- bound

array accesses, or null pointer de-references [9]. There

exists a body of evidence which supports static analysis as

an effective tool in the QA process [10], and there are

many examples of static analysis in use [11], [12], [13],

[14], [15], [16]. Static analysis has been used in all areas

of software development. A number of tools have been

developed to automate this process currently in use [17],

[18], [19], [20]
Unlike static analysis, dynamic testing makes use of

test plans, execution of test cases and evaluation of results

[21]. This technique can be used to run functional, logical,

interface and bottom-up tests as well as others [21].

Dynamic analysis has the advantage of generating more

detailed information, as it doesn’t rely on abstract program

states [20]-[22]. There exist examples of dynamic analysis

being applied in different situations [16]-[23], however

static analysis is more broadly adopted as a technique in

industry as the tools used for dynamic analysis are

relatively uncommon [17], [20], [24]

There are significant advantages to using both types of

analysis, however, to create a more comprehensive tool

for quality assurance. It has been suggested that more than

one type of analysis must be used [23][25] for this

purpose. The research discussed in this paper shall

implement both static and dynamic analysis to allow the

scope of the research to cover a larger area of issues

within automated quality assurance.

III. ANALYSIS OF TESTING AND TOOLS

Prior to analyzing the tools that are available for

deployment in the quality assurance of software, and

evaluation of testing methods and techniques must first be

performed. Subsequent evaluation of the tools will

consider those used to automate some of these QA

processes to establish those of greatest significance to this

work.

A. Testing Methods

Testing methods are the means by which the testing

will be completed. Multiple methods are usually used and

some testing objectives are focused on specific methods.

However multiple methods can usually be applied to each

type of testing. Testing can generally be considered to fall

into one of two major categories:

Black Box/Functional-External behavior is observed for

correctness during execution via the software input and

output [1].

White-Box/Structural-Verifies the implementation of

internal parts of the software; has been done correctly e.g.

data structures, statements of code etc. [1].

It can be inferred that IBM link dynamic analysis with

black box testing, and also static analysis with white box

testing [26]. This contradicts the afore-mentioned

definitions; white and black box are testing methods,

looking at software as only inputs and outputs or viewing

the structure, whereas static and dynamic analysis are used

to find issues via one or more of the methods. For

example, dynamic analysis may use the black box method.

However it could also use the white box method to

analyse software.

B. Testing Levels

Testing levels are used to describe where the testing

should be taking place. Each test could be run at different

levels but much like the testing methods some objectives

are specifically targeted at a certain level of testing.

Examples of levels include

Unit/Component-Software is broken down into units, a

single cohesive function or procedure and tested

separately [27]

Integration-When separate pieces of pre-tested code are

place together these are then tested for the correct results

[27]

System-The software is tested as if it were in use; the

data inputted is what data users would be expected to

input [27]

Acceptance-Run by the client, the software is tested

against set criteria to see if it meets the clients needs [27]

C. Objectives of Testing

The objective of the test is to identify what is being

tested. The objective is usually combined with a level and

2192 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

a method to make a test plan. For example, a beta test is

targeted at acceptance level as the product is being

delivered for execution on the end user system. Beta

testing can also be considered a black box test as the user

won’t have access to the internal structure and code, and

will be analyzing the test results based on input and output

alone.

Compatibility testing-tests regarding information

sharing with other software e.g. copying text from a web

page to a office document [28]

Regression tests-Upon the correction of a fault, all areas

that are affected or linked with the changed code should

be re-tested to prevent the introduction of new faults [27]

Stress testing-running software with lower than

intended specification e.g. slow CPU, lower memory, etc.

[28]

Load testing-contradicting stress testing, load testing

attempts to push the software to its limits and example of

this is giving it as much data as it can handle [28]

Alpha testing-distribution of a few copies of the

software to key individuals or clients to test what has been

developed to that date. [28]

Beta testing-Tested as a full product by external entities

most likely potential users, that will use the software as

expected to unearth faults and provide feedback based on

their experience [27]

Usability testing-based in ergonomics this is the testing

of having someone interact with the software (usually

based on standards and guidelines) [28]

Accessibility-technically under usability testing,

accessibility looks at disabled users or users with

impairments and how these individuals can use the

software. E.g. visual impairments [28]

Internationalization and localization-testing that

software can be used in different geographic areas this

could mean taking into account language, local

conventions etc. [28]

Code coverage-testing for unreachable code. Code that,

no matter what circumstances the software is in will never

run. Analyzers can be used to give you measurements of

how much code is used [28]

Release testing-High-level checks to make sure the

software does as documented all exportable versions are

up to date and all files are present [27]

IV. ANALYSIS TOOLS

There are a number of toolkits available for testing

software applications. These are targeted at the

automation of testing to remove the load on the developer

and/or end user when testing the code base. The tools will

generally focus on specific aspects of software testing, or

will only be applicable for code developed in a single

language or paradigm. The following section will discuss

the key tools which are available to developers and

consider the strengths and limitations of each.

Two tools which are closely aligned in terms of their

scope, and the scope of this paper, are FPT [17] and

Malpas [15]. These tools are used within the scientific

industry, and assess large programs for quality. Malpas,

however, only uses static analysis. From this, it could be

deduced that FPT covers a wider variety of programming

issues and bugs as FPT uses both static and dynamic

analysis. However, one of the key goals of Malpas is to

support the quality assurance analysis of safety critical

systems [15]. It might therefore be considered that Malpas

would need to adhere to specific standards whereas the

use of FPT is much broader within the scientific

community. Both tools are, however, similar in that they

adopt techniques to create a degree of language

independence; FPT uses a internal representation to

analyse FORTRAN code and Malpas uses its Intermediate

Language to analyse Ada, C and Pascal. This is a key

observation in relation to this paper as a framework is

being designed to support multiple paradigms. Whilst the

languages which can be analysed are imperative, the

concept of separating the language from its analysis is

critical.

A further static analysis tool which has been applied to

the development of scientific models is Polyspace [19].

Polyspace, like Malpas, adheres to development/industrial

standards. However Polyspace is specifically designed for

use with embedded systems. Unlike Malpas, which uses

an intermediate language to create some language

independency, Polyspace is embedded into specific IDEs

and therefore does not create language independence. It

does, however, provide a suite of programs which can be

applied to a variety of programming languages. This

would lead to the belief that the conceptual techniques

which are being applied can be ported to a range of

language paradigms, but the implementation of those

techniques is language dependent.

In terms of identifying tools which support both the

dynamic and static analysis of code, then an alternative to

FPT lies with JNuke [20]. JNuke uses its ‘general’

analysis (a combination of static and dynamic analysis) to

construct more robust and accurate tests. Like FPT, JNuke

can be used to analyse code developed in a single

language. However as JNuke uses no language

independency, unlike FPT which uses an internal

representation, JNuke is completely interlinked with the

language which it can analyse (Java in this case) as it

makes use of a very novel approach using a customized

JVM to implement additional features (such as

Backtracking). The developers of JNuke have created

their own VM written entirely in C to implement the

capabilities used to analyse Java code in greater depth.

In comparison, TestingAnywhere [29] and Cantata++

[24] are very similar as both focus on using GUI input to

facilitate the automation of tests with minimal user

intervention. TestingAnywhere utilizes a unique

“SMART” tool which records macros and allows the user

to edit these in order to change values of tests. Cantata++

takes an alternative approach and, whilst supporting the

use of a GUI for test configuration, also implements white

box testing whereas TestingAnywhere would appear to

implement sequences of black box tests to achieve a

similar outcome.

V. EVALUATION OF TOOLS

© 2013 ACADEMY PUBLISHER 2193

© 2013 ACADEMY PUBLISHER

The tools which have been considered in the preceding

section would, between them, suggest that the critical

features for a generic framework can be implemented.

Functionality, reliability and maintainability, as identified

in section 1, can be achieved if a deep level of testing and

analysis can be performed. For this to be successful then

the analysis tools must support a range levels, objectives

and methods. The tools should also support the simple

configuration of these tests and facilitate the automation of

testing.

When evaluating the toolsets considered, it is also

important to consider the language paradigms that are

supported by them as these may have an affect of the

methods used to test the software. A generic framework

must be able to support the analysis of code irrespective of

the language or paradigm that has been adopted for its

development. To this extent, there are four key paradigms

that must be addressed [30]. It is acknowledged that some

languages can be used to develop software utilizing

different paradigms dependent upon the requirements of

the model being developed. For example, it is possible to

develop object-oriented code or procedural code using

C++. For the purposes of this study, each language will be

aligned with the paradigm, which closely matches it

specification.

When taking this into account, the analysis tools

themselves are then closely related to the paradigms of the

languages that they support. For example, JNuke [20] and

Parasoft [18] would be closely aligned to object-

orientation in supporting Java and C++. Furthermore,

Malpas, Polyspace and FPT [15][17][19] are aligned to

procedural languages such as Ada, FORTRAN and C. In

this respect, Cantata++ [24] would appear to be an

exception as the languages that it addresses are both

procedural and object-oriented. However, the scope of

testing within Cantata++ is limited to unit testing that will

not significantly affect testing between these two

paradigms.

VI. A FRAMEWORK FOR AUTOMATING SOFTWARE

QUALITY ASSURANCE

The goal of this work is to design a framework for

software quality assurance testing which is language

independent. The research aims to overcome issues that

have been faced in previous attempt to derive a generic

framework for this purpose by developing customized

techniques based upon related work which has been

undertaken [31].

One such attempt to develop a language independent

framework made use of an intermediate language. A

excellent example of a QA tool adopting this approach is

Malpas [15]. There are other cases not linked to QA which

utilize such a framework. These would include .NET, in

which each .NET language is converted into MSIL

(Microsoft Intermediate Language) before being compiled

[32]. The inherent limitation of this approach is that the

intermediate language must, itself, be developed to adopt

a programming paradigm and the notion of language

independence is therefore removed.

A further mechanism for implementing language

independence is the use of an internal representation. This

method has been used within the design of automated QA

toolsets such as FPT. In this case the internal

representation is not used to implement language

independence, but rather is used to remove any language

specific issues and allow the QA techniques to be

implemented independently. However, it is postulated by

the authors that this technique could be adapted to support

language independence within a framework.

An issue with an internal representation is the process

of parsing a language to be represented within an internal

representation. This may be implemented by developing a

parser for each language. However, this would be

impractical due to the extensive nature of syntax and

semantics adopted by modern high-level languages. An

alternative solution would be the creation of a meta-

language, which is “… a notation for defining the syntax

of a language by use of a number of rules” [33]. Examples

of such meta-languages are BNF and EBNF which are

seen to be de-facto standards for this representation [34].

Alternatives include ‘van Wijngaarden grammar’ which is

a two level grammar, similar to using a meta language,

and was originally devised to define the syntax of ALGOL

68 [35].

Using a meta-language to describe the programming

language syntax has a further advantage in relation to QA;

overcoming the identified issue that “even such a clear

and well-designed languages as Pascal contained hidden

semantic irregularities which were revealed only by

formalization of its semantics” [36].

The research will adopt a meta-language to develop the

framework in the first instance, allowing the identification

of semantic errors as an additional feature, which enables

languages to be described then described in an internal

representation for analysis. Should errors be found

following analysis then the meta-language could be

utilised to convert the edited internal representation back

into its original source code. It is proposed that BNF be

used at the outset of the work, as it is likely that there will

already be a BNF description of most languages [33].

Figure 2. Framework definition

2194 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

The framework has then to implement this language

independence into a form in which QA techniques can be

applied. Fig. 2 is a representation of the framework and

the processing which will be supported in the analysis of

software models.

VII. CONCLUSIONS

This paper has presented an overview of software

quality assurance within the context of software

engineering related to scientific model. Tools which have

been developed for QA, specifically those used to

automate QA techniques, have been evaluated and the key

elements which these tools support have been identified.

Most significantly, it can be observed that the tools

available are developed either with a focus on specific

application areas, or to support specific language

paradigms. However, the techniques adopted by these

tools to implement QA analysis can be extrapolated to

extend the range of coverage that the toolsets currently

address. This could be through the support for multiple

language paradigms, or for a broader range of applications.

Whilst some tools offer support for a wider range of

language paradigms, for example through intermediate

languages and internal representations, the

implementation of these tools restricts the full potential

being achieved. The aim of the project, which is discussed

in this paper, is to develop a generic paper for QA analysis,

designing and assessing techniques that are currently in

use to automate software quality assurance. An output of

this work will be the development of a taxonomy of QA

procedures and techniques which will be based on

language paradigm enabling a correlation to be drawn the

techniques adopted and the paradigms supported. The goal

is to inform the design of a generic framework which,

when implemented, can be applied across multiple

language paradigms.

ACKNOWLEDGMENT

The authors would like to thank John Collins and Brian

Farrimond of SimCon Ltd., and David Gill of UCAR for

their support in the development of this project work.

REFERENCES

[1] J. Tian, “Software quality engineering: Testing quality

assurance and quantifiable improvement,” IEEE Computer

Society, Hoboken, 2005.

[2] R.Yin and X. M. Ding, How to improve the quality of

software testing. International Conference on Systems and

Informatics, 2012, pp. 2533-2536.

[3] L. Rosenberg, “Software quality assurance engineering at

NASA,” Aerospace Conference Proceedings, 2002, pp.

2569-2575.

[4] D. P. Wesenberg and K. Vansaun, “A system approach for

software quality assurance,” in Proc. IEEE National

Aerospace and Electronics Conference, 1991, pp. 771-776.

[5] R. L. Krutz, R. D. Vines, and G. Brunette, “Cloud security:

A comprehensive guide to secure cloud computing,”

Hoboken: Wiley, 2010.

[6] BITS. (23 October 2012). Software Assurance Framework.

[Online]. Available:

http://www.bits.org/publications/security/BITSSoftwareAs

surance0112.pdf
[7] G .U. Maheswari and V. V. R. Prasad, “Optimized

software quality assurance model for testing scientific

software,” International Journal of Computer Applications,

vol. 36, no. 7, 2011.

[8] A. Austin and L. Williams, “One technique is not enough:

a comparison of vulnerability discovery techniques,”

International Symposium on Empirical Software

Engineering and Measurement, 2011, pp. 97-106.

[9] D. Bell and P. G. Brat, “Automated software verification &

validation: An emerging approach for ground operations,”

IEEE Aerospace Conference, 2008, pp. 1-8.

[10] B. Chess and C. Wysopal, “Software quality assurance for

the masses,” Security & Privacy, IEEE. vol. 10, no. 3, pp.

14-15, 2012.

[11] N. Truong, P. Roe, and P. Bancroft, “Static analysis of

students’ java programs,” in Proc. Sixth Australasian

Conferance on Computing, 2004, vol. 30, pp. 317-325.

[12] G. Naumovich, G. Avrunin, L. Clarke, and L. Osterweil,

“Applying Static analysis to software architectures,”

Software Engineering-ESEC/FSE, M. Jazayeri and H.

Schauer, eds. Springer Berlin / Heidelberg, 1997, pp. 77-93.

[13] T. Reps, T. Lev-Ami, M. Sagiv, and R. Wilhelm, “Putting

static analysis to work for verification: A case study,” in

Proc. ACM SIGSOFT International Symposium on

Software Testing and Analysis, 2000, pp. 26-38.
[14] N. Ward, “Code verification with the aid of Malpas,” IEE

Colloquium on High Integrity Ada,1999, pp. 3/1-3/3.

[15] K. Harrison, “Static code analysis on the C-130J hercules

safety-critical software,” UK Iternational Systems Safety

Conference, 1999.

[16] D. Balzarotti, et al. “Saner: Composing Static and

Dynamic Analysis to Validate Sanitization in Web

Applications,” IEEE Symposium on Security and Privacy,

2008, pp. 387-401.

[17] SimCon. (1995). Sim Con-Fortran Analysis, Engineering

& Migration. [Online]. Available:

http://www.simconglobal.com/

[18] IBM. (2011). IBM Rational AppScan: Application security

and risk Managment. [Online]. Available:

http://www.sebyde.nl/uploads/media/IBM_Rational_Appsc

an_family_Data_Sheet.pdf

[19] MathWorks. (1994). Static Analysis with Polyspace

Products. [Online]. Available:

http://www.mathworks.co.uk/products/polyspace/

[20] C. Artho, et al. “JNuke: Efficient dynamic analysis for

java,”in Proc 16th International Conference Computer

Aided Verification Lecture Notes in Computer Science,

USA: Boston, MA, 2004.

[21] R. Fairley, “Tutorial: Static analysis and dynamic testing of

computer software,” Computer, vol. 11, no. 4, pp. 14-23,

1978.

[22] A. Biere and C. Artho, “Combined static and dynamic

analysis,” in Proc. Intl. Workshop on Abstract

Interpretation of Object-Oriented Languages, 2005.

[23] M. Salah, S. Mancoridis, G. Antoniol, and M. D. Penta,

“Scenario-driven dynamic analysis for comprehending

large software systems,” in Proc. 10th European

Conference on Software Maintenance and Reengineering,

2006, pp. 80-90.

[24] Q. Systems. (n.d.) Cantata - The Unit Testing Tool for

C/C++. [Online]. Available: http://www.qa-

systems.com/cantata.html

[25] W. E. Wong, “An integrated solution for creating

dependable software,” Computer Software and

Applications Conference, 2000, pp. 269-270.

© 2013 ACADEMY PUBLISHER 2195

© 2013 ACADEMY PUBLISHER

http://link.springer.com/book/10.1007/b98490
http://link.springer.com/book/10.1007/b98490
http://link.springer.com/bookseries/558

[26] IBM. (2011). IBM Rational AppScan: Application security

and Risk Managment. [Online]. Available:

http://www.sebyde.nl/uploads/media/IBM_Rational_Appsc

an_family_Data_Sheet.pdf
[27] C. Britton and J. Doake, “Testing and handing over the

system,” Software System Development : A Gentle
Introduction, K. Reade, K. Mosman, A. Duijser, and J.
Bishop, Eds. 4th ed. Maidenhead: MCGraw-Hill Education,
2006, pp. 175-180.

[28] R. Patterson, Software Testing, 2nd ed. Indianapolis, lnd.:
Sams Publishing, 2006.

[29] A. Anywhere, (n.d.) TestingAnywhere. [Online]. Available:
http://www.automationanywhere.com/Testing/

[30] A. Laird, “The four major programming paradigms topic
paper #17,” Computer Science, April 3, 2009.

[31] J. Collins, B. Farrimond, D. Flower, M. Anderson, and D.
Gill, “Removal of numerical drift from scientific models:
A case study using WRF,” Accepted for Publication in the
International Journal of Software Engineering and
Applications.

[32] MSDN. (n.d.). Compiling to MSIL. From Microsoft

Developer Network. [Online]. Available:

http://msdn.microsoft.com/en-

us/library/c5tkafs1(v=vs.71).aspx

[33] ISO. (1996). ISO/IEC 14977: 1996(E). [Online]. Available:

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

[34] L. M. Garshol. (2005). BNF and EBNF: What are They

and How do They Work? [Online]. Available:

http://www.garshol.priv.no/download/text/bnf.html

[35] B. Edupuganty and B. Bryant, “Two-level grammar as a

functional programming language,” The Computer Journal.

vol. 32, no. 1, pp. 36-44, 1989.

[36] D. A. Watt and O. L. Madsen, “Extended attribute

grammars,” The Computer Journal. vol. 26, no. 2, pp. 142-

153, 1983.

Darryl Owens was born in Yorkshire,

UK in 1991. Mr Owens was awarded a

BSc (Hons) in Computing at Edge Hill

University in the UK in 2012. He is a

PhD student in the Department of

Computing at Edge Hill University. His

PhD study focuses on Quality Assurance

within Software Engineering and he is

involved with the Software Quality

Assurance Research Group, where is looking to develop a

generic framework to facilitate the automation of quality

assurance across languages of disparate paradigms.

Dr Mark Anderson was born in

Liverpool, UK in 1971. Dr. Anderson

was awarded a BSc (Hons) in Computer

Science by the University of Liverpool,

UK in 1993. Mark gained a PhD at the

Department of Computer Science in

University of Liverpool in 1997.

He has been employed as a Senior

Lecturer at Edge Hill University, UK and

has led courses at both undergraduate and postgraduate levels.

He has also successfully supervised a number of students

through the dissertation/project process and is currently the

Programme Leader for BSc(Hons) Computing (Application

Development) course. He is currently leading the international

Software Validation Project on behalf of the department. The

project consists of an expanding team and is currently

investigating quality assurance of one of the most significant

software models in the world. He is also lead the department’s

involvement on the international HistorySpace project, and is

working with national organisations in developing further

projects.

Dr. Anderson is a Chartered IT Professional with the British

Computer Society, and is a Fellow of the Higher Education

Academy.

2196 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

http://msdn.microsoft.com/en-us/library/c5tkafs1(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/c5tkafs1(v=vs.71).aspx

