
An I/O Scheduling Algorithm for Soft Real-time
Services Oriented iSCSI Storage System

ZHA Qiwen

National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences,
Beijing, China

University of Chinese Academy of Sciences, Beijing, China
Email: zhaqw@dsp.ac.cn

ZHANG Wu, ZENG Xuewen and GUO Xiuyan

National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences,
Beijing, China

Email: {zhangw, zengxw, guoxy}@dsp.ac.cn

Abstract—iSCSI storage system is the most widely
used network storage system, and soft real-time
services are the most common type of business.
However, the traditional I/O scheduling algorithms
can't work very well for iSCSI storage system
oriented soft real-time services. In this paper, the
mathematical model of I/O scheduling in iSCSI
storage system for soft real-time services is analyzed
and discussed, and it proves that this is a
multi-objective optimization problem. HB-SCHED is
proposed in this paper, which is a heuristic I/O
scheduling algorithm for soft real-time services
oriented iSCSI storage system. The simulation results
show that HB-SCHED not only has better quality in
terms of real time than SCAN and can gain higher
disk throughput than EDF, but also can adjust the
weights between real time and disk throughput by
changing the parameter value. HB-SCHED can be
well adopted in soft real-time services oriented iSCSI
storage system.

Index Terms—I/O scheduling, iSCSI, soft real-time,
multi-objective optimization

I. INTRODUCTION
With the rapid growth of data on the network, a lot of

information needs to be processed and transmitted
through the network, which has higher requirements of
the storage system in terms of capacity, performance,
availability, scalability and manageability.

iSCSI (Internet Small Computer System Interface) is a
new network protocol for network storage developed by
IETF (Internet Engineering Task Force). iSCSI transmits
the SCSI (Small Computer System Interface) commands
through the IP network, so that it can transfer data on the
network more convenient than local storage and enables
remote management of the system. Because of the large
capacity, flexible deployment, low cost and good
extensibility of the network storage systems based on

iSCSI, iSCSI is widely supported by the hardware and
software industry and used in a variety of service
systems.

In recent years, the soft real-time services are rising
rapidly, such as electronic commerce, online transactions,
real-time database systems, multi-media, and
communication systems. In this type of service systems,
to ensure the deadline of every task is impossible. The
goal of the system is to ensure the deadline of the tasks as
much as possible. Responding the task after deadline is
also acceptable, but the QoS (Quality of Service) of the
task is worse. The missing of deadlines of soft real-time
service requests will not result disastrous consequences
for the system [1].

Figure 1 shows the block diagram of iSCSI storage
system for soft real-time services. The I/O performance
of the system directly affects the efficiency of system, so
the I/O performance optimization is very important for
the overall performance of systems [2]. I/O scheduling
algorithm directly determines the I/O performance of the
systems, so it is of great importance to study I/O
scheduling algorithm. Especially, under the environment
of the widely use of iSCSI and the rapid growth of soft
real-time services, to study the I/O scheduling algorithm
for soft real-time services oriented iSCSI storage system
has become a very important and urgent subject.

The traditional I/O scheduling algorithms rarely take
into account the network factors，when applied at a iSCSI
storage system，it will lead to performance fluctuation.
Most of the existing real-time I/O scheduling algorithms
only consider the situation of determine deadline [3].
However, in soft real-time service system, such as
multi-media, VOD (Video-On-Demand) and iSCSI
storage system, the deadline of I/O request is uncertain.
This paper proposes a heuristic I/O scheduling algorithm
HB-SCHED. The algorithm considers the impact on the
iSCSI storage system by the network delay, and analyzes
the I/O request of soft real-time service through the fuzzy
sets theory. The simulation results show that HB-SCHED
can be well adopted in soft real-time services oriented

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1785

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1785-1792

iSCSI storage system.
The rest of this paper is organized as follows. The

traditional I/O scheduling algorithms are reviewed in
Section 2. Section 3 proposes the mathematical model of
I/O scheduling in iSCSI storage system for soft real-time
services. Section 4 proposes a heuristic I/O scheduling
algorithm to solve the model proposed in section 4.
Section 5 simulates the algorithm and analyzes the
experimental results. Section 6 gives the concluding
remarks finally.

I/O scheduling

SCSI/iSCSI

TCP/IP
IP network

iSCSI diskI/O request queue

…

Soft real-time service applications

I/O request

Figure 1. The block diagram of iSCSI storage system

for soft real-time services

II. THE TRADITIONAL I/O SCHEDULING ALGORITHMS

The scholars have done a lot of research of I/O
scheduling algorithms [4].

FCFS (First Come First Serve) is a very simple I/O
scheduling algorithm. It schedules the requests according
to the arrival sequence of the request. The advantage of
FCFS is its fairness for all requests, but on the other hand
its performance is poor [5] [6].

SSTF (Shortest Seek Time First) selects the request
which is nearest to the current disk head position to
schedule. The purpose of SSTF is to minimize the
movement of the head [7]. SSTF pays attention to seek
optimization, but it will cause some requests waiting to
serve for a long time, even result in starvation
phenomenon. Therefore, SSTF is not suitable for
real-time services, such as multi-media [8].

SCAN [9] is a widely used I/O scheduling algorithm. It
is used in Linux operate system. It selects the request
which is nearest to the current head position and in the
direction of the head’s motion to be next served request.
This algorithm aims to provide a high I/O bandwidth by
minimizing the total seek time and rotational latency.
However, no time constraint has been considered in this
algorithm. Therefore, SCAN cannot be used in the real
time system, where each request has a deadline and must
have been served before its deadline.

There are some variants of SCAN, such as C-SCAN,
LOOK and C-LOOK [10] [11]. The C-SCAN (Cyclical
SCAN) algorithm replaces the bidirectional scan with a
single direction of arm travel [12]. LOOK algorithm,

another SCAN variation, changes the scanning direction
if there are no pending requests in the current direction of
travel [13]. C-SCAN and LOOK can be combined,
resulting in the C-LOOK algorithm.

The above algorithms are all non-real-time algorithm.
Real-time scheduling algorithm is an important branch
[14] [15]. EDF (Earliest Deadline First) is used in
real-time systems when requests have to be served within
deadlines [16]. EDF is a natural choice for the real-time
disk I/O scheduling, but it has a large overhead of seek
time and rotational latency and thus results in a poor
utilization of the disk.

Several hybrid algorithms, which combine EDF with
conventional disk scheduling algorithms, are proposed in
recent years [17] [18] [19]. FD-EDF (Feasible Deadline
EDF) serves requests using the EDF algorithm if there are
requests with feasible deadlines in the waiting queue;
otherwise, it serves the queue using FCFS. SCAN-EDF
[20] serves the requests with EDF and requests with the
same deadline using SCAN algorithm. This would
efficiently make use of the disk bandwidth in addition to
maintaining the time constraints. However, the
performance of SCAN-EDF depends on the requests that
have the same dead-lines [21] [22].

The I/O scheduling algorithms discussed above do not
take into account the effects of network in the iSCSI disk
system and the characteristics of soft real-time services.
This paper analyzes the mathematical model of I/O
scheduling in iSCSI storage system for soft real-time
services, and then HB-SCHED is proposed, which is a
heuristic I/O scheduling algorithm.

III. THE MODLE OF THE PROBLEM

A. Soft Real-time Service Requests and Fuzzy Sets
Soft real-time services usually have a deadline, but the

deadline is not determined. This kind of problem can be
represented by fuzzy set [23] [24] [25]. This paper uses
fuzzy interval to represent the request deadline, and fuzzy
membership function is used as the QoS of the
completion time of the request [26] [27].

Figure 2 shows the membership function of the fuzzy
deadline. For fuzzy deadlines, if the request is completed
before the time d, the QoS is the largest. But if the
request is not completed before time d, the scheduling
system will not immediately cancel the request, and the
request is allowed to be completed before the time D.
Service quality may change over time as the membership
function. Completed time of the request after time D is
not allowed in the scheduling system.

1786 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Figure 2. The membership function of the fuzzy deadline

B. Problem Description
In the soft real-time services oriented iSCSI storage

system, let the total request queue be Q[q1, q2,…, qn]. We
define that qi (ri,di,Di,sti,leni) is a I/O request. Where ri is
the time of arrival, [di, Di] is the fuzzy deadline interval,
sti is the seek address, leni is the request length. Let the
initial address of the head be st0.

Define P[p1, p2,…, pn] as one of the schedule of Q. pi is
one of the request in Q. It is equivalent to the 0-1
programming problem by (1). The meaning of “xi,j = 1” is
that the first i scheduled request is qj. And “xi,j = 0” means
that the first i scheduled request is not qj.

11 12 1

21 22 2
,

1 2

...
0, ...

 , (1)
1,

...

n

i jn
i j

i j

n n nn

x x x
p qx x x

X x
p q

x x x

⎡ ⎤
⎢ ⎥ =⎧⎢ ⎥= = ⎨ ≠⎢ ⎥ ⎩⎢ ⎥
⎣ ⎦

Disk service time is mainly composed of three parts as
follow.

• Seek time, the time disk head moving from the
current position to the request track.

• Rotational latency, the waiting time for the required
sector rotating to the head after the head moving to
the right track.

• Data transmission time, it is mainly determined by
RTT (Round-Trip Time) of the network in iSCSI
storage system.

The rotational latency always keeps approximately
constant and much less than seek time, so this paper
considers only seek time and data transmission time.

Let the seek time function be S(l), and l be the seek
length. We assume that the network is a high speed LAN
(local area network). RTT is a constant and RTT=rtt.

Define the service time of pi is ci, so we can easily get
(2) as follow.

, 1,
1 1

(| (*) (*) |) (2)
n n

i i j j i j j
j j

c rtt S x st x st−
= =

= + −∑ ∑

Figure 3 shows the time and the seek address of
requests.

Figure 3. The time and seek address of requests

The I/O request is usually non-preemptive. We assume
that the scheduling time of the first I/O request is 0.
Define the scheduling time of pi is ti. It is easy to see (3)
as follow.

1

1
1

0 , (3)
i

i j
j

t t c
−

=

= =∑

Let the membership function of pi be fi(t), and define
the QoS of pi to be QoSi. It is easy to see (4) as follow.

1

() () (4)
i

i i i i i j
j

QoS f t c f c
=

= + = ∑

Substituting (2) and (3) into (4), we obtain (5) as
follows.

, 1,
1 1 1

(* (| (*) (*)) |) (5)
i n n

i i j k k j k k
j k j

QoS f i rtt S x st x st−
= = =

= + −∑ ∑ ∑

Define F(X) as the QoS of X, so we can get (6) as
follow.

1
() (6)

n

i
i

F X QoS
=

=∑

Obviously, one of the goals of the scheduling
algorithms is max F(X).

On the other hand, the disk throughput is also of great
importance to the disk performance. Define T(X) is the
finish time of all requests, so we can see that:

, 1,
1 1 1 1

() * (| (*) (*) |) (7)
n n n n

i i j j i j j
i i j j

T X c n rtt S x st x st−
= = = =

= = + −∑ ∑ ∑ ∑

1

1 (8)
()

n

i
i

throughput len
T X =

= ∑

We can see from (8) that the T(X) must be a minimum
in order to make the throughput maximum. So another
goal of the scheduling is min T(X).

C. Constraint Conditions Analysis
In order to describe the mathematical model of the

problem more clearly, the constraint conditions are
analyzed as follow.

• It is easy to get the constraint condition as follow.

,
1

,
1

1 , 1, 2,..., (9)

1 , 1, 2,..., (10)

n

i j
i

n

i j
j

x j n

x i n

=

=

≤ =

≤ =

∑

∑

• For all the requests, the completion time must be
earlier than the deadline. So there is another
constraint condition as follow.

, 1,
1 1 1

* (| (*) (*) |)

1,2,...,

i n n

j k k j k k i
j k j

i rtt S x st x st D

i n

−
= = =

+ − ≤

=

∑ ∑ ∑ (11)

• For all the requests, the arrival time ri must be

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1787

© 2013 ACADEMY PUBLISHER

earlier than the scheduling time, so we can get the
constraint as follow.

1

, 1,
1 1 1

(1)* (| (*) (*) |)

2,3,...,

i n n

j k k j k k i
j k j

i rtt S x st x st r

i n

−

−
= = =

− + − ≥

=

∑ ∑ ∑ (12)

D. The Mathematical Model
Based on the analysis above, we can clearly know that

I/O scheduling algorithm for soft real-time services
oriented iSCSI storage system discussed in this paper is a
0-1 programming multi-objective optimization problem
as follow.

,
1

,
1

, 1,
1 1 1

1

, 1,
1 1 1

max (),
min (),

1 , 1, 2,..., ;

1 , 1, 2,..., ;

* (| (*) (*) |) . .

 1, 2,..., ;

(1)* (| (*) (*) |)

n

i j
i

n

i j
j

i n n

j k k j k k i
j k j

i n n

j k k j k k
j k j

F X
T X

x j n

x i n

i rtt S x st x st Ds t

i n

i rtt S x st x st

=

=

−
= = =

−

−
= = =

≤ =

≤ =

+ − ≤

=

− + −

∑

∑

∑ ∑ ∑

∑ ∑ ∑
 2,3,..., ;

ir

i n

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ ≥⎪
⎪

=⎪⎩

(13)

IV. THE SOLUTION OF ALGORITHMS

A. Algorithm Description
In order to simplify the problem, we make the

assumptions as follow in this paper.
• It is a simple network environment, and the value of

rtt is fixed.
• The seek time function S(l) is a simple linear

function as follow.
() , 0S l rl r= > (14)

• Simplify the membership function of service quality
as follow.

1 ,
1 , () (15)

0 ,

i

i
i ii

i i i i

i

t d
Dt d t Df t

d D D d
t D

<⎧
⎪⎪ + ≤ ≤= ⎨ − −⎪
⎪ >⎩

According to the above assumptions, the mathematical
model can be simplified as the following multi-objective
optimization problem.

, 1,
1 1 1 1

, 1,
1 1 1

,
1

,
1

,

() (* | (*) (*)) |) ,

() | (*) (*) | ,

max () ,
min () ,

1 , 1, 2,...,

1 , 1, 2,...,
. .

| (*)

n i n n

i j k k j k k
i j k j

n n n

i j j i j j
i j j

n

i j
i
n

i j
j

j k k

H X f i rtt x st x st

G X x st x st

H X
G X

x j n

x i n
s t

r x st

−
= = = =

−
= = =

=

=

= + −

= −

≤ =

≤ =

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

∑

1,
1 1 1

1 1

, 1,
1 1 1

(*) | - * , 1, 2,...,

| (*) (*) | (1)* , 2,3,...,

i n n

j k k i
j k j

i n i

j k k j k k i
j k j

x st D i rtt i n

r x st x st r i rtt i n

−
= = =

− −

−
= = =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪ − ≤ =
⎪
⎪
⎪ − ≥ − − =⎪⎩

∑ ∑ ∑

∑ ∑ ∑

(16)

This paper translates the multi-objective optimization

problem into single objective optimization problem by
building an evaluation function as follow.

() () (1) () 0 1 (17)J X aH X a G X a= − − < <
Let J(X) be the benefit of schedule X. The goal of the

I/O scheduling algorithm is to find out the X that
maxJ(X).

In (17), a is the evaluation function parameters. It
controls the weight of the two optimization goals in (16).
It can be set according to the actual needs of applications
in practical application. For example, high real-time
required systems can increase the value of a, and high
throughput required systems can reduce the value of a.

We change the form of the solution X as follow.

1

2
,1 ,2 ,, [, ,...,] (18)

... i i i i n

n

X
X

X X x x x

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

From the definition of X and xi,j, it is obvious that Xi is
a sub-solution of the problem. Xi is the scheduling result
of pi.

Define the benefit of Xi to be Ji(Xi) as follow.
() () (1) () (19)i i i i i iJ X aH X a G X= − −

The definition of Hi(Xi) and Gi(Xi) are (20) and (21) as
follow.

, 1,
1 1 1 1

, 1,
1 1

() (* | (*) (*)) |) (20)

() | (*) (*) | (21)

n i n n

i i i j k k j k k
i j k j

n n

i i i j j i j j
j j

H X f i rtt x st x st

G X x st x st

−
= = = =

−
= =

= + −

= −

∑ ∑ ∑ ∑

∑ ∑

From (20) and (21), it is easy to get that Hi(Xi) is the
QoS of pi and Gi(Xi) is the head seek length of pi.

By comparing (19) and (17), we can see (22) as follow.

1

() () (22)
n

i i
i

J X J X
=

=∑

Define Ki(X) as the maximum benefit of the first i
schedules. So that Ki(X) satisfies (23).

1

() max () (23)
i

i j i
j

K X J X
=

= ∑

From (23), we can see that maxJ(X), which is the
optimization goal of the scheduling, is Kn (X).

1788 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

From (22) and (23), we can get (24) as follow.

1() () max () (24)i i i iK X K X J X−= +
According to the analysis of (24), we can know that the

solution X can be found out by working out Xi step by
step. And the solution of Xi depends on the previous
results and the calculation result of Ji(Xi). According to
the above characteristics, this paper proposes a heuristic
algorithm HB-SCHED. The main idea of HB-SCHED is
as follow.

• Step1: Calculate J1(X1) for all requests in the request
queue as the first scheduling request. Select the
request of maxJ1(X1) and satisfied the constraint
conditions to be the first scheduling request.
Dequeue this request from Q and enqueue it to P.
Get the sub-solution X1. And then the maximum
benefit of the first schedule K1(X) = maxJ1(X1). If no
requests meet the constraints, there is no solution to
this problem.

• Step2: As the same method of step 1, find out the
request of maxJ2(X2), and the maximum benefit of
the first 2 schedules K2(X) = K1(X) + maxJ1(X1).
Dequeue this request from Q and enqueue it to P.
Get the sub-solution X2. If no requests meet the
constraints, backtrack to the step 1, select the
request of the second maxJ1(X1) and satisfied the
constraint conditions to be the first scheduling
request. And then update Q, P, K1(X) and X1, and
then look for X2 again.

• Step3: According to the method by step2, get X3, …,
Xn, and K3(X), ..., Kn(X) step by step. If there is no
request meets the constraint conditions in the
process of solving Xi, backtrack to the solution Xi-1,
and recalculate Ki-1(X).

• Step4: the solution X of the scheduling is found out
step by step of Xi.
X=[X1, X2, … , Xn]T.

Code 1 is the pseudo code of HB-SCHED algorithm as

follow.

Code 1 The pseudo code of HB-SCHED algorithm
Input: request queue Q[q1,q2,…,qn]，
 request output queue P.
Output: the solution X of the scheduling.

/* initialize X with a matrix of all 0s */
/* initialize M with a matrix of all 0s, mij is used for recording

the value of Ji(Xi) */
/* initialize P with an empty queue */

static i=0; /* the steps of the schedule */

HB_SCHED(Q, P)
{

request *q=NULL；
i++;
if(Q != NULL){

if(no request in Q satisfies the constraint condition){
 /* backtrack to the previous schedule */

Back_Trace(Q, P);
 if(i == 0){

/* have been back to the first step */

 return NULL;
 }

}
else{

for(all qj in Q){
 if(qj satisfies the constraint condition)
 mij = Ji(Xi) for qj;
 }
 q = qk that max mij;
 Dequeue(Q, q);
 Enqueue(P, q);
 xi,k = 1； /* get the sub-solution Xi */
 HB_SCHED(Q, P);
 }
}
else{

X=[X1, X2, … , Xn]T ;
return X;

}
}/*end of HB_SCHED()*/

And the pseudo code of sub-algorithm Back_Trace() is

code 2 as follow.

Code 2 The pseudo code of Back_Trace()
Input: request queue Q[q1,q2,…,qn]，

request output queue P.
Output: void

Back_Trace(Q, P)
{

request *q = NULL；
i--; /* backtrack to the previous step */
if(i == 0){

 /* have been back to the first step */
return;

}
q = pi in P; /* the request of the previous step */
Dequeue(P, q);
Enqueue(Q, q);
mij for pi = 0； /* exclude the solution of the previous

step */
if(all mij == 0){

 /*no eligible request, continue to backtrack */
 Back_Trace(Q, P)；

}
else{

q = qk that max mij;
Dequeue(Q, q);
Enqueue(P, q);
xi,k = 1； /* get the new Xi */

HB_SCHED(Q, P);
}

}/* end of Back_Trace() */

If the result of HB-SCHED is NULL, we handle the
problem using FCFS.

B. The Algorithm Complexity Analysis of HB-SCHED
Let the queue length be n. In the best case, the solution

X can be found without back trace. It only need to
calculate Ji(Xi) for times of the length of request queue
every time. So the best complexity of the algorithm is

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1789

© 2013 ACADEMY PUBLISHER

O(n + n - 1 + ... + 1), which is O(n2). In the worst case,
we need to backtrack every time, the complexity of the
algorithm is O(n2 + (n-1)2 + ... + 1), which is O(n3).

From the analysis above we can see that the algorithm
complexity of HB-SCHED is growing with the increase
of queue length. Because the I/O request queue is always
not too long, HB-SCHED can be applied for I/O
scheduling problem.

V. SIMULATION AND ANALYSIS

In order to confirm the effectiveness of HB-SCHED,
the simulation experiment based on MATLAB is done in
this paper. Meanwhile, we compare HB-SCHED with the
classic algorithms SCAN and EDF.

In the following, we provide the detail parameter
settings of the simulation. The experiment selects five
different values of request queue length, [10, 30, 50, 70,
90]. The value of rtt is fixed as 3ms. The seek address is a
random value in interval [0~10000]. By the empirical
value of iSCSI disk, we set the seek time parameter r in
(14) to be 0.0025ms/track. The parameter settings are
listed in TABLE I.

If there is no solution of HB-SCHED algorithm, the
schedule result of the simulation is designed to be as the
same as FCFS algorithm. To illustrate the influence of the
parameter a on the result of algorithm, we simulate three
values of a, [0.4, 0.6, 0.8] to see the change of the
experiment result.

TABLE I

SIMULATER PARAMETER VALUES

rtt 3ms

sti random [0~10000]

r 0.0025ms/track

st0 random [0~10000]

fi(t) defined as (15)

di random [0~1000ms]

Di di + random [0~1000ms]

ri di - random[0~1000ms] and ri>0

n 10, 30, 50, 70, 90

a 0.4, 0.6, 0.8

The sum of QoS of all requests is one of key

performance indicators of I/O scheduling algorithms. And
it is also one of the optimization goals in (13). The sum of
QoS reflects the real-time performance of the algorithm.
The result of “sum of QoS” in the simulation is shown in
Figure 4.

The sum of QoS of EDF is the highest, as EDF is a
real-time scheduling algorithm and it schedules the
request considering only the deadline of the request. The
SCAN algorithm’s sum of QoS is the lowest, because
SCAN algorithm only considers the seek address order.
HB-SCHED algorithm proposed in this paper has a much
better real time performance than SCAN algorithm. And

with the increase of the value of a, the sum of QoS of
HB-SCHED algorithm also increases, and more and more
close to EDF algorithm.

Figure 4. The simulation result of “Sum of QoS”

The throughput of disk is another key performance
indicator of I/O scheduling algorithms. From (8) we can
see that it is equivalent to research the sum of completion
time of all requests, and it is also another optimization
goal in (13). The result of “sum of time” in the simulation
is shown in Figure 5. The sum of time reflects the
throughput of disk, from which we can see the disk
utilization.

The sum of time of EDF is the longest, as EDF does
not consider the seek address, spending a lot of time on
seeking. The SCAN algorithm’s sum of time is the lowest,
because it schedules the requests only considering the
seek address and the movement direction of the head.
SCAN aims to provide a high I/O throughput by
minimizing the total seek time. HB-SCHED algorithm
proposed in this paper has a much smaller sum of time
than EDF algorithm. And with the smaller value of a, the
sum of time of HB-SCHED algorithm is also decreased,
and more and more close to the sum of time of SCAN
algorithm.

Figure 5. The simulation result of “Sum of Time”

Through the above analysis of the simulation

experiment results we can conclude that HB-SCHED
algorithm has a better real-time performance than SCAN
and a better throughput performance than EDF. And take
“a = 0.6” for example, figure 6 shows the experiment
results of J(X) defined in (17) , which is the single
objective optimization target of HB-SCHED. We can see
that HB-SCHED is higher than EDF and SCAN.

1790 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Figure 6. The simulation result of “value of J(X)”

Because HB-SCHED schedules the I/O requests

considered the real-time performance and the iSCSI disk
throughput at the same time. The target of the algorithm
is to meet the real-time requirements of the soft real-time
service requests, at the same time to maximize the iSCSI
disk throughput as much as possible. HB-SCHED can
adjust the weights between real-time performance and
iSCSI disk throughput by changing the value of
parameter a. The simulation experiment results proves
that HB-SCHED can be well adopted in soft real-time
services oriented iSCSI storage system.

VI. CONCLUSION

In the iSCSI storage systems, I/O scheduling is one of
the most important factors that affect the overall system
performance. Soft real-time services such as video are the
most common services in nowadays. So it is of great
importance to study the I/O scheduling algorithm for soft
real-time services oriented iSCSI storage system under
the environment of the widely use of iSCSI and the rapid
growth of soft real-time services.

This paper proposes a 0-1 programming
multi-objective optimization problem by analyzing the
mathematical model of I/O scheduling in iSCSI storage
system for soft real-time services. And then solves the
problem by HB-SCHED, a heuristic algorithm. The
simulation experiment result proves that HB-SCHED
algorithm considers the real-time performance of the soft
real-time service system and the iSCSI disk throughput at
the same time, and can adjust the weights between
real-time performance and iSCSI disk throughput by
changing the value of parameter.

In conclusion, HB-SCHED can be well used in soft
real-time services oriented iSCSI storage system for I/O
scheduling.

ACKNOWLEDGMENT

The research of this paper was supported by National
High-tech Research and Development Projects of
China (2011AA01A102) and Strategic Leading
Project of Chinese Academy of Sciences
(XDA06010302). The authors wish to thank the
reviewers for their valuable comments on this paper.

REFERENCES

[1] H. Kopetz, Real-time systems: design principles for
distributed embedded applications, 2nd ed.. Springer
Science Business Media, 2011, pp.79-109.

[2] W.W. Hsu and A.J. Smith, The performance impact of I/O
optimizations and disk improvements. IBM Journal of
Research and Development, 2004. 48(2): p. 255-289.

[3] X. Geng, et al., A Task Scheduling Algorithm for
Multi-Core-Cluster Systems. Journal of Computers, 2012.
7(11): p. 2797-2804.

[4] Y. Hu, X. Long and J. Zhang, I/O Behavior Characterizing
and Predicting of Virtualization Workloads. Journal of
Computers, 2012. 7(7): p. 1712-1725.

[5] W. Zhao and J.A. Stankovic. Performance analysis of
FCFS and improved FCFS scheduling algorithms for
dynamic real-time computer systems. in Real Time
Systems Symposium, 1989., Proceedings. 1989: IEEE.

[6] Y. Deng, et al., Evaluating disk idle behavior by leveraging
disk schedulers. Computing, 2012. 94(1): p. 69-93.

[7] M. Hofri, Disk scheduling: FCFS vs. SSTF revisited.
Communications of the ACM, 1980. 23(11): p. 645-653.

[8] S. Yashvir and O. Prakash, Disk Scheduling: Selection of
Algorithm. arXiv preprint arXiv:1210.6447, 2012.

[9] P.J. Denning. Effects of scheduling on file memory
operations. in Proceedings of the April 18-20, 1967, spring
joint computer conference. 1967: ACM.

[10] M. Lee, K. Kim and C. Park. Real-time disk scheduling
algorithms based on the two-way SCAN technique. in
Scalable Computing and Communications; Eighth
International Conference on Embedded Computing, 2009.
SCALCOM-EMBEDDEDCOM'09. International
Conference on. 2009: IEEE.

[11] P. Valente and F. Checconi, High throughput disk
scheduling with fair bandwidth distribution. Computers,
IEEE Transactions on, 2010. 59(9): p. 1172-1186.

[12] P.H. Seaman, R.A. Lind and T.L. Wilson, On
teleprocessing system design, part IV: an analysis of
auxiliary-storage activity. IBM Systems Journal, 1966.
5(3): p. 158-170.

[13] A.G. Merten, Some quantitative techniques for file
organization. 1970.

[14] S. Chen, et al., Performance evaluation of two new disk
scheduling algorithms for real-time systems. Real-Time
Systems, 1991. 3(3): p. 307-336.

[15] P. Bosch and S.J. Mullender. Real-time disk scheduling in
a mixed-media file system. in Real-Time Technology and
Applications Symposium, 2000. RTAS 2000. Proceedings.
Sixth IEEE. 2000: IEEE.

[16] C.L. Liu and J.W. Layland, Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM (JACM), 1973. 20(1): p. 46-61.

[17] J. Yin, B. Zheng and Z. Sun, A Hybrid Real-time
Fault-tolerant Scheduling Algorithm for Partial
Reconfigurable System. Journal of Computers, 2012. 7(11):
p. 2773-2780.

[18] V. Tarasov, et al., Efficient I/O Scheduling with
Accurately Estimated Disk Drive Latencies. OSPERT
2012, 2012: p. 36.

[19] C. Staelin, et al., Real-time disk scheduling algorithm
allowing concurrent I/O requests. HP Laboratories.
HPL-344, 2009.

[20] A.L. Reddy and J. Wyllie. Disk scheduling in a multimedia
I/O system. in Proceedings of the first ACM international
conference on Multimedia. 1993: ACM.

[21] N. YAO, J. CHEN and A. LI, An Inter-group
Seek-optimizing Disk Scheduling Algorithm for Real-time
System⋆. Journal of Computational Information Systems,
2012. 8(18): p. 7579-7586.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1791

© 2013 ACADEMY PUBLISHER

[22] W. Qiu and L. Zhang, Research on Real-Time Software
Development Approach. Journal of Software, 2012. 7(7): p.
1593-1600.

[23] H.J. Zimmermann, Fuzzy set theory-and its applications,
4th ed.. Springer, 2001, pp.329-433.

[24] P.K. Yadav, K. Bhatia and S. Gulati. Reliability Driven
Soft Real-Time Fuzzy Task Scheduling in Distributed
Computing Environment. in Proceedings of the
International Conference on Soft Computing for Problem
Solving (SocProS 2011) December 20-22, 2011. 2012:
Springer.

[25] H. Zimmermann, Applications of fuzzy set theory to
mathematical programming. Information sciences, 1985.
36(1): p. 29-58.

[26] P. Angelov and X. Zhou. Evolving fuzzy systems from
data streams in real-time. in Evolving Fuzzy Systems,
2006 International Symposium on. 2006: IEEE.

[27] P. Li, et al., Directional Fuzzy Data Association Filter.
Journal of Software, 2012. 7(10): p. 2286-2293.

ZHA Qiwen is a PhD student in the
National Network New Media
Engineering Research Center, Institute
of Acoustics, Chinese Academy of
Sciences, University of Chinese
Academy of Sciences, Beijing. He
received the B.S. degree majored in
communication engineering from the
Information & Electronic Engineering
department of Huazhong University of

Science & Technology, Wuhan. His research is supported by
National High-tech Research and Development Projects of

China and Strategic Leading Project of Chinese Academy of
Sciences. His research interest is network new media
technology, high performance embedded server and high speed
network technology.

ZHANG Wu is a Research Associate in the National Network
New Media Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences, Beijing. He received the PhD
degree from Institute of Acoustics, Chinese Academy of
Sciences, University of Chinese Academy of Sciences, Beijing.
His research interest is computer network, network new media
technology and high performance embedded server.

ZENG Xuewen is a Research Fellow in the National Network
New Media Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences, Beijing. He received the PhD
degree from Institute of Acoustics, Chinese Academy of
Sciences, University of Chinese Academy of Sciences, Beijing.
His research interest is multimedia network technology, audio
and video codec, digital content copyright protection and
network communication technology.

GUO Xiuyan is an Assistant Researcher in the National
Network New Media Engineering Research Center, Institute of
Acoustics, Chinese Academy of Sciences, Beijing. He received
the PhD degree from the University of Science and Technology
of China. His research interest is multimedia network
technology.

1792 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

