
Efficient Bug Triaging Using Text Mining

Mamdouh Alenezi and Kenneth Magel
Department of Computer Science, North Dakota State University

Fargo, ND 58108, USA

Email: {mamdouh.alenezi, kenneth.magel}@ndsu.edu

Shadi Banitaan
Department of Mathematics, Computer Science and Software Engineering, University of Detroit Mercy

Detroit, MI 48221, USA

Email: banitash@udmercy.edu


Abstract—Large open source software projects receive

abundant rates of submitted bug reports. Triaging these

incoming reports manually is error-prone and time

consuming. The goal of bug triaging is to assign potentially

experienced developers to new-coming bug reports. To

reduce time and cost of bug triaging, we present an

automatic approach to predict a developer with relevant

experience to solve the new coming report. In this paper, we

investigate the use of five term selection methods on the

accuracy of bug assignment. In addition, we re-balance the

load between developers based on their experience. We

conduct experiments on four real datasets. The

experimental results show that by selecting a small number

of discriminating terms, the F-score can be significantly

improved.

Index Terms—bug triage, term selection method, text

classification, mining bug repositories

I. INTRODUCTION

Software repositories comprise valuable information

about software projects. This information can help to

manage the progress of these projects. In the last decade,

practitioners have analyzed and mined these software

repositories to support software development and

evolution. One of the important software repositories is

the bug tracking system (BTS). Many open source

software projects have an open bug repository that allows

both developers and users to submit defects or issues in

the software, suggest possible enhancements, and

comment on existing bug reports.

For open source large-scale software projects, the

number of daily bugs is so large which makes the triaging

process very difficult and challenging. Bug fixing is a

time-consuming process in software maintenance [1].

Many software projects use BTS to manage bug reports

submitted by users, testers, and developers [2]. Each new

reported bug must be triaged to determine if it describes a

meaningful new problem or enhancement, and if it does,

it must be assigned to an appropriate developer to fix it.

Most triaging tasks, including bug assignment, rely

heavily on manual effort, which is labor intensive and

Manuscript received October 14, 2012; revised March 8, 2013.

potentially error prone [3]. In practice, due to the frequent

changes of software development teams, it is difficult to

identify a correct developer who has some experience in

fixing similar bugs using manual triage process [1]. For

the Eclipse project, Anvik reports that an average of 37

bugs per day are submitted to the BTS and 3 person-

hours per day are required for the manual triage [4]; the

empirical study by Jeong et al. shows that 44% of bugs

have been assigned to the wrong developer after the first

assignment [3]. To solve these problems, some machine

learning algorithms are employed to conduct automatic

bug triage [1], [3]–[6]. Most of the bug triage approaches

are based on text categorization [1]. However, these

approaches suffer from low-quality bug reports which

may mislead the triage approach to assign bugs to wrong

developers [6], [7]. These approaches also suffer from

low recall values [1], [4]. In this paper, we present an

approach for bug assignment. In this approach,

classification is used to build a predictive model which

can be used to assign a developer to a newly coming bug

report. Five term selection methods are employed to

reduce the dimensionality of terms and improve accuracy.

To summarize, we make the following key

contributions in this work:

 We conduct a comprehensive study on using

different term selection methods to evaluate their

effectiveness on improving the accuracy of bug

assignment.

 We propose an approach to reduce time and cost

of bug triaging. The approach has two main steps:

1) Build a classification model using the reduced

terms to predict an experienced developer to

fix a new reported bug.

2) Redistribute the load of overloaded developers.

 We perform experimental evaluation using four

bug reports corpora obtained from real projects.

The rest of the paper is organized as follows: Section II

discusses related work. Section III describes the proposed

approach. The experimental evaluation and discussion are

presented in Section IV. Section V concludes the paper.

II. RELATED WORK

© 2013 ACADEMY PUBLISHER 2185

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.9.2185-2190

Text categorization dominates the existing bug triage

approaches. The first work of bug triage is a supervised

text categorization approach using Naive Bayes [2].

Cubranic et al., evaluated their approach using bug

reports from the Eclipse project. Their approach achieved

30% accuracy. Anvik et al. [1] extended the work of [2]

with a recommendation list, other supervised learning

algorithms, and labeling heuristic. They reached preci-

sion levels of 57% and 64% on Eclipse and Firefox

respectivley. Matter et al. [5] used a vocabulary based

expertise model of developers to improve bug triage.

Their approach compared vocabulary found in the

developers source code with vocabulary found in bug

reports. They achieved 33.6% top-1 precision and 71.0%

top-10 recall using eight years of the Eclipse project.

Xuan et al. [6] proposed a semi-supervised learning

approach with a weighted recommendation list for bug

triage to solve the problem of the low quality of bug

reports. Their approach improved the classification

accuracy of bug triage by up to 6% on the Eclipse project.

Park et al. [8] proposed a bug triaging approach which

incorporated collaborative filtering and topic modeling to

reduce the sparseness of the training data and enhance the

quality of the triaging recommendation. Other approaches

also address the problem of bug triaging such as the

training set reduction approach [9] and the fuzzy-set

approach [10].

III. APPROACH

To reduce the time spent triaging, we present an

approach for automatic triaging by recommending one

experienced developer for each new bug report. Our

approach uses a machine learning algorithm to

recommend a developer who may be appropriate for

resolving the bug. We formulate the bug triaging process

as a classification task where instances represent bug

reports, features represent the terms of the report, and the

class label represents the developer who fixed this report.

This approach can help the triage process in two ways: 1)

it may allow a triager to process a bug more quickly, and

2) it may allow a triager with less knowledge about

systems and developers to perform bug assignments more

accurately. Our approach requires a project to have had

an open bug repository for some period of time in which

the patterns of who solves what kinds of bugs can be

learned.

Fig. 1 shows a high level description of our proposed

approach. Bug reports are unstructured data which may

contain irrelevant words. Therefore, we apply the

traditional text processing approach to transform the text

data into a meaningful representation. We use the

summary of bug reports as a description of bugs. The text

processing includes white-spaces, punctuation, numbers,

and stopwords removal. After that, the approach

constructs a bug-term matrix weighted by term frequency.

Then, different term selection methods are applied to

reduce both the dimensionality and the sparseness of data.

The next step is to build a classifier using the Naive

Bayes approach. The classifier is trained using the

training data set (bug reports). When a new report arrives,

it follows the same steps to produce the reduced bug-term

vector, and then it is assigned to a developer using the

predictive model.

Figure 1. Our classification approach

A. Representation Framework

We have a collection of bug reports, B = {b1, … , b|B|}.

Each bug report has a collection of term, T = {t1, … , t|T|},

and a class label (developer), c  C = {c1, … , c|C|}.

B. Term Selection Methods

Term selection methods are used to reduce the high

dimensionality of term space by selecting the most dis-

criminating terms for the classification task. The methods

give a weight for each term inwhich terms with higher

weights are assumed to contribute more for the

classification task than terms with lower weights. In this

work, we use five term selection methods. A short

description of these methods appears below.

1) Log Odds Ratio (LOR): Log Odds Ratio measures

the odds of the word occurring in the positive class

normalized by the negative class. The idea is that the

distribution of terms on the relevant documents is

different from the distribution of terms on the non-

relevant documents. It is defined as follows [11]:

 ()
 (|) (| ̅)

 (|) (| ̅)
 (1)

where t and ci represent a term and a class respectively.

2) Chi-Square (X2): In statistics, the X2 test is used to

examine independence of two events. The events, X and Y,

are assumed to be independent if P(XY)=P(X)P(Y). In

term selection, the two events are the occurrence of the

term and the occurrence of the class. Terms are ranked

with respect to the following equation [12]:

2186 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

 () ∑ ∑
()

 (2)

where N is the observed frequency and E is the expected

frequency for each state of term t and class c. CHI2 is a

measure of how much expected counts E and observed

counts N deviate from each other.

3) Term Frequency Relevance Frequency (TFRF): The

basic behind the TFRF method is that the more high

frequency for a term in the positive category than in the

negative category, the more contributions it makes in

selecting the positive instances from the negative

instances. The TFRF method is computed as follows [13]:

 (

 ()
) (3)

where a is the number of documents in the positive

category which contain the term, c is the number of

documents in the negative category which contain the

term, and tf is the term frequency.

4) Mutual Information (MI): Mutual information

measures the mutual dependence of two random variables.

MI computes X(t, c) as the mutual information (MI) of

term t and class c. MI measures how much the presence

and the absence of a term contributes to making the

correct classification decision on c using this equation

[12]:

 () ∑ ∑ () (4)

 ()

 ()
 (5)

where U is a random variable that takes values et = 1 if

the document contains term t and et = 0 if the document

does not contain t. R is a random variable that takes

values ec = 1 if the document is in class c and ec = 0 if the

document is not in class c.

5) Distinguishing Feature Selector (DFS): DFS is a

new novel term selection method. It provides global

discriminatory powers of the features over the entire text

collection rather than being class specific. DFS considers

the following requirements: 1) a term that occurs

frequently in a single class and not in other classes is

distinctive, 2) a term that rarely occurs in a single class

and not in other classes is irrelevant, 3) a term that occurs

frequently in all classes is irrelevant, and 4) a term that

occurs in some of the classes is relatively distinctive.

DFS assigns scores to the features between 0.5 (least

discriminative) and 1.0 (most discriminative). It can be

formally calculated as [14]:

 () ∑
 (|)

 (̅|) (| ̅)

 (6)

C. What about Cost?

In bug assignment, some developers could be over-

loaded (i.e., the approach may assign a large number of

bug reports to one developer while assigning a small

number of reports to another developer). This scenario

will increase the cost of the bug triaging process. A direct

approach to solve this problem is to predict three

developers (class labels) for each new bug report. The

approach assigns a bug report to the second developer if

the first developer is overloaded and so on. This can be

done by modifying the Naive Bayes algorithm. In Naïve

Bayes, the class label of a bug report is predicted as c1

inwhich P(c1|report) is the highest P(ci|report) where

P(ci|report) is the probability of class ci given the bug

report and ci  C. In our modified Naïve Bayes, the three

class labels of a big report are predicted as classes c1, c2,

and c3 which have the highest P(ci|report)

IV. APPROACH

In this Section, we report the results of our proposed

approach on real datasets. A description of the datasets

that are used is first shown then an analysis of the results

is provided.

A. Dataset

We evaluate our approach based on bug repositories of

Eclipse, NetBeans, and Maemo. In our work, we collect

the bug reports that have the status of [Closed, Verified,

and Resolved] and the resolution of [Fixed]. For each bug

report, we extract the bug ID, the assignee, opened,

changed, and the summary fields. For Eclipse, we choose

all bug reports for SWT (7685). We also choose all bug

reports for UI component from June 1st 2009 until

October 27th, 2012 (7688). For NetBeans, we choose

(11974) bug reports from June 1st, 2011 until October

27th, 2012. For Maemo, we choose all bug reports (4505).

We want to refine the training set further to remove

reports that are assigned to inactive developers (i.e.,

developers who no longer work on the project or

developers who have only fixed a small number of bugs).

To determine active developers, other work considered

only developers who have fixed a minimum number of

bug reports as a threshold. This approach is not accurate

(i.e., software teams usually change overtime) which may

lead to assigning a new reported bug to a developer who

no longer available. Thus, we consider developers who

have fixed at least 25 bug reports in the last year. Table II

shows a summary of the refined datasets.

TABLE II.

A SUMMARY OF BUG REPORTS.

Name # of bug reports # of terms # of developers

Eclipse-SWT 7561 6560 21

Eclipse-UI 6791 6104 58

NetBeans 11311 9284 56

Maemo 3505 4659 33

B. Results and Discussion

We use the Naive Bayes classifier in our bug triaging

approach and we recommend one developer for each new

bug report to the triager. We apply each of the five term

selection methods, LOR, X2, TFRF, MI, and DFS on four

datasets described in the previous section. Term selection

methods are implemented using R language version

2.15.1. The WEKA tool is used for classification task1.

The corpus for each dataset is created using the tm

package2. Precision, recall, and F-score are used to

evaluate the efficacy of applying different term selection

methods on the classification task. Precision is the

© 2013 ACADEMY PUBLISHER 2187

© 2013 ACADEMY PUBLISHER

number of correct recommendations divided by the

number of recommendations made. Recall is the number

of correct recommendations divided by the number of

TABLE I.

PRECISION AND RECALL OF CLASSIFICATION USING DISCRMINATING TERMS ON FOUR DATASETS.

possible relevant developers. F-score is the harmonic

mean of precision and recall.

Give all authors’ names; use “et al.” if there are six

authors or more. Papers that have not been published,

even if they have been submitted for publication, should

be cited as “unpublished” [4]. Papers that have been

accepted for publication should be cited as “in press” [5].

In a paper title, capitalize the first word and all other

words except for conjunctions, prepositions less than

seven letters, and prepositional phrases.

For papers published in translated journals, first give

the English citation, then the original foreign-language

citation [6].

For on-line references a URL and time accessed must

be given.

At the end of each reference, give the DOI (Digital

Object Identifier) number as long as available, in the

format as “doi:10.1518/hfes.2006.27224”

C. Footnotes

Number footnotes separately in superscripts 1, 2, ….

Place the actual footnote at the bottom of the column in

which it was cited, as in this column. See first page

footnote for an example.

For term selection methods, we apply different

percent- ages of the terms (1% to 10%) to investigate the

effect of using different number of terms on the accuracy

of classification. It is important to note that the number of

selected terms will be less than or equal to the percentage

of selected terms (i.e., we may have some selected terms

for two developers that are common and these terms will

be counted once). For the baseline approach, we consider

all the terms (after processing) in the bug summary

weighted by term frequency. The class label for a bug

report is represented as the developer who has fixed that

bug report.

For evaluation, the dataset is divided into training and

testing sets. To obtain unbiased evaluation results, we

perform a 10-fold cross-validation. Table I shows the

precision and the recall for the datasets when different

term selection methods are applied. P denotes precision

while R denotes recall. For Eclipse-SWT, the precision

and recall for the baseline approach are 0.290 and 0.270

respectively. The best precision and recall for Eclipse-

SWT is obtained using X2 when the percentage of terms

is 2%. For Eclipse-UI, the precision and recall for the

baseline approach are 0.014 and 0.014 respectively. The

best precision for Eclipse-UI is obtained using X2 when

the percentage of terms is 1% while the best recall is also

obtained using X2 when the percentage of terms is 8%.

For NetBeans, the precision and recall for the baseline

approach are 0.014 and 0.015 respectively. The best

precision for NetBeans is obtained using X2 when the

percentage of terms is 1% while the best recall is

obtained using M I when the percentage of terms is 10%.

For Maemo, the precision and recall for the baseline

approach are 0.344 and 0.365 respectively. The best

precision for Maemo is obtained using X2 when the

percentage of terms is 1% while the best recall is

obtained using DF S when the percentage of terms is 4%.

The results show that using term selection methods

improve precision and recall over the baseline approach

by up to 50% and 35% respectively.

Fig. 2 shows the F-score of classification after apply-

ing the term selection methods. The x-axis represents the

percentage of selected terms and the y-axis represents the

F-score measure. For the Eclipse-SWT dataset, the best

F-score for LOR (0.319) is achieved when the percentage

of terms is 1% (the number of selected terms is 46). The

best F-score for X2 (0.341) is achieved when the

percentage of terms is 2% (the number of selected terms

is 111). The best F-score for TFRF (0.277) is achieved

when the percentage of terms is 10% (the number of

selected terms is 333). The best F-score for MI (0.325) is

achieved when the percentage of terms is 1% (the number

of selected terms is 41). The best F-score for DFS (0.333)

is achieved when the percentage of terms is 2% (the

number of selected terms is 131). It is clear that X2

achieves the best F-score while the number of selected

terms is small (46). The baseline F-score for Eclipse-

SWT is 0.280 and the number of terms is 6560. Therefore,

2188 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

X2 achieves 6.1% improvement over the baseline

approach with only 111 selected terms. Moreover, the X2

method outperforms other selection methods for all of the

selected terms (0.01 to 0.1).

For all datasets, X2 achieves the best F-score and

TFRF achieves the lowest F-score. X2 improved the F-

score over the baseline approach by 6.2%, 38.2%, 26.5%,

and 12.1% on Eclipse-SWT, Eclipse-UI, NetBeans, and

Maemo respectively.

Figure 2. F-score of classification on four datasets

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to

automatically assign bug reports to developers with the

appropriate expertise. Our approach used term selection

methods to choose the most discriminating terms to

describe bug reports. We then built a predictive model

using the Naive Bayes classifier to predict a developer for

each newly coming bug report. We also incorporated cost

in order to redistribute bugs to re-balance the load

between developers.

Our experimental results showed that the X2 term

selection method outperforms the other selected term

selection methods in terms of the F-score for all datasets.

Moreover, X2 improved the F-score over the baseline

approach by 6.2%, 38.2%, 26.5%, and 12.1% on Eclipse-

SWT, Eclipse-UI, NetBeans, and Maemo respectively.

The experimental results demonstrate that our proposed

approach is very effective for the bug assignment

problem.

In the future, we want to investigate the effect of using

other term selection methods. Furthermore, we want to

implement and validate our modified version of Naive

Bayes.

REFERENCES

[1] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this

bug?” in Proc 28th International Conference on Software

Engineering. ACM, 2006, pp. 361–370.

[2] D. Cubranic and G. C. Murphy, “Automatic bug triage

using text categorization,” in Proc Sixteenth International

Conference on Software Engineering, Citeseer, 2004, pp.

92–97.

[3] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug

triage with bug tossing graphs,” in Proc 7th Joint Meeting

of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of

Software Engineering, 2009, pp. 111–120.

[4] J. Anvik, “Automating bug report assignment,” in Proc

28th International Conference on Software Engineering.

ACM, 2006, pp. 937–940.

[5] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug

reports using a vocabulary-based expertise model of devel-

opers,” in 6th IEEE International Working Conference on

Mining Software Repositories, 2009, pp. 131–140.

[6] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic

bug triage using semi-supervised text classification,” in

Proc. Intl. Conf. Software Engineering & Knowledge

Engineering, 2010, pp. 209–214.

[7] N. Bettenburg, S. Just, A. Schro ẗer, C. Weiss, R. Premraj,

and T. Zimmermann, “What makes a good bug report?” in

Proc. 16th ACM SIGSOFT International Symposium on

Foundations of software Engineering. ACM, 2008, pp.

308–318.

[8] J.-W. Park, M.-W. Lee, J. Kim, S. won Hwang, and S. Kim,

“Costriage: A cost-aware triage algorithm for bug

reporting systems.” in AAAI, AAAI Press, 2011.

[9] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training

set reduction for bug triage,” in Proc. IEEE 35th Annual

Computer Software and Applications Conference,

Washington, DC, USA: IEEE Computer Society, 2011, pp.

576–581.

[10] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T. Nguyen,

“Fuzzy set and cache-based approach for bug triaging,” in

Proc. 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software

Engineering, 2011, pp. 365–375.

[11] D. Mladenic, “Machine learning on non-homogeneous,

distributed text data.” Ph.D. dissertation, University of

Ljubljana, Faculty of Computer and Information Science,

1998.

[12] C. Manning, P. Raghavan, and H. Schutze, Introduction to

Information Retrieval, Cambridge University Press

Cambridge, 2008, vol. 1.

[13] M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and

traditional term weighting methods for automatic text

categorization,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 31, no. 4, pp. 721–735, Apr. 2009.

[14] A. K. Uysal and S. Gunal, “A novel probabilistic feature

selection method for text classification,” Knowledge-Based

Systems, vol. 36, no. 0, pp. 226–235, 2012.

Mamdouh Alenezi is a Software Engineering PhD candidate at

the Department of Computer Science in North Dakota State

University. He is from Saudi Arabia and received his Bachelor

of Science in Computer Science from Department of Computer

Science in Prince Sultan University in Riyadh. Also, he

obtained his Master of Science in Software Engineering from

College of Computing and Digital Media in DePaul University

in Chicago. His research interests include mining software

repositories and software testing.

© 2013 ACADEMY PUBLISHER 2189

© 2013 ACADEMY PUBLISHER

Shadi Banitaan is an Assistant Professor at the Department of

Mathematics, Computer Science and Software Engineering at

the University of Detroit-Mercy. Dr. Banitaan received his Ph.D.

degree in Computer Science from North Dakota State

University in 2012. He has received a bachelor degree in

Computer Science from Yarmouk University in 2002. He also

obtained a master’s degree in Computer and Information

Sciences from Yarmouk University in 2004. His scholarly

interests include data mining and software testing.

Kenneth Magel earned his PhD in 1977 from Brown

University and has taught in Kansas, Missouri and Texas. He

has been at NDSU since August, 1983. His teaching interests

include courses in problem solving, software engineering,

human- computer interaction, object-oriented systems, and

programming languages. Dr. Magel has published widely in the

areas of program complexity metrics and software testing.

2190 © 2013 ACADEMY PUBLISHER

© 2013 ACADEMY PUBLISHER

