
A Priority Queue Algorithm for the Replication

Task in HBase

Changlun Zhang
Science School, Beijing University of Civil Engineering and Architecture, Beijing, China

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,

Changchun, China

Email: zclun@bucea.edu.cn

Kaixuan Wang and Haibing Mu
School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China

Email: hbmu@bjtu.edu.cn

Abstract—The replication of the non-structure data from

one data center to another is an urgent task in HBase. The

paper studies the priority growth probability of the priority

replication queue and proposed a dynamic priority

replication task queue algorithm based on the earliest

deadline first algorithm (EDF). The experiment results show

that the proposed algorithm can balance the replication

overhead between the high and low priority tasks and avoid

the low priority task starving to death as well as ensure the

high priority task’s interests.

Index Terms—non-structure data, HBsase, replication queue,

earliest deadline first algorithm (EDF)

I. INTRODUCTION

The interaction among users generates more and more

non-structure data in Web 2.0 era. These non-structure

data have no specific structure and cannot be described

with some a certain format, such as the micro blogging

message (including the @ and hyperlinks, pictures, etc.),

the xml file and so on. Internet companies establish large

amount of gigantic datacenters around the world to store

these non-structure data. The number of hosts in a single

data center can be several hundred to tens of thousands.

Google has more than 50 data centers and 20 million

servers
 [1]

 to store its customers' daily production of

massive amounts of non-structured data around the world.

It is a big challenge to manage and use these data,

including data reading, data storing, data indexing, data

addressing, interface of data configuration and

management, particularly the data replication among

multiple data centers is more urgent.

BigTable
[2,3]

 is a distributed storage system developed

at Google for managing structured data and has the

capability to scale to a very large size: petabytes of data

across thousands of commodity servers. BigTable has the

ability to store structured data without first defining a

schema provides developers with greater flexibility

when building applications, and eliminates the need to

re-factor an entire database as those applications

evolve.

However, BigTable cannot manage structured data.

HBase
[4-6]

 is the Hadoop database, which is an Apache

open source project whose goal is to provide Big Table

like storage. HBase is for storing huge amounts of

structured or semi-structured data. Data is logically

organized into tables, rows and columns. Columns may

have multiple versions for the same row key. The data

model is similar to that of Big Table.

Similar to the traditional data transmission or routing

services, different data replication tasks among

distributed data centers are of different QoS requirements

because column families may belong to different business,

users, columns with different priorities and requirements

for delay, bandwidth, and availability are various

according to different business and data. Therefore, it is

necessary to provide a replication task management

mechanism based on task priority for HBase data

replication protocols. It can implement dynamic priority

management for cache queue of replication task.

Luo
[10]

 presents a probability-priority hierarchical

scheduling algorithm. Compared to the priority queue

scheduling algorithm
[11,12],

 the algorithm can on the one

hand promise the time delay and data loss performance of

high priority data packet groups and on the other hand

improve the packet loss performance of low priority data

packet groups.

In this paper, we propose a dynamic priority

scheduling scheme based on the sequence of priority

growth probability referring to the priority sequence of

the earliest deadline first algorithm (EDF)
[7-9].

 The

priority is divided into three levels: low, middle and high

with correcting. The dynamic priority scheduling method

can balance the replication overhead between the high

and low priority tasks and avoid the low priority task

starving to death as well as ensure the high priority task’s

interests

 The rest of paper is organized as follows. Section 2

introduce the EDF algorithm which is the basis of our

algorithm in the next section. The main work of the

dynamic priority scheduling scheme is described in the

Section 3. Section 4 gives the experiment an analysis of

the proposed algorithm. Section 5 concludes the paper.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1765

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1765-1769

http://hadoop.apache.org/

II. AN OVERVIEW OF EDF

The earliest deadline first scheduling algorithm(EDF)
[7-9]

 is widely used as a priority scheduling algorithm. It

calculates priority in accordance with the task deadline

and assigned a higher priority to the task close to the

deadline. The task with highest priority is promised to run

at every moment. EDF achieves a dynamic priority

scheduling algorithm for the deadline of the task in buffer

queue may change as time goes by.

EDF algorithm can always obtain a feasible schedule

as long as there is one. In other words, if EDF algorithm

cannot generate a feasible schedule, there will be no other

feasible schedule. In every new ready state, EDF selects

the task with the earliest deadline from the task that is

ready but not yet fully processed, and allocates the

required resources to the task. The scheduler immediately

recalculates the deadline of the task and gives new

priority order as new tasks add. It deprives running tasks

of control right on processors and decides whether to

schedule a new task or not according to the new task’s

deadline. The new task may be processed immediately if

its deadline is earlier than the current task. In accordance

with the EDF algorithm, the processing of the interrupted

task will resume later.

EDF algorithm has a simple necessary and sufficient

condition to determine the schedulability: as long as the

load of the periodic task set U is not greater than 1. EDF

algorithm can generate feasible scheduling and has such

characteristics as:

1) Task model: the same as RMS (Rate-Monotonic

Scheduling);

2) Priority assignment method: Priority is dynamically

allocated as the nearer to the deadline the higher it is;

3) Schedulability: If the task set meets

n

i i

i

T

C

1

1

 , the

task is schedulable.

EDF scheduling algorithm has been shown to be the

optimal dynamic scheduling with necessary and sufficient

condition. It is of up to 100%CPU utilization with more

online scheduling overhead than the RMS.

EDF scheduling algorithm is established based on the

following assumptions:

1) The emptive cost is very small;

2) Only processing requirements are significant, the I /

O, memory and other resource requirements can be

ignored;

3) All tasks are independent, there is no priority

relationship constraint among them.

These assumptions simplify the analysis of the EDF.

Assumption 1 shows that the mission to seize at any time,

this process is not preempted for any loss, can be restored

at a later time, one task was to seize the number does not

change the overall workload of the processor.

Assumption 2 shows that there are no other factors that

lead to complex problems except sufficient processing

capacity to ensure performing tasks within the time limit

to check the feasibility. Assumption 3 specifies that there

does not exist a priority constraint relationship which

means that the release time of the task is independent

upon the end time of other tasks. As to system which is

not met the above three assumptions, we need to take

priority and exclusion constraints to solve the problem.

The EDF algorithm is the optimal dynamic scheduling

algorithm with single-processor. The upper limit its

schedulability is 100%, that is to say, if the EDF

algorithm cannot schedule a task set reasonable on a

single processor, then the other scheduling algorithm also

cannot accomplish this task.

III. PROBABILITY PRIORITY GROWTH ALGORITHM BASED

ON EDF

A. Priority of Replication Task in HBase

In distributed database HBase, column family data

being to replicate and synchronize may be of different

importance because of requirements and business types.

It is necessary to set different priority to different column

family or its column according to the different QoS

requirements
 [13-15]

 in order to distinguish data of different

priority during data replication among data centers. An

improved priority queue for HBase replication can be

constructed according to the theory of EDF.

The priority of column family data may be broken

down into its column. It may also be different because it

comes from different user or time. The replicated data to

be stored by different priority task may belong to one

column family, so it may not only reduce the queue

length but also make the send, store, and read more

batches, continuous and rapid by merging the tasks

storing the same column family.

In some implementation of the priority queue, the

priority of each task is static configuration and won’t

change over time. When more high-priority tasks queued,

low-priority task is likely to be "starved to death” for it is

always unable to get service. According to the idea of

EDF, the priority of task should be dynamically adjust

and increase over time. The implementation of the

dynamic priority acts as follows:

1) Each replication task joining the queue is set to an

initial priority;

2) The priority of every task increases over every

period;

3) Each time, the task of the highest priority in the

queue may be selected to be replicated.

Assuming that there are a total of N priorities from 1 to

N, 1 is the lowest priority and N represents the highest

priority, the bigger the number the higher the priority.

According to the above conclusions, the priority of

replication task in HBase column family should include

the task’s merging priority and the growing priority over

time.

B. Priority of the Merger Task

The merging of multiple replication tasks is based on

their same index of the storage location, that is, they

belong to the same column family, but with different

priorities. Obviously, the priority of the merged task is at

least equal to the highest priority of original task to

1766 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

ensure that the original important task remains a high

priority.

If the priority of task i is ti and the maximum number

of the task to merge is MAX, then, the priority T of the

task 1,2, ... i, ... n after being merged is:

T=max{t1, t2,…ti,…tn}（n≤MAX） (1)

C. Simple Priority Queue Algorithm Based on EDF

Assume that a total of N priority from 1 to N, where 1

is the lowest priority and N represents the highest priority.

Priority of the task in the queue is increased by 1 every

period in the simple priority queue based on EDF(SPQA).

Each time the task of the highest priority is selected to

execution. This dynamic priority avoids the task with low

priority dying of starvation, but it is unfair for high-

priority task that the priority of low-priority task is

growing too fast.

For example, in the case of eight priorities from 1 to

8, the task of the initial priority setting as 5 may grow up

to 7 after two periods in the buffer queue. Assuming that

there comes a new task with priority of 7, it will not be

replicated because the task with initial priority of 5

catches the chance. It seems unfair to the high priority

task for the priority of the lower priority growing too fast

task. The sensitivity to the time of the low priority is

lowered to solve this problem which can reduce the

growing rate of the low priority tasks as shown in Figure

1. We can construct a priority growth probability

sequence {Pi,} (i = 1,2, ..., N) based on the total number

of priority N, which makes the low-priority tasks has a

lower priority growth probability and high-priority task

has a high priority growth probability.

1

N
O

x

y

N/2

g
r
o
w
t
h

p
r
o
b
a
b
i
l
i
t
y

priority

Figure 1. Priority growth probability

D. Probability Priority Growth Algorithm Based on EDF

(PPGA)

In order to make the priority growth probability of the

low-priority task lower and the high-priority task with

high priority growth probability, we intends to construct a

curve whose shape is similar to figure 2 to determine the

priority growth probability. In the figure, the slope of the

first half of the curve is greater than 1 while the latter half

is less than 1. The curve is established with the following

condition:

N

x

ydxxys
00

1 (2)

2/N

NO
xN/2

1/N

y

gr
ow
in
g
ra
te

priority

Figure 2. Reduce rate of of priority growth probability

Assuming that the linear function is y (x) = ax + b (0

≤x ≤ N, x is an integer), we can obtain:

N
b

N
a

2

2
2

 (3)

So,

N
x

N
xY

22
)(

2
 (0 ≤x ≤ N, x is an integer) (4)

Let PN = 1, solve the priority growth probability of

priority i as follows:

PN=1

 PN-1=PN-y(N-1) (5)

 … …

 Pi=Pi+1-y(i)

Add up the left and right part of the above equations

respectively to get:

)0(
)(2)1)((

1)(1
2

1

Ni
N

iN

N

iNiN
kyP

N

ik

i

 (6)

For example, we construct a priority growth

probability with eight priority and calculate the reduce

rate of each priority growth probability by the equation (4)

and get the priority growth probability of each priority by

the equation (6). The results are shown in table 1 and

figure 3.

Priority growth probability is not intuitive enough to

obtain average period between the two priorities. It can

be calculated as the expectations E (n):

i

k

k

ii

k

k

ii

iiiii

P

PkP

PkP

PPPPPnE

1

))1((

)1(

...)1(3)1(21)(

'

1

1

1

1

2

 (7)

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1767

© 2013 ACADEMY PUBLISHER

TABLE I.

PRIORITY GROWTH PROBABILITY

priority Reduce rate Growth probability Average period

1 7/32 47/32 32/47

2 6/32 11/32 32/11

3 5/32 17/32 32/17

4 4/32 22/32 32/22

5 3/32 26/32 32/26

6 2/32 29/32 32/29

7 1/32 31/32 32/31

8 0 1 1

As shown in figure 3, the probability sequence

constructed for the priority growth is incremental non-

linear, priority growth probability of low-priority task is

small while the high-priority task’s is large to ensure its

interests. It can be seen from the slope of eight broken

line that low priority tasks has a small priority growth

probability, but it has a high growing rate of growth

probability, the slope slowly decreases with the priority

growth. Low priority task can get a larger increase of the

growth probability to ensure it will not be starved to

death.

8O x

y

1 2 3 4 5 6 7

0.5

0.25

0.75

1

gr
ow

th
 p

ro
ba

bi
li

ty

priority

SPQA

PPGA

Figure 3. Priority Growth Probability of SPQA and PPGA

E. Analysis of Experimental Results

The effects of priority growth probability are compared

in the following experiments. Here, the task which

priority is 1, 4 and 7 are chosen from the heap of the

maximum priority queue according to the priority growth

probability.

As shown in figure 4, priority of the task in the queue

is increased by 1 every period in SPQA and the priority

of low-priority task is growing too fast. After eight

periods, the task with high priority 7 increased to 8 by

one period, the task with priority 4 increased to 8 by five

periods, the task with lower priority 1 increased to 8 by

eight periods.

However, the fast growing of priority is changed in

PPGA. In figure 5, the task with high priority 7 still

increased to 8 by one period; but the task with lower

priority 1 has no change until the eighth period, and only

increased to 2 lastly. PPGA balances the replication

overhead between the high priority and low priority tasks.

O

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

y/priority

x/period

Figure 4. Priority Increase in SPQA

O

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
x/period

y/priority

Figure 5. Priority Increase in PPGA

IV CONCLUSIONS

We studied the priority queue theory of the earliest

deadline scheduling algorithm and the storing

characteristics of column family in HBase in which the

column family is the unit of replication tasks. A priority

queue algorithm based on the priority growth probability

is established, its priority growth probability sequence is

evenly distributed in the interval [0, 1]. The probability

growing rate of low priority is large and the high

priority’s is small. The algorithm balances the replication

overhead between the high priority and low priority tasks

and avoids the low priority task starving to death as well

as ensures the high priority task’s interests.

ACKNOWLEDGMENT

This work is supported by the work of the Beijing

Municipal Organization Department of talents training-

funded project (2010D005017000008) ,Beijing Institute

of Architectural Engineering School research fund

(Z10053) and Jilin University Key Laboratory of

1768 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Symbolic Computation and Knowledge Engineering of

Ministry of Education research fund (93K-17-2012-02).

REFERENCES

[1] http://www.cnbeta.com/articles/73230.htm.

[2] Chang, F. and Dean, J. and Ghemawat, S, et.al. , Bigtable:

A distributed storage system for structured data, ACM

Transactions on Computer Systems (TOCS), 2008, 26(2):

4.

[3] Ankur Khetrapal, Vinay Ganesh, HBase and Hypertable

for large scale distributed storage systems: A Performance

evaluation for Open Source BigTable Implementations,

from Internet.

[4] Dhruba Borthakur,The Hadoop Distributed File System:

Architecture and Design, Available at

http://wiki.apache.org/hadoop.

[5] HadoopDB Project, Available at

http://db.cs.yale.edu/hadoopdb/hadoopdb.html.

[6] Azza Abouzeid, et.al., HadoopDB: An Architectural

Hybrid of MapReduce and DBMS Technologies for

Analytical Workloads, proceedings of VLDB ‘09, 2009,

Lyon, France,pp922-933.

[7] Zhi Quan, Jong-Moon Chung, A Statistical Framework for

EDF Scheduling, IEEE COMMUNICATIONS LETTERS,

VOL. 7, NO. 10, OCTOBER 2003, pp. 493–495.

[8] Victor Firoiu, Jim Kurose,Don Towsley, Efficient

Admission Control of Piecewise Linear Traffic Envelopes

at EDF Schedulers, IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 6, NO. 5, OCTOBER 1998, pp.

558–570.

[9] Jianjun Li, et.al., Workload Efficient Deadline and Period

Assignment for Maintaining Temporal Consistency under

EDF, IEEE TRANSACTIONS ON COMPUTERS, pp.1-

14.

[10] Luo huimei, Gao qiang, Song shuang, The study of

hierarchical packer scheduling algorithm on probability-

priority, Computer Applications and Software, 2011, 28(7),

pp.57-59.

[11] Jiang Y, Tham C K,Ko C C, A probabilistic priority

scheduling discipline for multi-service networks[C]. Proc

of IEEE ISCC’01. Tunisia:[S n],2001, pp. 0450.

[12] Tham C K,Yao Q,Ko C C. Achieving differentiated

services through multi-class probabilistic priority

scheduling[J]. Computer Networks. 2002, 40(4):577-593.

[13] Guangjun Guo, Fei Yu, Zhigang Chen, Dong Xie. A

Method for Semantic Web Service Selection Based on QoS

Ontology. Journal of Computers, Vol 6, No 2 (2011), 377-

386, Feb 2011.

[14] Elarbi Badidi, Larbi Esmahi.A Scalable Framework for

Policy-based QoS Management in SOA Environments.

Journal of Software, Vol 6, No 4 (2011), 544-553, Apr

2011.

[15] Bin Li, Yan Xu, Jun Wu, Junwu Zhu. A Petri-net and QoS

Based Model for Automatic Web Service Composition.

Journal of Software, Vol 7, No 1 (2012), 149-155, Jan

2012.

Zhang Changlun, was born in Jining

Shangdong Province of China in 1972,

earned Ph.D degree in Beijing Jiaotong

University of China in 2009.

Now, He is a lecturer in Science School,

Beijing University of Civil Engineering

and Architecture. His research area

focuses on networks information security ,

network public opinion and software engineer.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1769

© 2013 ACADEMY PUBLISHER

http://www.ilib.cn/p-QCode~jsjyyyrj.html

