A Game-based Learning System using the ARCS Model and Fuzzy Logic

Ming-Hsiung Ying
Chung Hua University/Department of Information Management, HsinChu, Taiwan
Email:mhying@chu.edu.tw

Kai-Ting Yang
Chung Hua University/Department of Information Management, HsinChu, Taiwan
Email:m09910008@chu.edu.tw

Abstract—Traditional textbook may be replaced by digital media or e-Material. Most of the e-learning system mainly teaching material includes text, picture, video, but lacked for interaction between students and vivid materials. Online games are conducive to learning because online games have greatly interaction and competitiveness among players to enhance student motivation to learn. Therefore, this work developed a multiplayer online game-based learning system (MOGLS), which based on the ARCS motivation model. The MOGLS allows learners to acquire Enterprise Resource Planning knowledge. The MOGLS system provides learning record, rankings record, end-of-test feedback to motivate learners to learn. By competition among students, the MOGLS system would facilitate and enhance learning. Finally, we analyzed the system effectiveness and system satisfaction for MOGLS system. The empirical results show that multiplayer online game-based learning system not only helps students to obtain the ERP certification, the system also get a good utility evaluation in system effectiveness and satisfaction.

Index Terms—game-based learning, ARCS motivation model, fuzzy logic , information system success model

I. INTRODUCTION

The prominent role of e-Learning in information technology has led to advances in recent years. Given the efficiency of e-learning in education, digital media or e-Materials may replace traditional textbook in the near future. While offering text, pictures, and video, most teaching materials in an e-learning system lack interaction between students and vivid materials. Online games facilitate learning because online games create a significant amount of interaction and competitiveness between players [1][2].

John Keller developed the motivation model of attention, relevance, confidence, and satisfaction (ARCS), capable of increasing student motivation to learn [3][4][5].

Based on the ARCS motivation model, this work develops a novel multiplayer online game-based learning system (MOGLS), which creates a significant amount of greatly interaction and competitiveness among players to enhance student motivation to learn.

The proposed MOGLS systems allows for learners to acquire knowledge of enterprise resource planning by providing a learning record, ranking record, end-of-test feedback to motivate students to learn. Through interaction and competition among students, the MOGLS system greatly facilitates learning.

In particular, this work has the following objectives:
1) To apply the ARCS motivation model, in which a game-based learning system is formed based on fuzzy theory.
2) To evaluate the system components and scoring mechanism of MOGLS, as well as develop rules of fuzzy weighted scoring to calculate the total student score.
3) To facilitate and increase the efficiency of learning in order to develop an online learning system environment and provide a competitive and interactive environment to motivate student learners.

II. LITERATURE REVIEW

A. Game-Based Learning

Among the advantages of game-based learning (GBL) over traditional learning methods include its liveliness, vibrant nature, and ability to draw student attention. Importantly, GBL can engage and motivate students to learn.

In particular, GBL is characterized by its interactive richness in user interface, degree of difficulty options, timely feedback responses, and prolific sounds that increase student interest in learning. In sum, GBL actively promotes learning, increases student motivation to learn and reduces stress in learning [6][7][8].

B. References

Designed by John Keller, the ARCS motivation model emphasizes motivation, implying that students must actively participate in an activity to achieve a specific goal. Among the many well established motivation theories integrated in the ARCS motivation model include expectancy-value, achievement motivation, and social learning. The ARCS motivation model focuses mainly on strengthening systematic instructional design and designing materials that encourage student participation.
Four factors in the ARCS motivation model that explain motivation are attention, relevance, confidence, and satisfaction. Keller indicated that student motivation must be compatible with these four factors to increase the motivation to learn. The following discussion introduces the four factors of the ARCS motivation model, with each factor containing three motivational learning strategies [9][10][11] (TABLES I and II).

TABLE I.

<table>
<thead>
<tr>
<th>The Factors in the ARCS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
</tr>
<tr>
<td>Attention</td>
</tr>
<tr>
<td>Relevance</td>
</tr>
<tr>
<td>Confidence</td>
</tr>
<tr>
<td>Satisfaction</td>
</tr>
</tbody>
</table>

TABLE II.

<table>
<thead>
<tr>
<th>The ARCS Motivation Model of Motive of Learning Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
</tr>
<tr>
<td>Attention</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Relevance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Confidence</td>
</tr>
<tr>
<td>Satisfaction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Satisfaction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

C. Fuzzy Theory

Pioneered by Zadeh in 1965, the fuzzy theory fails to clearly define fuzzy phenomenon in life [12]. Individual feelings are subjective, and everyone’s statement may differ among one other. It is not everything can be expressed dichotomy only (true or false, 1 or 0, right or wrong) in life. An example is “the weather temperature” and “score”. One way of defining a set A is in terms of its membership function \(\mu_A(x) \). The usual membership functions with values in [0, 1]. Membership functions can either be chosen by the user arbitrarily, based on the user’s experience. There are different shapes of membership functions; triangular, trapezoidal, piecewise-linear, Gaussian, bell-shaped, etc [13].

D. Information System Success Model

DeLone & McLean(1992) proposed a taxonomy and an interactive model success model as frameworks for conceptualizing IS success. They identified six variables of IS success: system quality, information quality, use, user satisfaction, individual impact, and organizational impact [14]. In 2003, Delone & McLean proposed a revised model, the updated model is shown in Fig. 1. A key addition in the updated model was the inclusion of service quality as an additional aspect of information system success. Delone & McLean also recommended assigning different weights to system quality, information quality, and service quality depending on the context and application of the model[15][16].

III. RESEARCH DESIGN

A. Research Methods

This work develops a multiplayer online game-based learning system (MOGLS), which is based on the ARCS motivation model. Students can acquire knowledge of enterprise resource planning by using the MOGLS system, which facilitates learning through interaction and competition among students.

This system design adopts Client/Server architecture; the server adopts Multi-Thread; the database server uses Microsoft SQL Server 2005; and the interface design adopts Windows form by Visual Studio 2010.
B. System Architecture

This proposed learning system was provided mainly to students who enrolled in an undergraduate course of Enterprise Resource Planning for practice and examinations. Figure 1 illustrates features such as the user interface, manager interface, learning logs module, and examination database. Each module and database are described as follows.

1) Test module: This module provides four test modules to enhance student motivation to learn and keep their attention with test of variability by informing the practice results and end-of-test feedback immediately.

a) Individual exercise module: This module can allow students to select the chapter they want to practice. Students can use a help tool during practice to increase interest. Additionally, students’ scores allow them to acquire nonus points to increase their learning motivation and confidence.

b) Test of multiple group module: This module provides competition among four players. Players are chosen based on their competency, according to the same level. If the number of players not enough that will generate the same level of virtual players by computer. This feature avoids student feelings of frustration and increases their confidence. Instead, this feature attracts student attention while increasing competition among students.

c) Individual challenges module: This module provides three difficulty levels of items, distinguished into easy, medium and difficult levels for students. Each student can select any one difficulty level of items to test themselves. Students having answered correctly can select any one difficulty level of items to test themselves. Students having answered correctly can acquire nonus points to increase their learning motivation and confidence.

d) Mock exams module: This module simulates certification examinations with respect to knowledge of Enterprise Resource Planning in order to increase student confidence.

2) Item selection module: This module selects items based on the four test test modules. To maintain equity, each answer option sequence is randomly generated by a computer.

a) Individual exercise module: To increase student confidence, this module selects items that include their records of wrong answers and random questions.

b) Test of multiple group module: This module provides different difficulty levels of item based on the student competency. As students upgraded to higher levels, difficulty of items is also increased, to stimulate student motivation to learn and challenge advanced questions.

c) Individual challenges module: This module selects a specify degree of difficulty of items for student to be tested, in which the item difficulty is determined by students themselves.

d) Mock examinations module: This module simulates a certification examination, which contains 100 random items from examinations database.

3) Calculating score module: Upon completion of the test, this module calculate this test score and re-calculates the total score of this module and the other four test modules. To build student confidence, students can understand how to study diligently so that can pass the grading evaluation.

a) Single scoring module: The module provides a test containing 10 multiple choice items, with 10 points per item.

b) Test total score module: All test scores in this test module are calculated.

c) Fuzzy total score Module: The total score uses the fuzzy theory in four test modules. Partitioning of the score includes system participation rate as 10% of the total score, individual exercise as 30% of the total score, multiple group testing as 30% of the total score, individual challenges as 15% of the total score and mock examinations as 15% of the total score.

4) Learning logs module: This module provides some query functions for students to evaluate their own performance in the system, including login information, personal ranking records, achievement records, and diagram of learning curves. Additionally, students check their test records of wrong answers and examination score record of each test. In addition to revealing learning achievement, MOGLS satisfies the self-actualization ability of students.

5) Members record module: This module provides personal information of student, including student number, email, game nickname, experience, and level. Personal information of students is also stored in the members record database.

6) Examinations database: The items are stored for each chapter.

7) Learning logs database: The learning logs of students are stored.
8) Answering wrong records database: Their records of wringly answered items are stored.
9) Test results database: Examination records of each test are stored.
10) Members record database: Personal information of students is stired. including details such as student number, email, game nickname, experience, and level.
11) Examinations management module: This module allows administrator to insert, delete, modify, and query items.
12) Items analysis module: This module allows administrator to check the correct answer rate, wrong answer rate and difficulty index of items.
13) Learning logs analysis module: This module provides statistical analysis of learning scores so that administrators can assess the learning performance of students quickly.
14) Test results analysis module: This module provides statistical analysis of examination score records so that administrators can assess the learning performance of students quickly.
15) Members management module: This module allows administrators to manage students’ permission-related information.

C. Scoring Rules
1) Test total score: These rules help to build student’s confidence. This is owing to that one poor score does not significantly affect the total score.

\[T(i) = \frac{\sum_{i=1}^{n} \text{Score}_{ij}(x+1-i)}{(n+1-i)} \]

(1)

Where \(i \) denotes the number of test scores in which the range between 1 and \(n \) denotes total numbers of test scores. Also, \(\text{Score}_{ij} \) denotes number of test scores several times.

2) Fuzzy weighted scoring

Order of merit based on the Ministry of Education of the Republic of China include a grade of A, which is more than 90 points; a grade B, which is between 80 and 89 points; a grade C, which is between 70 and 79 points; a grade D, which is between 60 and 69 points; and a grade of E, which is below 60 points.

Step1: In MOGLS, evaluation factors are divided into five items in which the weight of system participation rate is 10%; the weight of individual exercise is 30%; the weight of multiple group of tests is 30%; the weight of individual challenges is 15%; and the weights of mock examinations is 15%. The weights of evaluation factors set are as follows:

\[S = \{0.1, 0.3, 0.3, 0.15, 0.15\} \]

Step2: This work adopts the trapezoidal membership function, in which the membership function is as follows:

\[\mu_a(x) = \begin{cases}
0, & x \leq 87.5 \\
-17.5, & 87.5 \leq x \leq 92.5 \\
1, & 92.5 \leq x \leq 100
\end{cases} \]

\[\mu_b(x) = \begin{cases}
0, & x \leq 77.5 \\
-15.5, & 77.5 \leq x \leq 82.5 \\
1, & 82.5 \leq x \leq 87.5
\end{cases} \]

\[\mu_c(x) = \begin{cases}
0, & x \leq 67.5 \\
-13.5, & 67.5 \leq x \leq 72.5 \\
1, & 72.5 \leq x \leq 77.5
\end{cases} \]

\[\mu_d(x) = \begin{cases}
0, & x \leq 57.5 \\
-11.5, & 57.5 \leq x \leq 62.5 \\
1, & 62.5 \leq x \leq 67.5
\end{cases} \]

\[\mu_e(x) = \begin{cases}
0, & 62.5 \leq x \\
0, & 0 \leq x \leq 57.5
\end{cases} \]

Step3: Membership function and fuzzy matrix operations are computed as follows:

a) First evaluation factors (system participation rate): \(R_A = \{R_{A1}, R_{A2}, R_{A3}, R_{A4}, R_{A5}\} \)
b) Second evaluation factors (individual exercise): \(R_B = \{R_{B1}, R_{B2}, R_{B3}, R_{B4}, R_{B5}\} \)
c) Third evaluation factors (multiple group of test): \(R_C = \{R_{C1}, R_{C2}, R_{C3}, R_{C4}, R_{C5}\} \)
d) Fourth evaluation factors (individual challenges): \(R_D = \{R_{D1}, R_{D2}, R_{D3}, R_{D4}, R_{D5}\} \)
e) Fifth evaluation factors (mock exams): \(R_E = \{R_{E1}, R_{E2}, R_{E3}, R_{E4}, R_{E5}\} \)

Step4: Composition of fuzzy relations is as follows:

\[C \times S \]

\[C = \begin{bmatrix}
R_{A1} & R_{A2} & R_{A3} & R_{A4} & R_{A5} \\
R_{B1} & R_{B2} & R_{B3} & R_{B4} & R_{B5} \\
R_{C1} & R_{C2} & R_{C3} & R_{C4} & R_{C5} \\
R_{D1} & R_{D2} & R_{D3} & R_{D4} & R_{D5} \\
R_{E1} & R_{E2} & R_{E3} & R_{E4} & R_{E5}
\end{bmatrix} \times \begin{bmatrix}
0.1 & 0.3 & 0.3 & 0.15 & 0.15
\end{bmatrix} \]

C = \{R_{S1}, R_{S2}, R_{S3}, R_{S4}, R_{S5}\}
Step 5: Defuzzifierion formulas is as follows:

\[
\begin{align*}
\mu_A &= (92.5 + 100)/2 = 96.25 \\
\mu_B &= (82.5 + 87.5)/2 = 85 \\
\mu_C &= (72.5 + 77.5)/2 = 75 \\
\mu_D &= (62.5 + 67.5)/2 = 65 \\
\mu_E &= (0 + 57.5)/2 = 28.75
\end{align*}
\]

D. Data Collection, and Measure

To test the system effectiveness and system satisfaction of MOGLS were investigated via a survey. Prior to conducting the survey, we chose two teachers and ten undergraduate students of MIS programs to pilot test the survey instruments. The feedback from pilot testing was useful for ensuring the content validity and checking the appropriateness and answerability of the items of questionnaire.

A 24-item survey questionnaire was developed to obtain the response from the students about their opinions on various research constructs. The questionnaire of this study consists of two research constructs. The questionnaire has three main sections. The first section contained 4 items sought for demographic information. In the second section, 14 items were used to measure the variables involved “system effectiveness”. In the last section, 10 items were used to measure the variable involved “system satisfaction”.

The items of system effectiveness were developed based on the Keller’s ARCS model, and five-point Likert-type scales were used (1=strongly disagree to 5= strongly agree). The system satisfaction were measured with the scale developed by DeLone & McLean (2003), and five-point Likert-type scales were used (1=strongly disagree to 5= strongly agree).

IV. System Representation

A. Learning System Based on ARCS Motivation Model

The MOGLS system allows students to be tested by the variability test module, subsequently raising student motivation to learn and their curiosity. For students aware that the learning system is related to ERP courses and have mock examinations, they are more familiar with enterprise resource planning-related knowledge. Students then use different tests, understand their learning circumstances, and then build their confidence. Finally, students involved in various tests and challenges can achieve increasingly more learning objectives and subsequently build their confidence. Owing to limited space of this article, use of the ARCS motivation model in this system is briefly explained as follows:

1) Attention strategy

a) Students can use the help tool during practice to increase their interest.

![Figure 3. First Attention Strategy.](image3)

b) Players are chosen according to a similar competency level in order to encourage competition among students.

![Figure 4. Second Attention Strategy.](image4)

2) Relevance strategy

a) Students familiarize themselves with enterprise resource planning-related knowledge by taking mock examinations.

![Figure 5. First Relevance Strategy.](image5)
b) Use of the learning system in ERP courses encourages students to study diligently.

3) Confidence strategy
 a) Students understand that their diligent study allows them to achieve a favorable grading evaluation and acquire bonus points to increase their learning motivation and confidence.

 b) MOGLS Provides three levels of difficulty for each item, distinguishes as easy, medium and difficult levels for students. Each student can choose any one difficulty level of items to test themselves and enhance interest in learning and degree of satisfaction.

4) Satisfaction strategy
 Students can monitor their learning achievement records and satisfy their own self-actualization capability.

V. DATA ANALYSIS

A. Descriptive Analysis
 The results show that the sample (n=33) include most respondents are male (66.7%), and they are mostly undergraduate students (72.7%). Most respondents are junior student (39.4%).

<table>
<thead>
<tr>
<th>Respondent’s profile</th>
<th>Freq.</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>22</td>
<td>66.7</td>
</tr>
<tr>
<td>Female</td>
<td>11</td>
<td>33.3</td>
</tr>
<tr>
<td>Degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate level</td>
<td>24</td>
<td>72.7</td>
</tr>
<tr>
<td>Graduate level</td>
<td>9</td>
<td>27.3</td>
</tr>
<tr>
<td>Freshman Year</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Junior</td>
<td>13</td>
<td>39.4</td>
</tr>
<tr>
<td>Senior</td>
<td>11</td>
<td>33.3</td>
</tr>
<tr>
<td>First year master degree</td>
<td>4</td>
<td>12.1</td>
</tr>
<tr>
<td>Second year master degree</td>
<td>5</td>
<td>15.2</td>
</tr>
</tbody>
</table>

B. Results of Reliability Tests
 Prior to conducting further analyses it is important to assess reliability in the measurement scale. While Cronbach’s alpha greater than 0.7 are employed to prove the reliability of the instrument. The results of reliability test present Cronbach’s alpha greater than 0.7 for all the constructs. The results of reliability test for the construct are shown in Table IV.
C. Measurement Results for Research Variables

Table V to VI presents descriptive statistics for each of the questionnaire items of the relevant research variables, and Table VII present descriptive statistics for each of research construct. There are 10 items of system effectiveness, and 14 items of system satisfaction. Table xxx10 shows that system effectiveness is high for the respondents, which is indicated by mean score from 3.67 to 4.39.

Table V shows that system effectiveness is high for the respondents, which is indicated by mean score from 4.03 to 4.45.

TABLE V.
DESCRIPTIVE ANALYSIS FOR SYSTEM EFFECTIVENESS

<table>
<thead>
<tr>
<th>Construct</th>
<th>Number of Items</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>system effectiveness</td>
<td>10</td>
<td>0.897</td>
</tr>
<tr>
<td>system satisfaction</td>
<td>14</td>
<td>0.876</td>
</tr>
</tbody>
</table>

The empirical results show that MOGLS not only helps students to obtain the ERP certification, the system also get a good utility evaluation in system effectiveness and satisfaction.

Based on the ARCS motivation model, the proposed MOGLS system has the following benefits:

1) MOGLS, a multiplayer online game-based learning system, allows learners to acquire enterprise resource planning knowledge. In addition to raising the intrinsic motivation of students’ active learning and enhancing their learning performance, the proposed system can raise the completion rate for students participating in the certification examination for Enterprise Resource Planning.

2) The MOGLS system is highly promising for use in the digital learning sector and academia.

CONCLUSIONS

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 100-2410-H-216-002.

ACKNOWLEDGMENT

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 100-2410-H-216-002.

REFERENCES

Ming-Hsiung Ying: Dr. Ying is an assistant professor of information management at the Chung Hua University, HsinChu, Taiwan. He received the PhD in Management Information System from National Chengchi University, Taipei, Taiwan in 2006. His research interests center on E-learning, knowledge management, database system, and enterprise resource planning.

Kai-Ting Yang: She is a Master student at the Department of Information Management, Chung Hua University, Taiwan. Her major is information management and E-learning.