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
Abstract—Large open source software projects receive 

abundant rates of submitted bug reports. Triaging these 

incoming reports manually is error-prone and time 

consuming. The goal of bug triaging is to assign potentially 

experienced developers to new-coming bug reports. To 

reduce time and cost of bug triaging, we present an 

automatic approach to predict a developer with relevant 

experience to solve the new coming report. In this paper, we 

investigate the use of five term selection methods on the 

accuracy of bug assignment. In addition, we re-balance the 

load between developers based on their experience. We 

conduct experiments on four real datasets. The 

experimental results show that by selecting a small number 

of discriminating terms, the F-score can be significantly 

improved. 

 

Index Terms—bug triage, term selection method, text 

classification, mining bug repositories 

 

I. INTRODUCTION 

Software repositories comprise valuable information 

about software projects. This information can help to 

manage the progress of these projects. In the last decade, 

practitioners have analyzed and mined these software 

repositories to support software development and 

evolution. One of the important software repositories is 

the bug tracking system (BTS). Many open source 

software projects have an open bug repository that allows 

both developers and users to submit defects or issues in 

the software, suggest possible enhancements, and 

comment on existing bug reports. 

For open source large-scale software projects, the 

number of daily bugs is so large which makes the triaging 

process very difficult and challenging. Bug fixing is a 

time-consuming process in software maintenance [1]. 

Many software projects use BTS to manage bug reports 

submitted by users, testers, and developers [2]. Each new 

reported bug must be triaged to determine if it describes a 

meaningful new problem or enhancement, and if it does, 

it must be assigned to an appropriate developer to fix it. 

Most triaging tasks, including bug assignment, rely 

heavily on manual effort, which is labor intensive and 
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potentially error prone [3]. In practice, due to the frequent 

changes of software development teams, it is difficult to 

identify a correct developer who has some experience in 

fixing similar bugs using manual triage process [1]. For 

the Eclipse project, Anvik reports that an average of 37 

bugs per day are submitted to the BTS and 3 person- 

hours per day are required for the manual triage [4]; the 

empirical study by Jeong et al. shows that 44% of bugs 

have been assigned to the wrong developer after the first 

assignment [3]. To solve these problems, some machine 

learning algorithms are employed to conduct automatic 

bug triage [1], [3]–[6]. Most of the bug triage approaches 

are based on text categorization [1]. However, these 

approaches suffer from low-quality bug reports which 

may mislead the triage approach to assign bugs to wrong 

developers [6], [7]. These approaches also suffer from 

low recall values [1], [4]. In this paper, we present an 

approach for bug assignment. In this approach, 

classification is used to build a predictive model which 

can be used to assign a developer to a newly coming bug 

report. Five term selection methods are employed to 

reduce the dimensionality of terms and improve accuracy. 

To summarize, we make the following key 

contributions in this work: 

 We conduct a comprehensive study on using 

different term selection methods to evaluate their 

effectiveness on improving the accuracy of bug 

assignment. 

 We propose an approach to reduce time and cost 

of bug triaging. The approach has two main steps: 

1) Build a classification model using the reduced 

terms to predict an experienced developer to 

fix a new reported bug. 

2) Redistribute the load of overloaded developers. 

 We perform experimental evaluation using four 

bug reports corpora obtained from real projects. 

The rest of the paper is organized as follows: Section II 

discusses related work. Section III describes the proposed 

approach. The experimental evaluation and discussion are 

presented in Section IV. Section V concludes the paper. 

II. RELATED WORK 
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Text categorization dominates the existing bug triage 

approaches. The first work of bug triage is a supervised 

text categorization approach using Naive Bayes [2]. 

Cubranic et al., evaluated their approach using bug 

reports from the Eclipse project. Their approach achieved 

30% accuracy. Anvik et al. [1] extended the work of [2] 

with a recommendation list, other supervised learning 

algorithms, and labeling heuristic. They reached preci- 

sion levels of 57% and 64% on Eclipse and Firefox 

respectivley. Matter et al. [5] used a vocabulary based 

expertise model of developers to improve bug triage. 

Their approach compared vocabulary found in the 

developers source code with vocabulary found in bug 

reports. They achieved 33.6% top-1 precision and 71.0% 

top-10 recall using eight years of the Eclipse project. 

Xuan et al. [6] proposed a semi-supervised learning 

approach with a weighted recommendation list for bug 

triage to solve the problem of the low quality of bug 

reports. Their approach improved the classification 

accuracy of bug triage by up to 6% on the Eclipse project. 

Park et al. [8] proposed a bug triaging approach which 

incorporated collaborative filtering and topic modeling to 

reduce the sparseness of the training data and enhance the 

quality of the triaging recommendation. Other approaches 

also address the problem of bug triaging such as the 

training set reduction approach [9] and the fuzzy-set 

approach [10]. 

III. APPROACH 

To reduce the time spent triaging, we present an 

approach for automatic triaging by recommending one 

experienced developer for each new bug report. Our 

approach uses a machine learning algorithm to 

recommend a developer who may be appropriate for 

resolving the bug. We formulate the bug triaging process 

as a classification task where instances represent bug 

reports, features represent the terms of the report, and the 

class label represents the developer who fixed this report. 

This approach can help the triage process in two ways: 1) 

it may allow a triager to process a bug more quickly, and 

2) it may allow a triager with less knowledge about 

systems and developers to perform bug assignments more 

accurately. Our approach requires a project to have had 

an open bug repository for some period of time in which 

the patterns of who solves what kinds of bugs can be 

learned. 

Fig. 1 shows a high level description of our proposed 

approach. Bug reports are unstructured data which may 

contain irrelevant words. Therefore, we apply the 

traditional text processing approach to transform the text 

data into a meaningful representation. We use the 

summary of bug reports as a description of bugs. The text 

processing includes white-spaces, punctuation, numbers, 

and stopwords removal. After that, the approach 

constructs a bug-term matrix weighted by term frequency. 

Then, different term selection methods are applied to 

reduce both the dimensionality and the sparseness of data. 

The next step is to build a classifier using the Naive 

Bayes approach. The classifier is trained using the 

training data set (bug reports). When a new report arrives, 

it follows the same steps to produce the reduced bug-term 

vector, and then it is assigned to a developer using the 

predictive model. 

 

Figure 1.  Our classification approach 

A. Representation Framework 

We have a collection of bug reports, B = {b1, … , b|B|}. 

Each bug report has a collection of term, T = {t1, … , t|T|}, 

and a class label (developer), c  C = {c1, … , c|C|}. 

B. Term Selection Methods 

Term selection methods are used to reduce the high 

dimensionality of term space by selecting the most dis- 

criminating terms for the classification task. The methods 

give a weight for each term inwhich terms with higher 

weights are assumed to contribute more for the 

classification task than terms with lower weights. In this 

work, we use five term selection methods. A short 

description of these methods appears below. 

1) Log Odds Ratio (LOR): Log Odds Ratio measures 

the odds of the word occurring in the positive class 

normalized by the negative class. The idea is that the 

distribution of terms on the relevant documents is 

different from the distribution of terms on the non-

relevant documents. It is defined as follows [11]: 

   (    )      
 ( | )    ( |  ̅) 

     ( |  )  ( |  ̅)
                  (1) 

where t and ci represent a term and a class respectively. 

2) Chi-Square (X2): In statistics, the X2 test is used to 

examine independence of two events. The events, X and Y, 

are assumed to be independent if P(XY)=P(X)P(Y). In 

term selection, the two events are the occurrence of the 

term and the occurrence of the class. Terms are ranked 

with respect to the following equation [12]: 
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where N is the observed frequency and E is the expected 

frequency for each state of term t and class c. CHI2 is a 

measure of how much expected counts E and observed 

counts N deviate from each other. 

3) Term Frequency Relevance Frequency (TFRF): The 

basic behind the TFRF method is that the more high 

frequency for a term in the positive category than in the 

negative category, the more contributions it makes in 

selecting the positive instances from the negative 

instances. The TFRF method is computed as follows [13]: 

             (  
 

    (   )
)                 (3) 

where a is the number of documents in the positive 

category which contain the term, c is the number of 

documents in the negative category which contain the 

term, and tf is the term frequency. 

4) Mutual Information (MI): Mutual information 

measures the mutual dependence of two random variables. 

MI computes X(t, c) as the mutual information (MI) of 

term t and class c. MI measures how much the presence 

and the absence of a term contributes to making the 

correct classification decision on c using this equation 

[12]: 

 (   )  ∑ ∑  (                 )             (4) 

       
 (         )

 (         )
                          (5) 

where U is a random variable that takes values et = 1 if 

the document contains term t and et = 0 if the document 

does not contain t. R is a random variable that takes 

values ec = 1 if the document is in class c and ec = 0 if the 

document is not in class c. 

5) Distinguishing Feature Selector (DFS): DFS is a 

new novel term selection method. It provides global 

discriminatory powers of the features over the entire text 

collection rather than being class specific. DFS considers 

the following requirements: 1) a term that occurs 

frequently in a single class and not in other classes is 

distinctive, 2) a term that rarely occurs in a single class 

and not in other classes is irrelevant, 3) a term that occurs 

frequently in all classes is irrelevant, and 4) a term that 

occurs in some of the classes is relatively distinctive. 

DFS assigns scores to the features between 0.5 (least 

discriminative) and 1.0 (most discriminative). It can be 

formally calculated as [14]: 

   ( )   ∑
 (  | )

 ( ̅|  )  ( |  ̅)  

 
                    (6) 

C. What about Cost? 

In bug assignment, some developers could be over- 

loaded (i.e., the approach may assign a large number of 

bug reports to one developer while assigning a small 

number of reports to another developer). This scenario 

will increase the cost of the bug triaging process. A direct 

approach to solve this problem is to predict three 

developers (class labels) for each new bug report. The 

approach assigns a bug report to the second developer if 

the first developer is overloaded and so on. This can be 

done by modifying the Naive Bayes algorithm. In Naïve 

Bayes, the class label of a bug report is predicted as c1 

inwhich P(c1|report) is the highest P(ci|report) where 

P(ci|report) is the probability of class ci given the bug 

report and ci  C. In our modified Naïve Bayes, the three 

class labels of a big report are predicted as classes c1, c2, 

and c3 which have the highest P(ci|report)  

IV. APPROACH 

In this Section, we report the results of our proposed 

approach on real datasets. A description of the datasets 

that are used is first shown then an analysis of the results 

is provided. 

A. Dataset 

We evaluate our approach based on bug repositories of 

Eclipse, NetBeans, and Maemo. In our work, we collect 

the bug reports that have the status of [Closed, Verified, 

and Resolved] and the resolution of [Fixed]. For each bug 

report, we extract the bug ID, the assignee, opened, 

changed, and the summary fields. For Eclipse, we choose 

all bug reports for SWT (7685). We also choose all bug 

reports for UI component from June 1st 2009 until 

October 27th, 2012 (7688). For NetBeans, we choose 

(11974) bug reports from June 1st, 2011 until October 

27th, 2012. For Maemo, we choose all bug reports (4505). 

We want to refine the training set further to remove 

reports that are assigned to inactive developers (i.e., 

developers who no longer work on the project or 

developers who have only fixed a small number of bugs). 

To determine active developers, other work considered 

only developers who have fixed a minimum number of 

bug reports as a threshold. This approach is not accurate 

(i.e., software teams usually change overtime) which may 

lead to assigning a new reported bug to a developer who 

no longer available. Thus, we consider developers who 

have fixed at least 25 bug reports in the last year. Table II 

shows a summary of the refined datasets. 

TABLE II.   

A SUMMARY OF BUG REPORTS. 

Name # of bug reports # of terms # of developers 

Eclipse-SWT 7561 6560 21 

Eclipse-UI 6791 6104 58 

NetBeans 11311 9284 56 

Maemo 3505 4659 33 

B. Results and Discussion 

We use the Naive Bayes classifier in our bug triaging 

approach and we recommend one developer for each new 

bug report to the triager. We apply each of the five term 

selection methods, LOR, X2, TFRF, MI, and DFS on four 

datasets described in the previous section. Term selection 

methods are implemented using R language version 

2.15.1. The WEKA tool is used for classification task1. 

The corpus for each dataset is created using the tm 

package2. Precision, recall, and F-score are used to 

evaluate the efficacy of applying different term selection 

methods on the classification task. Precision is the 
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number of correct recommendations divided by the 

number of recommendations made. Recall is the number 

of correct recommendations divided by the number of  

 
TABLE I.   

PRECISION AND RECALL OF CLASSIFICATION USING DISCRMINATING TERMS ON FOUR DATASETS. 

 
 

possible relevant developers. F-score is the harmonic 

mean of precision and recall. 

Give all authors’ names; use “et al.” if there are six 

authors or more. Papers that have not been published, 

even if they have been submitted for publication, should 

be cited as “unpublished” [4]. Papers that have been 

accepted for publication should be cited as “in press” [5]. 

In a paper title, capitalize the first word and all other 

words except for conjunctions, prepositions less than 

seven letters, and prepositional phrases. 

For papers published in translated journals, first give 

the English citation, then the original foreign-language 

citation [6]. 

For on-line references a URL and time accessed must 

be given.  

At the end of each reference, give the DOI (Digital 

Object Identifier) number as long as available, in the 

format as “doi:10.1518/hfes.2006.27224” 

C. Footnotes 

Number footnotes separately in superscripts 1, 2, …. 

Place the actual footnote at the bottom of the column in 

which it was cited, as in this column. See first page 

footnote for an example.  

For term selection methods, we apply different 

percent- ages of the terms (1% to 10%) to investigate the 

effect of using different number of terms on the accuracy 

of classification. It is important to note that the number of 

selected terms will be less than or equal to the percentage 

of selected terms (i.e., we may have some selected terms 

for two developers that are common and these terms will 

be counted once). For the baseline approach, we consider 

all the terms (after processing) in the bug summary 

weighted by term frequency. The class label for a bug 

report is represented as the developer who has fixed that 

bug report. 

For evaluation, the dataset is divided into training and 

testing sets. To obtain unbiased evaluation results, we 

perform a 10-fold cross-validation. Table I shows the 

precision and the recall for the datasets when different 

term selection methods are applied. P denotes precision 

while R denotes recall. For Eclipse-SWT, the precision 

and recall for the baseline approach are 0.290 and 0.270 

respectively. The best precision and recall for Eclipse- 

SWT is obtained using X2 when the percentage of terms 

is 2%. For Eclipse-UI, the precision and recall for the 

baseline approach are 0.014 and 0.014 respectively. The 

best precision for Eclipse-UI is obtained using X2 when 

the percentage of terms is 1% while the best recall is also 

obtained using X2 when the percentage of terms is 8%. 

For NetBeans, the precision and recall for the baseline 

approach are 0.014 and 0.015 respectively. The best 

precision for NetBeans is obtained using X2 when the 

percentage of terms is 1% while the best recall is 

obtained using M I when the percentage of terms is 10%. 

For Maemo, the precision and recall for the baseline 

approach are 0.344 and 0.365 respectively. The best 

precision for Maemo is obtained using X2 when the 

percentage of terms is 1% while the best recall is 

obtained using DF S when the percentage of terms is 4%. 

The results show that using term selection methods 

improve precision and recall over the baseline approach 

by up to 50% and 35% respectively.  

Fig. 2 shows the F-score of classification after apply- 

ing the term selection methods. The x-axis represents the 

percentage of selected terms and the y-axis represents the 

F-score measure. For the Eclipse-SWT dataset, the best 

F-score for LOR (0.319) is achieved when the percentage 

of terms is 1% (the number of selected terms is 46). The 

best F-score for X2 (0.341) is achieved when the 

percentage of terms is 2% (the number of selected terms 

is 111). The best F-score for TFRF (0.277) is achieved 

when the percentage of terms is 10% (the number of 

selected terms is 333). The best F-score for MI (0.325) is 

achieved when the percentage of terms is 1% (the number 

of selected terms is 41). The best F-score for DFS (0.333) 

is achieved when the percentage of terms is 2% (the 

number of selected terms is 131). It is clear that X2 

achieves the best F-score while the number of selected 

terms is small (46). The baseline F-score for Eclipse-

SWT is 0.280 and the number of terms is 6560. Therefore, 
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X2 achieves 6.1% improvement over the baseline 

approach with only 111 selected terms. Moreover, the X2 

method outperforms other selection methods for all of the 

selected terms (0.01 to 0.1). 

For all datasets, X2 achieves the best F-score and 

TFRF achieves the lowest F-score. X2 improved the F- 

score over the baseline approach by 6.2%, 38.2%, 26.5%, 

and 12.1% on Eclipse-SWT, Eclipse-UI, NetBeans, and 

Maemo respectively. 

 

 

 

 

 

Figure 2.  F-score of classification on four datasets 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented an approach to 

automatically assign bug reports to developers with the 

appropriate expertise. Our approach used term selection 

methods to choose the most discriminating terms to 

describe bug reports. We then built a predictive model 

using the Naive Bayes classifier to predict a developer for 

each newly coming bug report. We also incorporated cost 

in order to redistribute bugs to re-balance the load 

between developers. 

Our experimental results showed that the X2 term 

selection method outperforms the other selected term 

selection methods in terms of the F-score for all datasets. 

Moreover, X2 improved the F-score over the baseline 

approach by 6.2%, 38.2%, 26.5%, and 12.1% on Eclipse- 

SWT, Eclipse-UI, NetBeans, and Maemo respectively. 

The experimental results demonstrate that our proposed 

approach is very effective for the bug assignment 

problem. 

In the future, we want to investigate the effect of using 

other term selection methods. Furthermore, we want to 

implement and validate our modified version of Naive 

Bayes. 
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