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Abstract—Twin Support Vector Machines (TWSVM) are 
developed on the basis of Proximal Support Vector 
Machines (PSVM) and Proximal Support Vector Machine 
based on the generalized eigenvalues(GEPSVM). The 
solving of binary classification problem is converted to the 
solving of two smaller quadratic programming problems by 
TWSVM. And then it gets two non-parallel hyperplanes. Its 
efficiency of dealing with the problems and performance are 
better than the traditional support vector machines. 
However, it also has some problems. Its own parameters are 
difficult to be appointed. In order to solve this problem, on 
the basis of in-depth study of TWSVM, this paper proposes 
an algorithm that is the Twin Support Vector Machines 
based on Quantum Particle Swarm Optimization (QPSO-
TWSVM) .By the use of the global searching ability of the 
Quantum Particle Swarm Optimization (QPSO), QPSO-
TWSVM can search the optimal parameters in the global 
scope and avoid itself falling into the local optimum 
prematurely to find the values of the parameters which are 
the closest to the optimal parameters. QPSO-TWSVM 
avoids using the empirical values to appoint the parameters 
successfully. Compared with the traditional TWSVM, 
QPSO-TWSVM can appoint the parameters more 
accurately and avoid selecting the parameters blindly. 
Because of the better parameter selections, QPSO-TWSVM 
improves the classification accuracy of TWSVM. 
 
Index Terms—QPSO, TWSVM, parameter optimization, 
binary classification  
 

I.  INTRODUCTION 

Support Vector Machine[1,2] (SVM)is a machine 
learning method which is used to solve the binary 
classification problem. It was firstly proposed by Vapnik 
[3]et al. It is an algorithm which is based on the VC 
dimension theory and the principle of structural risk 
minimization in the statistical learning theory[4,5] .It has 
the features of optimization, nuclear and the best 
generalization ability. In recent years, it has attracted the 
attention of the majority of scholars and been used in 
many fields[6-11]. On the basis of SVM, The majority of 
researchers have proposed many improved algorithms. 
For example, in 1999, Least Squares Support Vector 
Machine Classifiers was proposed by Suykens[12] et al. 
In 2001, Fung and Mangasarian[13] proposed the 
algorithm of the Proximal Support Vector 

Machines(PSVM).It is used to solve the binary 
classification problem . PSVM sets a hyperplane in each 
type of sample points. These two hyperplanes are parallel 
and the distance between them must be maximized. The 
solution of the problem is the hyperplane which is 
equidistant and parallel with the two parallel 
hyperplanes[14]. PSVM uses the equality constraints and 
cancels the inequality constraints in the traditional SVM. 
Thereafter, in 2006, on the basis of the study of PSVM, 
the algorithm of Proximal SVM based on Generalized 
Eigenvalues(GEPSVM) was proposed by 
Mangasarian[15]et al. GEPSVM cancels the constraint 
that the two hyperplanes must be parallel in PSVM. 
GEPSVM makes each type of sample points be as close 
as possible to its hyperplane and be as far as possible 
away from the other sample points. Further, the solving 
of the problem is converted to the solving of the smallest 
eigenvalue of the two generalized eigenvalue problems to 
obtain the global extremum[14]. Thereafter, on the basis 
of the extensive and in-depth study of PSVM and 
GEPSVM, in 2007, the algorithm of Twin Support 
Vector Machines  (TWSVM) was proposed by 
Jayadeva[16] et al. TWSVM solves a hyperplane for each 
type of sample points and makes each type of sample 
points be as close as possible to its hyperplane and as far 
as possible away from another type of sample points’ 
hyperplane. The two hyperplanes in TWSVM have no 
constraint of the parallel condition. The binary 
classification problem is converted to two smaller 
quadratic programming problems by TWSVM. 

After TWSVM was proposed, it has caused the 
attention of many scholars. Because TWSVM has the 
solid theoretical foundation and the superiority of solving 
problems, many scholars contribute to the study of 
TWSVM[17-19]. Although the time of the development 
of TWSVM is not long, there have been many 
achievements in the efforts of the majority of research 
workers. For example, Jing Chen[20] proposed the 
algorithm of WLSTWSVM(Weighted Least Squares 
TWSVM), Qi Zhiquan[21] proposed a new type of 
Robust Twin Support Vector Machine for pattern 
classification, in 2009, Xinsheng Zhang et al applied the 
TWSVM to the detection of MCs[22]. As a classifier, 
TWSVM makes decisions about the presence of MCs or 
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not. The experiments show that the classifier of TWSVM 
is conducive to the real-time processing of CMs. In 2012, 
the twin support vector machines based on rough sets was 
proposed by Junzhao Yu [19] et al. This algorithm uses 
the rough sets [23] to deal with the original data sets and 
then uses the TWSVM to train and predict the newly 
generated data sets. 

However, whether TWSVM or WLSTWSVM, Robust 
Twin Support Vector Machine for pattern classification 
and so on, they always have the same deficiency that the 
parameters can’t be quickly and accurately appointed. 
Although many people proposed many improved 
methods, all of these methods appoint the parameters on 
the basis of empirical values. They can’t quickly find the 
precise values of the parameters. The parameters which 
are appointed by the empirical values can’t be optimal. 
Because they are just the best of the empirical values and 
they have a relatively large gap with the values of the real 
optimal parameters. This paper proposes a algorithm to 
find the values of the optimal parameters quickly and we 
can use this algorithm to improve TWSVM. That is the 
Twin Support Vector Machines based on Quantum 
Particle Swarm Optimization (QPSO-TWSVM). By the 
use of the global searching ability of the Quantum 
Particle Swarm Optimization (QPSO), QPSO-TWSVM 
can search the optimal parameters in the global scope and 
avoid itself falling into the local optimum prematurely to 
find the values of parameters which are the closest to the 
optimal parameters. QPSO-TWSVM avoids using the 
empirical values to appoint the parameters successfully. 
Compared with the traditional TWSVM, QPSO-TWSVM 
can appoint the parameters more accurately and avoid 
selecting the parameters blindly. Because of the better 
parameter selections, QPSO-TWSVM improves the 
classification accuracy of TWSVM. 

II.  TWIN SUPPORT VECTOR MACHINE  

In 2007, the algorithm of Twin Support Vector 
Machines (TWSVM) was proposed by Jayadeva[16] et al. 
The solving of binary classification problem is converted 
to the solving of two smaller quadratic programming 
problems by TWSVM[14]. And then it gets two non-
parallel hyperplanes. It makes each type of sample points 
be as close as possible to its hyperplane and as far as 
possible away from another type of sample points’ 
hyperplane. We use A and B to represent the two 
hyperplanes. If a sample point is closer to A, it belongs to 
the category which A represents. If a sample point is 
closer to B, it belongs to the category which B represents. 
Shown in Figure 1, the two lines represent the two 
classified hyperplanes and the red dots and green dots 
represent the training points of Category 1 and Category -
1. 

 
A.  The Linear Mathematical Model of TWSVM 

We assume that there are l training samples in the 
space of nR  and they all have n  attributes. 1m samples 

of them are part of the positive class and 2m samples of 
them are part of the negative class. We use the matrix of 

1A(m n)×  and the matrix of 2B(m n)×  to represent them 
respectively. Finding two non-parallel hyperplanes in the 
space of nR is the solving process of TWSVM: 

1 1 2 2+ 0 + 0T Tx w b x w b= = and  
By solving two quadratic programming problems in the 
following, we can obtain the two hyperplanes of 
TWSVM: 

(TWSVM1)
1 1 1 1 1 1 1 2

1min ( +e ) ( +e )+C
2

T TAw b Aw b e ξ  

s.t.  0,+)+(- 2121 ≥≥ ξξ ebeBw  

(TWSVM2) 2 2 2 2 2 2 2 1
1min ( +e ) ( +e )+C
2

T TBw b Bw b e ξ  

s.t.  0,+)+(- 1212 ≥≥ ξξ ebeAw  
In the above formula, 1C  and 2C  are two penalty 

parameters, 1e is the 1m -dimensional unit column vector, 

2e is the 2m -dimensional unit column vector, ξ is the 
slack vector, 
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represents the j th sample in the i th class.  
The test samples are attributed to which category 

depending on it that they are closer to which plane. It 
means that if

ll
T

lrr
T bwxbwx +=+

= 2,1
min , x belongs to 

the r th class and }2,1{∈r . 

B. The Non-linear Mathematical Model of TWSVM 
The TWSVM introduced above is used to solve the 

problem of the linear separability. In the following, it will 
be extended to the case of non-linear separability. We 
introduce a kernel function in the non-linear separability. 

1 1 2 2( , ) + 0 ( , ) + 0T T T TK x C w b and K x C w b= =  
Being similar to the case of the linear separability, in the 
following, we construct the solving of the problem: 
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Figure 1. The basic idea of TWSVM
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In the above formula, [ ]TTC A B= , 1e is the unit column 
vector which has the same number of rows with the 
kernel function of ( , )TK A C , 2e is the unit column vector 
which has the same number of rows with the kernel 
function of ),( TCBK . 

Being similar to the case of the linear separability, the 
test samples are attributed to which category depending 
on it that they are closer to which plane. It means that if 

1,2
( , ) min ( , )T T T T

r r l ll
K x C w b K x C w b

=
+ = + , x belongs to the 

r th class and }2,1{∈r . 

III.USING THE QPSO TO IMPROVE THE TWSVM 

Although there are many improved algorithms of 
TWSVM and they have improved the performance of 
TWSVM, most of the parameters are the appointed 
relying on empirical values. Parameters appointed by that 
way have a certain arbitrariness and unreliability and we 
are unable to find the optimal parameters. This will cause 
that the solving of the problem can’t be the best state. 
Therefore, in this paper, we propose that we can use 
QPSO to find the optimal parameters. The convergence 
speed of QPSO is fast and QPSO is not easy to fall into 
the local optimum. This will be helpful for finding the 
optimal parameters. 

A. The Thought of QPSO  
The classic PSO[24] is a searching model based on the 

random orbit. In the searching process, the searching 
space of the particles in each iteration step is a limited 
area and this will be easy to fall into the local 
optimum[25].It can’t cover the whole feasible solution 
space and the speed of the particles is always limited. As 
a result ,the algorithm of the general PSO can’t guarantee 
that it can converge to the global optimal solution with 
probability 1.So the global convergence of PSO is 
relatively poor and this is the biggest drawback of the 
algorithm of the general PSO[26] . But this does not 
affect the application of PSO. For example, in 2010, Jian 
Li [27] mixed PSO and SVM for the road icing 
forecast,in 2012,Weiguo Zhao [28]combined PSO with 
BP neural network for the fitting of temperature 
characteristics of gas nanosensors. PSO has still a lot of 
room for improvement. 

In order to improve the convergence of PSO, on the 
basis of PSO, in 2004, QPSO was proposed by Sun[29] et 
al. This algorithm guarantees that the particles can search 
the solution in the whole feasible solution space and find 
the global optimum. So QPSO has the better convergence 
and searching capabilities. The aggregation is the basic 
characteristic of swarm intelligence[26]. We use the 
bound state generated by the certain attractive 

potential[30] in the particle motion center to describe the 
aggregation of QPSO. And the particles in the quantum 
bound state can appear at any point in the space with 
certain probability. The particles which meet the nature of 
the state of aggregation can search the solution in the 
whole feasible solution space, but it does not diverge to 
infinity[26]. It only requires that when the distance 
between the particle and the center tends to infinity, the 
density of probability approaches to 0. With regards to 
this, we build a quantized attractive potential to restrain 
the particles in order to make the groups have the state of 
aggregation. When we create the model of QPSO, it uses 
the current position of the particle (Vector x represents 
the position of the particle) to represent the decision 
variables. And the position of the particle represents the 
current state of the individual. Particles find the best 
position in the search。That means the value of the 
objective function calculated with this position 
coordinates comes to be maximum or the fitness is the 
best. We use this position to represent the empirical 
knowledge of individual. The position of the particle with 
the best fitness value in current population represents the 
best knowledge of the group. 

B.  The Principle of the Algorithm of QPSO-TWSVM 
In 2010, Yuan Ren [31] et al applied PSO to the 

parameter optimization of SVM. The experiments show 
that the PSO is conducive to find the optimal parameters 
of SVM. QPSO is developed and improved on the basis 
of PSO. Used to optimize the parameters, QPSO also 
have a good effect. 

The core idea of the QPSO-TWSVM is that it finds the 
optimal parameters of TWSVM by QPSO. In the 
algorithm of QPSO, the position coordinates of the 
particle represent the parameters of TWSVM. The work 
is just to find the particle with the best fitness in the 
particle swarm. The coordinates of this particle is the 
optimal parameters that we need. Then we use the 
optimal parameters we have found to determine the 
model of TWSVM.  

In an N -dimensional searching space, in the 
algorithm of QPSO, there is a group of 

},...,,{ 21 MXXXX = made up of M particles which 
represent the potential solution of the problem. All of the 
particles have the same objective function to calculate 
their fitness value. In the algorithm of QPSO-TWSVM in 
this paper, the objective function is the function which is 
used to calculate the classification accuracy of TWSVM. 
The bigger is the classification accuracy, the better it is. 
At time t, the position of the i -th particle is 

miXXXtX Niiii ,...,2,1],,...,,[)( ,2,1, == . The particle has 
no velocity vector. The best position of individual is 
expressed as miPPPtP Niiii ,...,2,1],,...,,[)( ,2,1, == . The 

global best position of the group is ],...,,[)( 21 Ni GGGtG =  
and )()( tPtG g= ,in which g is the subscript of the 
particle which is at the global best position 
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and },...,2,1{ Mg ∈ . The update equation of the particle 
position in the algorithm of QPSO is as follows： 
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QPSO finds the global optimum position of the particles 
by iteration. The position coordinates of the particle 
which is at the global optimum position 

],...,,[)( 21 Ni GGGtG =  is the parameters that we need. 
Then we bring the optimal parameters we have found into 
the TWSVM to determine the final model. 

C.  The Flow of Algorithm  
The steps of the algorithm of QPSO-TWSVM are as 

follows: 
Step 1 We set the population size of the particle swarm, 

the dimensions of location (the number of dimensions 
equals to the number of the parameters) and the 
maximum number of the iteration. Then we initialize the 
particle swarm randomly. 

Step 2 We bring the initialized position coordinates of 
the particles into the TWSVM to classify the training data 
set. And then we will get the classification accuracy 
which is the fitness. According to this, we evaluate the 
particles and get the initial fitness value of each particle. 
Then we count the global best initial fitness value and 
record this fitness value.  

Step 3 The iteration begins to find the optimal 
parameters. According to the formulas of 

)()](1[)()()( ,, tGttPttP jjjijji ⋅−+⋅= ϕϕ and

)](/1ln[)()()()1( ,,,, tutXtCtPtX jijijjiji ⋅−±=+ α , it updates 

position coordinates of the particles continuously and 
calculates the fitness values of the particles. For each 
particle, if this fitness value is better than the fitness value 
of the current best position of this particle, it updates the 
best fitness value of the individual particle. In this 
iteration, if the fitness value of the particle of the best 
position is better than the fitness value of the current 
global best position, it updates the global best fitness 
value.  

Step 4 Whether the number of the iteration has reached 
the maximum number of the iteration or not. If it reaches 
the maximum number of the iteration, it terminates the 
iteration. If it does not reach the maximum number of the 
iteration, the number of the iteration increases by 1, it 
jumps to Step 3 and it records the best fitness values of 
the individual particles and the global best fitness value.  

Step 5 It records the finally obtained global optimal 
particle's position of ),...,,( 21 Nxxxg = . The coordinate 
values of this particle are the values of the optimal 
parameters which we need to find. Bring the finally 
obtained values of the optimal parameters into TWSVM. 
Then we will get the model of QPSO-TWSVM. 

Step 6 Stop the operation. 

The algorithm flow chart of QPSO-TWSVM is the 
Figure 2.  

Through this algorithm flow chart, we can intuitively 
understand the process of the algorithm of QPSO-
TWSVM proposed in this paper. And the six steps of the 
algorithm described above are clearly expressed in Figure 
2. This will help you understand the algorithm proposed 
in this paper. 

 

 

IV.ANALYSIS OF THE EXPERIMENTAL RESULTS 

In order to validate the algorithm proposed by this 
paper, we select seven commonly used data sets in the 
UCI machine learning database to do the test. The 80% of 
the data are used for training and the remaining 20% of 
the data are used for testing. In the linear test, we use four 
data sets. They are the bupa data set, the Australian data 
set, the Pima-Indian data set and the Sonar data set. In the 
non-linear test, we use three data sets. They are the 
ionosphere data set, the Sonar data set and the votes data 
set. Using the Matlab environment , all of these tests are 
done in the PC with 2G memory and 320G hard drive. In 
the algorithm of QPSO, the population size is 30,the 
location dimension of the particles is 2 in the linear test, 
the location dimension of the particles is 3 in the non-
linear test, the inertia factor is 0.5,the own factor is 
2.0,the global factor is 0.05, the maximum number of the 
iteration is 100. 

 
Figure 2 .The algorithm flow chart of QPSO-TWSVM 
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A. The Linear Test  
In the linear test, we use the bupa data set, the 

Australian data set, the Pima-Indian data set and the 
Sonar data set. Their data characteristics are shown in 
Table I: 

In the linear test, in the algorithm of QPSO-TWSVM, 
the convergence effect diagrams on the different data sets 
are shown in Figure 3-6. The abscissa represents the 
number of the iteration, the ordinate represents the fitness 
value or the classification accuracy： 

 

 

 

 
In the linear test, in the algorithm of QPSO-TWSVM, 

it trains the 80% of the data to get the optimal 
parameters and uses the optimal parameters to determine 
the model of TWSVM. After the model of TWSVM is 
determined, it tests the remaining 20% of the data to get 
the corresponding classification accuracies. We compare 
these accuracies from QPSO-TWSVM with the 
accuracies from PSVM, GEPSVM and TWSVM. The 
comparative results are shown in Table II: 
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Figure 6. The linear results of the  Pima-Indian data set 

0 50 100 150
0.6

0.62

0.64

0.66

0.68

0.7

0.72

Figure 5. The linear results of the bupa data set 
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Figure 4. The linear results of the Sonar data set 
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Figure 3 .The linear results of the Australian data set 

TABLE I. 

THE DATA CHARACTERISTICS OF THE LINEAR DATA SETS 

Data sets The number of 
samples 

The number of 
attributes 

Australian 690 14 
Sonar 208 60 
Bupa 

Pima-Indian 
345 
768 

7 
8

TABLE II . 

THE LINEAR EXPERIMENTAL RESULTS 

Data sets QPSO-
TWSVM TWSVM GEPSVM PSVM

Australian 87.05 85.80 80.00 85.43
Sonar 86.04 77.26 72.62 74.51
Bupa 

Pima-Indian 
71.01 
77.27 

68.12 
73.70 

66.36 
72.04 

70.15
74.19
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B. The Non-linear Test 
In the non-linear test, we use the ionosphere data set, 

the Sonar data set and the votes data set. Their data 
characteristics are shown in Table III: 

In the non-linear test, in the algorithm of QPSO-

TWSVM, the convergence effect diagrams on the 
different data sets are shown in Figure 7-9. The abscissa 
represents the number of the iteration, the ordinate 
represents the fitness value or the classification 
accuracy： 

 

 

 
In the non-linear test, in the algorithm of QPSO-

TWSVM, it trains the 80% of the data to get the optimal 
parameters and uses the optimal parameters to determine 
the model of TWSVM. After the model of TWSVM is 
determined, it tests the remaining 20% of the data to get 
the corresponding classification accuracies. We compare 
these accuracies from QPSO-TWSVM with the 
accuracies from PSVM, GEPSVM and TWSVM. The 
comparative results are shown in Table IV: 

From the linear and non-linear tests, we can see that 
the classification accuracy of QPSO-TWSVM proposed 
by this paper has increased significantly compared with 
the traditional classification algorithms. The reason for 
getting such significant results is that the algorithm 
proposed by this paper uses the QPSO to find the optimal 
parameters. Using the QPSO to determine the optimal 
parameters is not only fast, but also not easy to fall into 
the local optimum. It has the good global convergence 
and finds the parameters more precisely. This greatly 
improves the classification accuracy and efficiency of 
TWSVM. 

V. CONCLUSION 

In recent years, the majority of scholars have been 
concerned about the classification algorithm. Thanks to 
that, the classification algorithm has various 
improvements and innovation. The TWSVM rising in 
recent years has also been developed rapidly. But there 
are also a variety of defects in the TWSVM. For the 
problem of appointing the parameters difficultly in the 
TWSVM, this paper proposes the algorithm of QPSO-
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Figure 9 The non-linear results of the Votes data set 
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Figure 8. The non-linear results of the Ionosphere data set
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Figure 7. The non-linear results of the Sonar data set 

TABLE III. 

THE DATA CHARACTERISTICS OF THE NON-LINEAR DATA SETS 

Data sets 
The number 
of samples 

The number of 
attributes 

Sonar 208 60 
Ionosphere 351 34 

Votes 435 16 
 

TABLE IV . 

THE NON-LINEAR EXPERIMENTAL RESULTS  

Data sets QPSO-
TWSVM TWSVM GEPSVM PSVM

Sonar 83.72 83.53 80.00 82.79
Ionosphere

Votes 
92.95  
94.32 

87.46 
90.00 

84.41 
91.13 

90.83
93.70
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TWSVM. Using the good global searching ability of 
QPSO and the feature of the fast convergence speed of 
QPSO, this algorithm can find the optimal parameters 
quickly and accurately .And then it determines the model. 
It avoids the blindness and randomness of appointing the 
parameters in the traditional TWSVM.As it can be seen 
from the experiments that this algorithm improves the 
classification accuracy of TWSVM. But this algorithm 
also has some flaws. The generalization ability of this 
algorithm is relatively poor. The reason is not clear at 
present. In the next research work, we will start the work 
from this point and continue to optimize this algorithm to 
improve the generalization ability of this algorithm so 
that we can further improve the classification efficiency 
and classification accuracy of TWSVM.  
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