

Discovering Relationships between Data
Structures and Algorithms

Guojin Zhu

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: gjzhu.dhu@163.com

Zhiyue Yu and Jiyun Li

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: {yzy8701@163.com, jyli@dhu.edu.cn}

Abstract—There are numerous of program code resources
on the web which are solutions to programming problems
on online judges. These program code resources are not
organized for students to learn data structures and
algorithms although they contain much knowledge of data
structures and algorithms. For this reason, we propose an
approach to organize the program code resources together
with the programming problems systematically in terms of
algorithms and data structures. This approach is based on
the discovery of associate relationships between data
structures and algorithms by applying ontology techniques.
1073 program codes on the web which are solutions to 480
problems distributed on online judges were mined in our
experiment to discover the relationships between the data
structures and algorithms used in the program codes. With
the discovered relationships, the program codes and the
corresponding problems were organized into learning
materials in terms of algorithms and data structures. We
believe that it would be useful for students to learn the
programming knowledge.

Index Terms—Data structure, Online Judge, Program code,
Programming problem, Ontology

I. INTRODUCTION

Nowadays, there are a lot of solution reports of
programming problems on the web in the form of blogs
written by programming contestants [1]. Most of these
reports contain program source codes that can solve the
programming problems on online judge (OJ) systems
which are gathered from the ACM International
Collegiate Programming Contest (ACM/ICPC) [2]. These
program code resources contain lots of programming
knowledge including data structures and algorithms. As
we know, data structures and algorithms play important
roles in programming. When students learn programming,
they may not only want to learn the knowledge of data
structures and algorithms, but also hope to find out
suitable programming materials to learn how to
implement data structures and algorithms in solving
problems. However, the program code resources on the
web are not organized in terms of data structures and

algorithms. It is difficult for students to find suitable
solution reports of programming problems which are
focused on the knowledge points of algorithms and data
structures that are just taught in their class.

Some approaches have been proposed to organize the
program code resources and programming problems. One
method is to discover knowledge units for programming
tutoring based on Formal Concept Analysis (FCA) [3]. It
organizes programming problems by analyzing the source
codes submitted by students into a sequence of
knowledge units, each of which consists of problems
whose solutions need a common group of programming
language points. It just deals with the programming
knowledge at the level of a programming language, but
does not analyze the knowledge of data structures and
algorithms. This method is hardly applied to organizing
the programming problems on the web into learning
materials. Another method is to use a search engine to
obtain solution reports of programming problems, and
organize them on a basis of a predefined hierarchical
body of programming knowledge [1]. Although this
method could connect solution reports on the web
together, it does not organize the program code resources
in terms of algorithms and data structures systematically.

To address the issue above, we propose an approach to
organize the program code resources together with the
programming problems systematically in terms of
algorithms and data structures. We use ontology
techniques to recognize the data structures and algorithms
used in program codes, and discover the relationships
between them. With the discovered relationships, the
program codes on the web and the corresponding
problems on online judges are organized into learning
materials in terms of algorithms and data structures.
Furthermore, the programming problems are sorted from
easy to difficult.

The main steps of our approach are shown in Fig. 1.
First, we construct ontology individuals for program
codes on a basis of a knowledge base. Then, we apply
reasoning rules to the constructed ontology individuals
for recognition of the data structures and algorithms used
in the program codes. After that, we discover the
relationships between data structures and algorithms by Corresponding author: Guojin Zhu; Email: gjzhu.dhu@163.com.

1726 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1726-1735

Program
codes

Ontology
individuals

Ontology individuals
with recognition results

Discovered
relationships

Learning
materials

Knowledge
base

Reasoning
rules

Statistical
frequencies

Problem
URLs

Figure 1. Main steps of our approach.

TABLE I.
CLASSES, PROPERTIES AND INDIVIDUALS

No. Name Type
1 SourceCode Class
2 DS_Signal_Class Class
3 AL_Signal_Class Class
4 has_ds_signal_object Object Property
5 has_al_signal_object Object Property
6 has_ds_signal_data Data Property
7 has_al_signal_data Data Property
8 has_ds_used_data Data Property
9 has_al_used_data Data Property
10 Code_individual Individual
11 DS_Signal_Class_individual Individual
12 AL_Signal_Class_individual Individual

analyzing the statistical frequencies that each pair of a
data structure and an algorithm is recognized appearing in
the same program codes. And finally, with hyperlink
techniques, we organize the program codes on the web
and the corresponding problems on online judges into
learning materials for students to learn the programming
knowledge in terms of algorithms and data structures.

The rest of this paper is organized as follows. In
Section II, we briefly introduce the concept of ontology
and construct a knowledge base about data structures and
algorithms. In Section III, we recognize the data
structures and algorithms used in program codes, and
discover the relationships between data structures and
algorithms lying in program codes. In Section IV, we
introduce the programming problems distributed on
online judges and organize them into learning materials
in terms of algorithms and data structures. Section V
shows the experiment results and the hierarchical
structure of the learning materials. Finally, we conclude
our paper.

II. KNOWLEDGE BASE

A knowledge base [4] is a special kind of database for
knowledge management. Knowledge representation is the
core of a knowledge base. Since ontology provides a
clear semantic and knowledge description of concepts
and interrelation [5], the ontology representation is one of
the common methods to represent knowledge.

In order to recognize data structures and algorithms
used in program codes, we construct a knowledge base by
ontology techniques. This knowledge base mainly
contains two types of knowledge. One type is the
descriptive knowledge about data structures and
algorithms, and the other is the inferential knowledge in
the form of reasoning rules which would be used for
recognizing the data structures and algorithms contained
in program codes.

A. Signals of Data Structures and Algorithms
We give a definition that the signals of data structures

and algorithms are strings which can help us to recognize
the data structures and algorithms used in program codes.
For a data structure, a signal refers to a string that
represents its name (or alias) or the name (or alias) of one
of its typical operations. For example, the data structure

Stack may have the following signals: its name or alias
such as mystack or mysta, the name or alias of its pop
operation like pop or pop_stack and the name or alias of
its push operation like push or push_stack. For algorithms,
we regard their names or aliases, which are usually used
by programmers, as their signals. Take the algorithm
Depth First Search as an example, its signals may be as
following strings: depth_first_search, depthfirstsearch,
dfs, depthsearch, depth_search, depthfirst and depth_first.

B. Ontology for the Knowledge Base
As a powerful tool, ontology has been widely applied

in social science, medicine science and computer science
[6]. In the field of computer science, the definition of
ontology is that it is a clear formal specification of a
shared conceptual model. This definition illustrates four
characteristics of ontology [7]: clarification,
conceptualization, formalization, and sharing. These
features of ontology make it suitable for knowledge
representation. The ontology representation [8] is one of
commonly used methods to represent knowledge.
Ontology can be applied to extract information from texts
and documents [9-11]. It can also be used to retrieve
information in some other fields, such as e-commerce [12]
and crop diseases [13].

We design some classes and properties for the
descriptive knowledge of the knowledge base, and design
some reasoning rules for the inferential knowledge.

Now, we briefly introduce some ontology classes,
some properties, and some individuals about data
structures and algorithms. Their names and types are
shown in TABLE I. The content of the column named
Name are names of classes, properties and individuals,
and the column named Type shows their types. In
TABLE I, the names in the rows numbered 2, 4, 6, 8 and
11 are concerned with data structures, and they can be
replaced by concrete names about their respective data
structures. Similarly, the names in the rows numbered 3,
5, 7, 9 and 12 are concerned with algorithms, and they
can be replaced by concrete names about their respective
algorithms.

The domain and range of object properties and data
properties are displayed in TABLE II. The domains of the
object properties are the class SourceCode, their ranges
are respectively the signal classes (e.g.,
DS_Signal_Class). The functions of these object

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1727

© 2013 ACADEMY PUBLISHER

<owlx:Class owlx:name="#SourceCode"/>
<owlx:Class owlx:name="#DepthFirstSearch"/>
<owlx:DatatypeProperty

owlx:name="#has_depth_first_search_signal">
<owlx:domain owlx:class="#DepthFirstSearch"/>

</owlx:DatatypeProperty>
<owlx:Individual owlx:name="#DepthFirstSearch_individual_1">

<owlx:type owlx:name="#DepthFirstSearch"/>
<owlx:DataPropertyValue

owlx:property="#has_depth_first_search_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">dfs</owlx:DataValue>
 </owlx:DataPropertyValue>

</owlx:Individual>
…
<owlx:Individual owlx:name="#DepthFirstSearch_individual_7">

<owlx:type owlx:name="#DepthFirstSearch"/>
<owlx:DataPropertyValue

owlx:property="#has_depth_first_search_signal">
<owlx:DataValue owlx:datatype="&xsd;string">

depth_first_search </owlx:DataValue>
 </owlx:DataPropertyValue>

</owlx:Individual>

Figure 2. The descriptive knowledge about the algorithm DFS.

TABLE II.
THE DOMAIN AND RANGE OF PROPERTIES

Property Name Domain Range
has_ds_signal_object SourceCode DS_Signal_Class
has_al_signal_object SourceCode AL_Signal_Class
has_ds_signal_data DS_Signal_Class String
has_al_signal_data AL_Signal_Class String
has_ds_used_data SourceCode Boolean
has_al_used_data SourceCode Boolean

properties are to mark whether or not a program code
(indicated by an individual, e.g., Code_individual, of the
class SourceCode) has contained some kinds of signals
about the data structure DS and the algorithm AL
(indicated by respective signal classes, e.g.,
DS_Signal_Class). The domains of the properties
has_ds_signal_data and has_al_signal_data are their
respective signal classes (e.g., DS_Signal_Class), and
their range types are String. These data properties can
store the specific signal strings which may appear in the
program codes. The domains of the data properties
has_ds_used_data and has_al_used_data are the class
SourceCode, and their ranges are Boolean. The function
of the data property has_ds_used_data is to indicate
whether or not a program code uses the data structure ds.
The function of the data property has_al_used_data is to
indicate whether or not a program code uses the
algorithm al.

C. Descriptive Knowledge about Algorithms
Here, we define some variables to denote the classes,

properties and individuals about algorithms in the
knowledge base as follows.

 A is the set of the algorithms in the knowledge
base;

 Ai is an algorithm i in the set A, e.g., Ai = DFS.
 Sa(i, j) is one of ontology classes indicated by

AL_Signal_Class in TABLE I, which represents a
kind j of signals of the algorithm Ai;

 IAset(i, j, k) is one of ontology individuals
indicated by AL_Signal_Class_individual in
TABLE I, which is a member of the class Sa(i, j),
representing a signal k belonging to a kind j of
signals of the algorithm Ai;

 DPSa(i, j) is one of data properties indicated by
has_al_signal_data in TABLE II, whose domain
is the class Sa(i, j) and whose range is a set of
strings representing a kind j of signals of the
algorithm Ai.

Take the algorithm DFS (Depth First Search) in Fig.2
for example, there is only one class DepthFirstSearch for
its signals, i.e., Sa(i, 1) = DepthFirstSearch. It has a data
property has_depth_first_search_signal, i.e., DPSa(i, 1) =
has_depth_first_search_signal. Furthermore, there are
seven individuals in the class Sa(i, 1). The first individual
is IAset(i, 1, 1) = DepthFirstSearch_individual_1, whose
property value is “dfs”. The last individual is IAset(i, 1, 7)
= DepthFirstSearch_individual_7 , whose property value
is “depth_first_search”.

D. Descriptive Knowledge about Data Structues
The variables needed to denote the classes, properties

and individuals about data structures in the knowledge
base are as follows.

 D is the set of the data structures in the knowledge
base;

 Di is a data structure i in the set D, e.g., Di = Stack;
 Sd(i, j) is one of ontology classes indicated by

DS_Signal_Class in TABLE I, which represents a
kind j of signals of the data structure Di;

 IDset(i, j, k) is one of ontology individuals
indicated by DS_Signal_Class_individual in
TABLE I, which is a member of the class Sd(i, j),
representing a signal k belonging to a kind j of
signals of the data structure Di;

 DPSd(i, j) is one of data properties indicated by
has_ds_signal_data in TABLE II, whose domain
is the class Sd(i, j) and whose range is a set of
strings representing the kind j of signals of the
data structure Di.

Take the data structure Stack in Fig.3 for example,
there are three classes StackVariable, StackPopOperation
and StackPushOperation for its three kinds of signals, i.e.,
Sd(i, 1) = StackVariable, Sd(i, 2) = StackPopOperation,
and Sd(i, 3) = StackPushOperation. The class Sd(i, 1) has
a data property has_stack_variable_signal, i.e., DPSd(i, 1)
= has_stack_variable_signal. There are two individuals in
the class Sd(i, 1). The first individual is IDset(i, 1, 1) =
StackVariable_individual_1, whose property value is
“stack”. The second individual is IDset(i, 1, 2) =
StackVariable_individual_2, whose property value is
“mysta”. The class Sd(i, 2) has a data property
has_stack_pop_operation_signal, i.e., DPSd(i, 2) =
has_stack_pop_operation_signal. There are two
individuals in the class Sd(i, 2). The first individual is
IDset(i, 2, 1) = StackPopOperation_individual_1, whose
property value is “pop”. The second individual is IDset(i,
2, 2) = StackPopOperation_individual_2, whose property
value is “pop_stack”. The class Sd(i, 3) has a data
property has_stack_push_operation_signal, i.e., DPSd(i,

1728 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

<owlx:Class owlx:name="#SourceCode"/>
<owlx:Class owlx:name="#StackVariable"/>
<owlx:Class owlx:name="#StackPopOperation"/>
<owlx:Class owlx:name="# StackPushOperation ">
<owlx:DatatypeProperty owlx:name="#has_stack_variable_signal">

<owlx:domain owlx:class="#StackVariable"/>
</owlx:DatatypeProperty>
<owlx:Individual owlx:name="#StackVariable_individual_1">

<owlx:type owlx:name="#StackVariable"/>
<owlx:DataPropertyValue

owlx:property="#has_stack_variable_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">stack</owlx:DataValue>
 </owlx:DataPropertyValue>

</owlx:Individual>
<owlx:Individual owlx:name="#StackVariable_individual_2">

<owlx:type owlx:name="#StackVariable"/>
<owlx:DataPropertyValue

owlx:property="#has_stack_variable_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">mysta</owlx:DataValue>
 </owlx:DataPropertyValue>

</owlx:Individual>
<owlx:DatatypeProperty

owlx:name="#has_stack_pop_operation_signal">
<owlx:domain owlx:class="#StackPopOperation"/>

</owlx:DatatypeProperty>
<owlx:Individual owlx:name="#StackPopOperation_individual_1">

<owlx:type owlx:name="#StackPopOperation"/>
<owlx:DataPropertyValue

owlx:property="#has_stack_pop_operation_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">pop</owlx:DataValue>
</owlx:DataPropertyValue>

</owlx:Individual>
<owlx:Individual owlx:name="#StackPopOperation_individual_2">

<owlx:type owlx:name="#StackPopOperation"/>
<owlx:DataPropertyValue

owlx:property="#has_stack_pop_operation_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">pop_stack</owlx:DataValue>
</owlx:DataPropertyValue>

</owlx:Individual>
<owlx:DatatypeProperty

owlx:name="#has_stack_push_operation_signal">
<owlx:domain owlx:class="#StackPushOperation"/>

</owlx:DatatypeProperty>
<owlx:Individual owlx:name="#StackPushOperation_individual_1">

<owlx:type owlx:name="#StackPushOperation"/>
<owlx:DataPropertyValue

owlx:property="#has_stack_push_operation_signal">
<owlx:DataValue

owlx:datatype="&xsd;string">push</owlx:DataValue>
 </owlx:DataPropertyValue>

</owlx:Individual>
<owlx:Individual owlx:name="#StackPushOperation_individual_2">
<owlx:type owlx:name="#StackPushOperation"/>

<owlx:DataPropertyValue
owlx:property="#has_stack_push_operation_signal">

<owlx:DataValue
owlx:datatype="&xsd;string">push_stack</owlx:DataValue>

</owlx:DataPropertyValue>
</owlx:Individual>

Figure 3. The descriptive knowledge about the data structure Stack.

<owlx:Class owlx:name="#SourceCode"/>
<owlx:ObjectProperty owlx:name="#has_depth_first_search">

<owlx:domain owlx:class="#SourceCode"/>
<owlx:range owlx:class="#DepthFirstSearch"/>

</owlx:ObjectProperty>
<owlx:DatatypeProperty owlx:name="#has_dfs_used">

<owlx:domain owlx:class="#SourceCode"/>
</owlx:DatatypeProperty>
<owlx:ObjectProperty owlx:name="#has_stack_variable">

<owlx:domain owlx:class="#SourceCode"/>
<owlx:range owlx:class="#StackVariable"/>

</owlx:ObjectProperty>
<owlx:ObjectProperty owlx:name="#has_stack_pop_operation">

<owlx:domain owlx:class="#SourceCode"/>
<owlx:range owlx:class="#StackPopOperation"/>

</owlx:ObjectProperty>
<owlx:ObjectProperty owlx:name="#has_stack_push_operation">

<owlx:domain owlx:class="#SourceCode"/>
<owlx:range owlx:class="#StackPushOperation"/>

</owlx:ObjectProperty>
<owlx:DatatypeProperty owlx:name="#has_stack_used">

<owlx:domain owlx:class="#SourceCode"/>
</owlx:DatatypeProperty>

Figure 4. Some properties of the class SourceCode.

3) = has_stack_push_operation_signal. There are two
individuals in the class Sd(i, 3). One is IDset(i, 3, 1) =
StackPushOperation_individual_1, whose property value
is “push”; whereas the other is IDset(i, 3, 2) =
StackPushOperation_individual_2, whose property value
is “push_stack”.

E. Descriptive Knowledge about Program Codes
We use SC to represent the ontology class SourceCode,

which is the domain of the four kinds of properties
indicated by has_al_signal_object, has_ds_signal_object,
has_al_used_data and has_ds_used_data in TABLE II.
We use the following variables to denote these properties.

 OPa(i, j) is one of object properties indicated by
has_al_signal_object, whose range is the class
Sa(i, j);

 OPd(i, j) is one of object properties indicated by
has_ds_signal_object, whose range is the class
Sd(i, j);

 DPUa(i) is one of data properties indicated by
has_al_used_data, whose range is boolean (true
or false);

 DPUd(i) is one of data properties indicated by
has_ds_used_data, whose range is boolean (true
or false).

Fig.4 depicts the class SC (i.e., SourceCode) and its
properties about the algorithm DFS and the data structure
Stack. The class SC has an object property OPa(i, 1) =
has_depth_first_search, which corresponds to the only
one kind of signals about the algorithm DFS. Furthermore,
it has another three object properties has_stack_variable,
has_stack_pop_operation and has_stack_push_operation,
which correspond to the three kinds of signals of the
stack, respectively, i.e., OPd(i, 1) = has_stack_variable,
OPd(i, 2) = has_stack_pop_operation and OPd(i, 3) =
has_stack_push_operation. Finally, the class SC has two
data properties, i.e., DPUa(i) = has_dfs_used and DPUd(i)
= has_stack_used.

The procedure to create classes and properties is
described briefly as follows.

First, we create the unified ontology class SC, and its
properties DPUd(i) and DPUa(i).

Then, for each kind j of signals of each data structure i
we build a class Sd(i, j) and its property DPSd(i, j), and
the property OPd(i, j) of the class SC. For each kind j of
signals of each algorithm i we also build a class Sa(i, j)

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1729

© 2013 ACADEMY PUBLISHER

<ruleml:imp>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="#has_stack_used">
 <ruleml:var>CODE</ruleml:var>
 <ruleml:var>CODE</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
 <ruleml:_body>
 <swrlx:individualPropertyAtom

swrlx:property="#has_stack_variable">
 <ruleml:var>CODE</ruleml:var>
 <ruleml:var>STACKVAR</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom

swrlx:property="#has_stack_pop_operation">
 <ruleml:var>CODE</ruleml:var>
 <ruleml:var>POP</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom

swrlx:property="#has_stack_push_operation">
 <ruleml:var>CODE</ruleml:var>
 <ruleml:var>PUSH</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
</ruleml:imp>

Figure 5. The reasoning rule of the data structure Stack.

and its property DPSa(i, j), and the property OPa(i, j) of
the class SC.

Finally, for each signal k belonging to the kind j of
signals of the data structure i we create a member IDset(i,
j, k) of the class Sd(i, j), whose data property DPSd(i, j) is
assigned with the string of the signal k. Similarly, we
create a member IAset(i, j, k) of a class Sa(i, j) for each
signal k of the algorithm i, whose data property DPSa(i, j)
is assigned with the string of the signal k.

We regard these classes, properties and individuals as
the descriptive knowledge in the knowledge base.

F. Inferential Knowledge for Reasoning Rules
The inferential knowledge in the knowledge base

refers to the rules to recognize data structures or
algorithms used in program codes. A rule usually consists
of a conclusion and several preconditions. The conclusion
is the reasoning result that we want to obtain, and the
preconditions indicate the circumstances under which the
conclusion is tenable. The conclusion is associated with
one of properties indicated by has_al_used_data or
has_ds_used_data in TABLE II, which would appear in
the query for recognizing the corresponding data structure
or algorithm. Each precondition is also associated with a
respective property.

Fig.5 shows the reasoning rule of the data structure
Stack. In this rule, there are four properties marked by the
tag <swrlx:individualPropertyAtom>. The property
named has_stack_used between the tag <ruleml:_head>
and the tag </ruleml:_head> is the conclusion of the rule.
It has two variables with the same name CODE. Its
meaning is to check up whether or not an individual
(indicated by CODE) of the class SC, which represents a
program code, satisfies the following preconditions. If it
satisfies all the preconditions, the individual of the class
SC will be added to the result set of the rule. The
properties between the tag <ruleml:_body> and the tag

</ruleml:_body> are three preconditions of the rule.
Taking the property named has_stack_variable for
example, it possesses two variables named CODE (which
is the same as the variable CODE appearing in the
conclusion) and STACKVAR. It means that when the
conclusion is tenable, the individual (indicated by CODE)
of the class SC must have an object property
has_stack_variable. When the individual indicated by
CODE possesses the three object properties
has_stack_variable, has_stack_pop_operation and
has_stack_push_operation (which are part of knowledge
depicted in Fig.4), this rule infers that the program code
represented by the individual indicated by CODE use the
data structure Stack.

We regard the reasoning rules as the inferential
knowledge of the knowledge base. For each data structure
or each algorithm, there is a unique rule associated with it
in the knowledge base. Thus, each rule represents a data
structure or an algorithm in the knowledge base. The
inferential knowledge in the knowledge base would be
used to recognize the data structures or algorithms lying
in program codes.

III. RELATIONSHIP DISCOVERY

A. Ontology Individuals for Program Codes
After building the knowledge base, we could create

individuals of the class SC for program codes, and attach
to the created individuals some properties if the program
codes contain some corresponding signals about data
structures or algorithms in the knowledge base.

We propose an algorithm CreateIndividual, which is
used to create an individual for a program code. The
following variables are needed in this algorithm.

 C is the program code;
 Ind(C) is the individual created for the program

code C.
The algorithm CreateIndividual is described as follows:

1) Read the content of a program code C;
2) Create an ontology individual Ind(C) of the class SC

for the program code C (In this step, the individual
Ind(C) does not possess any property);

3) For each individual IDset(i, j, k) in each signal class
Sd(i, j) of each data structure Di, get the signal string
k by reading the value of its data property DPSd (i, j),
and attach the individual IDSet(i, j, k) to the code
individual Ind(C) via the object property OPd (i, j) if
the program code C contains the signal string k;

4) For each individual IAset(i, j, k) in each signal class
Sa(i, j) of each algorithm Ai, get the signal string k by
reading the value of its data property DPSa (i, j), and
attach the individual IASet(i, j, k) to the code
individual Ind(C) via the object property OPa (i, j) if
the program code C contains the signal string k.

Fig.6 shows a program code which contains signals of
three kinds of the data structure Stack, and the signal
string “dfs” of the algorithm DFS. By using the algorithm
CreateIndividual, we create a code individual named
ProgramCode_1 for this program code as shown in Fig.7.

1730 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

 #include<stdio.h>
#include<stack>
#define maxn 50
using namespace std;
stack < int > mysta;
int lena, lenb, num[maxn];
char a[maxn], b[maxn];
void dfs(int i, int j, int k){
 char ch; int p;
 if (j == lenb){
 for (p = 0; p < k; p++){
 if (num[p])
 printf("i ");
 else
 printf("o ");
 }
 printf("\n");
 return;
 }
 if (i < lena){
 mysta.push(a[i]);

num[k] = 1;
dfs(i + 1, j, k + 1);

 }

 if (!mysta.empty() &&
mysta.top() == b[j]) {
 ch = mysta.top();
 mysta.pop();
 num[k] = 0;
 dfs(i, j + 1, k + 1);
 mysta.push(ch);
 }
 return;
}
int main(){
 while (scanf("%s%s", a, b)
 != EOF){
 lena = strlen(a);
 lenb = strlen(b);
 while (!mysta.empty()){
 mysta.pop();
 }
 printf("[\n");
 dfs(0, 0, 0);
 printf("]\n");
 }
 return 0;
}

Figure 6. A program code which employs DFS and Stack.

<a:SourceCode rdf:ID="ProgramCode_1">
<a:has_stack_variable rdf:resource="#

StackVariable_individual_2"/>
 <a:has_stack_pop_operation rdf:resource="#

StackPopOperation_individual_1"/>
<a:has_stack_push_operation rdf:resource="#

StackPushOperation_individual_1"/>
<a:has_depth_first_search

rdf:resource="#DepthFirstSearch_individual_1"/>
</a:SourceCode>

Figure 7. The code individual for the program code.

Literal hasStackDS_CODE_STACK
=KAON2Manager.factory().literal(true, has_stack_used, new Term[]
{ CODE,CODE });

Query codeContainsDataStrcture
= reasoner.createQuery(new Literal[]
{

KAON2Manager.factory().literal(true, SourceCode, new Term[]
{ CODE}),
KAON2Manager.factory().literal(true,
hasStackDS_CODE_STACK, new Term[] { CODE,
DATASTRUCTURE }),

 }, new Variable[] { CODE, DATASTRUCTURE });

Figure 8. The query about Stack in Java language.

<a:SourceCode rdf:ID="ProgramCode_1">
<a:has_stack_variable rdf:resource="#

StackVariable_individual_2"/>
 <a:has_stack_pop_operation rdf:resource="#

StackPopOperation_individual_1"/>
<a:has_stack_push_operation rdf:resource="#

StackPushOperation_individual_1"/>
<a:has_depth_first_search

rdf:resource="#DepthFirstSearch_individual_1"/>
<a:has_stack_used

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">tru
e</a:has_stack_used>

<a:has_dfs_used
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">tru
e</a:has_dfs_used>

</a:SourceCode>

Figure 9. The code individual with recognition result

B. Recognition of Programming Knowledge
After creating individuals for program codes, we are

now ready to recognize the programming knowledge of
data structures or algorithms lying in the program codes
by using the inferential knowledge in the knowledge base.

In order to recognize the data structures or the
algorithms, we use Java programming language to create
an instance of a KAON2 [14] reasoner.

For each rule in the knowledge base, a query is built
to recognize its corresponding data structure or algorithm.
The query is used to search for all individuals of the class
SourceCode that satisfy the preconditions of the
reasoning rule. The result of the query is a group of
individuals of the class SourceCode, each of which
satisfies the preconditions and therefore indicates that its
corresponding program code contains the data structure
(or algorithm) associated with the reasoning rule.

Fig.8 shows a query about the data structure Stack. The
literal hasStackDS_CODE_STACK uses the property
has_stack_used, which is from the rule for the data
structure Stack in Fig.5. This literal is used by the query
codeContainsDataStrcture, so that the query about Stack
could be associated with the rule of Stack. The query uses
another literal for the class SourceCode, which indicates
that the scope of the query is the individuals of the class
SourceCode.

When the query, whose conditions are as the rule

defines, is open, the reasoning process would be executed.
As a result, the individuals which possess the three object
properties has_stack_variable, has_stack_pop_operation
and has_stack_push_operation would be selected.

We define some variables as follows.
 Qdi indicates the query for a data structure i in the

knowledge base;
 R indicates an instance of the KAON2 reasoner,

which could execute the queries about the data
structures and algorithms;

 Cdi indicates the result of the query Qdi, which is a
set of individuals in the class SC that satisfy the
preconditions of the reasoning rule.

The algorithm, which is used to recognize a data
structure i, is described as follows.
1) For each individual Ind(C) in the knowledge base,

attach to it a data property DPUd(i) whose value is
assigned with false;

2) Create an instance R;
3) Build a query Qdi on a basis of the rule about the

data structure i in the knowledge;
4) Get the result set Cdi by executing the query Qdi;
5) For each individual in the set Cdi, set true to its data

property DPUd(i).
For each data structure in the knowledge base, do the

above steps to recognize the data structure, and attach its
corresponding property to each individual Ind(C) of
program codes. The steps used to recognize algorithms
are similar to the steps of the above algorithm. Fig.9
depicts the individual of the program code in Fig.6,
whose data properties has_stack_used and has_dfs_used
are assigned with true. The recognition results would be

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1731

© 2013 ACADEMY PUBLISHER

Figure 10. The web page of a programming problem from HDU

used to discover the relationships between data structures
and algorithms.

C. Discovery of Programming Knowledge Relationships
We define that the relationships between data

structures and algorithms are reflected by the frequencies
of the two kinds of programming knowledge used in
program codes simultaneously. When a data structure and
an algorithm are contained in a program code, there may
be a relationship between them. For instance, the data
structure Stack and the algorithm Depth First Search are
often contained in a program code, which implies a
relationship between them.

 We propose a 3-tuple data model R = <A, D, N> to
mark the relationships between algorithms and data
structures lying in the program codes. Here, R denotes the
set of relationships, A denotes the set of algorithms in the
knowledge base, D denotes the set of data structures in
the knowledge base and N denotes the set of frequencies.
We assume that there are m algorithms and n data
structures, and there are m×n different relationships
between algorithms and data structures. Thus, each of the
3-tuples can be expressed as R(i, j) = <Ai, Dj, N(i, j)>. In this
tuple, Ai (i = 1, 2, …, m) denotes an algorithm in the set A;
Dj (j = 1, 2, …, n) denotes a data structure in the set D;
N(i, j) (i = 1, 2, …, m, j = 1, 2, …, n) shows the frequency
of the algorithm Ai and the data structure Dj used
simultaneously in the same program codes.

The value of each element N(i, j) is the number of all
program codes that use both the algorithm Ai (i = 1, 2, …,
m) and the data structure Dj (j = 1, 2, …, n). This value
can be obtained by counting the number of individuals
whose data properties DPUa(i) and DPUd(j) are both
true. Thus, the relationship R(i, j) between an algorithm Ai
and a data structure Dj is indicated by the 3-tuple <Ai, Dj,
N(i, j)>.

According to the elements of the set R, we can
calculate the total frequency AiTotal of each algorithm Ai
by the formula in (1), where AiTotal means the total
number of the program codes that use the algorithm Ai
simultaneously with at least one data structure in the
knowledge base.

n

(,)
j 1

=iTotal i jA N
=
∑ (1)

For each pair of a data structure Dj and an algorithm Ai,
we give a definition that the rate Rate(i, j) of the data
structure Dj is the ratio of the number N(i, j) to the number
AiTotal. The rate Rate(i, j) indicates how much the data
structure Dj is related to the algorithm Ai. Its value is
between 0 and 1 inclusive. The bigger the value, the more
related to the algorithm Ai the data structure Dj is. The
rate can be calculated by the formula in (2).

(,)
(,)

i j
i j

iTotal

N
Rate

A
= (2)

IV. LEARNING METRIALS

In this Section, we will introduce the programming
problems on OJ systems, and then organize the

programming problems and their program codes on the
web into learning materials in terms of algorithms and
data structures with hyperlink techniques.

A. Information Items of Programming Problems
A programming problem from an OJ system may

consist of many information items. We just consider the
following items: Pro.ID, problem name, problem URL,
problem description, and pass rate.

We define that Pro.ID consists of two parts, the name
of the OJ system and the serial number of a programming
problem on the OJ system.

The pass rate of a programming problem is defined as
the percentage of the accepted program codes out of all
the program codes submitted by students for the sake of
solving the programming problem. The pass rate of a
programming problem reflects its difficulty. If the pass
rate of a programming problem is low, it means that the
problem is difficult.

The web page of a programming problem contains
some information items about this problem.

Fig.10 shows a part of the web page of a programming
problem from the HDU 1 system. We could get the
information items about this problem from this page as
shown in TABLE III. This programming problem has its
serial number “3078” on the OJ system named “HDU”,
so its Pro.ID is “HDU 3078”. From this page, we can see
that its problem name is “Network”. The description of
the programming problem is the string “The ALPC
company is…..”. The total number of program codes
submitted by students for the programming problem is 96,

and the number of the accepted codes is 54. Thus, the
pass rate of this programming problem is 56.25%, which

1 HDU: http://acm.hdu.edu.cn/

TABLE III.
THE ITEMS AND THEIR INFORMATION OF A PROBLEM

Item Information
OJ System Name HDU
Serial Number 3078
Pro.ID HDU 3078
Problem Name Network

Problem URL http://acm.hdu.edu.cn/showprobl
em.php?pid=3078

Problem Description The ALPC company is…..
Total Submissions 96
Accepted Submissions 54
 Pass Rate 56.25%

1732 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

TABLE IV.
THE PROBLEM URLS FROM DIFFERENT OJ SYSTEM

OJ Name URL of Problem Description
HDU http://acm.hdu.edu.cn/showproblem.php?pid=xxxx
POJ http://poj.org/problem?id=xxxx

ZOJ http://acm.zju.edu.cn/onlinejudge/showProblem.do
?problemCode=xxxx

is the number of accepted codes divided by the total
number of program codes.

B. Obtainment of Information Items
The Pro.ID and the name of a programming problem

can be obtained during the process of downloading
solution reports from the web if we use the method
mentioned in [1].

According to the Pro.ID of a programming problem,
we can get the URL of the problem by string
concatenation. TABLE IV shows the URLs of
programming problems on three different OJ systems,
where “xxxx” is the problem serial number. Take the
programming problem in TABLE III for example, its
Pro.ID is “HDU 3078”, so that its problem URL is
“http://acm.hdu.edu.cn/showproblem.php?pid=3078”. By
using this URL, we can obtain the web page which
contains its name and description as shown in Fig.10.

The pass rate of a problem is contained in the volume
page which this problem belongs to. We can get its pass
rate from the volume page.

C. Orgainzition of program codes and problems
We download solution reports on the web for

programming problems using the method described in [1].
During the process, the URLs of reports, Pro.ID and

problem names could be obtained. According to Pro.ID,
we can get the URL of a problem, and then obtain its pass
rate.

We get program codes from solution reports, and then
discover the relationships between algorithms and data
structures used in them.

With the discovered relationship, we could organize
the program codes on the web and the programming
problems on online judges into learning materials in
terms of algorithms and data structures.

D. Structure of Learning Metrials
The learning materials possess a hierarchical structure.

The highest level of this structure is the algorithms.
Below each algorithm, there are several data structures,
which are sorted with their percents from high to low. For
each data structure, several problems, which are sorted by
their pass rates from high to low, are displayed. The
materials also provide one or more solution reports for
each programming problem.

So these materials can help learners to study
programming knowledge in terms of algorithms and data
structures systematically.

V. EXPERIMENT AND RESULT

In our experiment, we took program codes written in
C/C++ programming language and the programming
problems from OJ systems as our research data. The
program codes were obtained from solution reports,
which were downloaded from many web sites, and the
programming problems were from three OJ systems HDU,
POJ2, and ZOJ3.

We built a knowledge base for seven algorithms and
twelve data structures by using the ontology tool protégé
[15]. The seven algorithms are BFS, DFS, MaxFlow,
ShortestPath, MST, Topological and Linear DP. The
twelve data structures are Stack, Queue, LinkList,
UnionFindSet and the eight data structures from the
Standard Template Library (STL).

We collected 6643 solution reports of 480
programming problems, and obtained 3752 program
codes written in the C/C++ programming language from
these reports. We created 3752 individuals of the class
SourceCode for the 3752 program codes respectively, and
recognized data structures and algorithms used in these
program codes.

Since some of the program codes did not use any data
structure or any algorithm in the knowledge base we
created, for the sake of discovering the associated
relationships between data structures and algorithms, we
selected 1073 suitable program codes, which use both
data structures and algorithms according to the
recognition results.

Some results of our experiment are shown in
TABLE V. In the string “HDU_2101_code_1” from the
first column, “HDU” is the OJ system name, “2101” is
the serial number of the problem on the HDU system, and
“code_1” means that this code is from the first solution
report of the programming problem with the Pro.ID
“HDU 2101”. The second column is the recognition
result of data structures and the last one is the recognition
result of algorithms.

After recognizing the data structures and algorithms
used in the program codes, we can analyze the
relationships between the two kinds of knowledge. We
calculated the total frequency AiTotal of each algorithm Ai
by the formula in (1), and the rate Rate(i, j) of each data
structure Dj which is used simultaneously with the
algorithm Ai by the formula in (2).

2 POJ: http://poj.org/
3 ZOJ: http://acm.zju.edu.cn/

TBALE V.
RECOGNITION RESULT OF DATA STRUCTURES AND ALGORITHMS

Program Code Name Data Structure Algorithm
HDU_2101_code_1 STLQueue BFS
POJ_3522_code_1 UnionFindSet MST
POJ_2337_code_1 STL Stack DFS
POJ_3272_code_1 STLQueue Topological

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1733

© 2013 ACADEMY PUBLISHER

Figure 12. The hierarchical structure of the learning materials

Figure 11. The hierarchical structure of programming knowledge

TABLE VI shows the relationships between the seven
algorithms and several data structures used in program
codes simultaneously. The second column lists the
algorithm names, each followed by the number (in the
parentheses) of all program codes that use the
corresponding algorithm. The third column displays the
data structures, which are used in program codes
simultaneously with the corresponding algorithms. The
last column shows the rate Rate(i, j) of the data structure
Dj related to the algorithm Ai. The data structures, which
are used in program codes simultaneously with the same
algorithm, are sorted by their rate Rate(i, j) from high to
low.

Fig.11 shows the hierarchical structure of
programming knowledge in terms of algorithms and data
structures. At the top level are algorithm names and at the
lower level are data structure names. For each algorithm,
it displays its correlative data structures which are sorted
by the percentage from high to low. Take the algorithm
DFS as an example, the number 371 in the parentheses
which follows the algorithm name means that there are
371 program codes out of 1073 program codes use this

algorithm. The names of data structures appearing

simultaneously with DFS, are STL Queue (102), STL
Vector (91) and STL Stack (38).

Fig.12 shows the hierarchical structure of the learning
materials which consist of programming problems
distributed on online judges and their program code
resources on the web. The learning materials display the
pass rates, the hyperlinks of problem descriptions and
some solution reports. For each data structure, the
programming problems are ordered by their pass rates
from high to low. When students want to learn how to
implement data structures and algorithms in solving
problems, they can easily find out the suitable problems
to practice from this structure. Learners can also choose
suitable problems to practice according to the difficulty
of problems. For each problem, we give one or more
solution reports for students to study. Fig.12 shows two
programming problems whose solutions use both DFS
and STL Stack. The Pro.IDs of them are “HDU 3078” and
“POJ 3114”, respectively. The pass rate of the problem
named “Network” is 56.26%, and it is higher than the
pass rate 31.87% of the problem named “Countries in
War”, thus the former problem is displayed above the
latter one.

VI. CONCLUSION

We have proposed an approach to discover the
relationships between data structures and algorithms with
ontology techniques, which consists of constructing the
knowledge base about data structures and algorithms,
recognizing the two kinds of programming knowledge
used in program codes with ontology reasoning technique,
and discovering the relationships between them by
recording their frequencies. With the discovered
relationships, we organized the program codes on the web
and the programming problems distributed on OJ systems
into learning materials with a hierarchical structure. In
this structure, the top level is algorithms, and the lower is
data structures. Under the level of data structures, several
problems are provided in the descending order of their
pass rates. For each problem, several solution reports are
given for students to learn. We believe that the materials
would be useful for students to learn the programming
knowledge of data structures and algorithms.

TABLE VI.
RELATIONSHIPS BETWEEN DATA STRUCTURES AND ALGORITHMS

No Ai (AiTotal) Dj Rate(i, j)

1 BFS (650) STL Queue 70.17%
STL Priority_Queue 12.52%

2 DFS(371)
STL Queue 27.49 %
STLVector 24.53%
STL Stack 10.24 %

3 MaxFlow(77) STL Queue 83.12%

4 ShortestPath(74)
STL Priority Queue 62.16 %
STL Queue 13.51%
STL Vector 10.81 %

5 MST(57)
UnionFindSet 42.11 %
STL Queue 24.56 %
STL Priority_Queue 7.02 %

6 Topological(32)
STL Queue 40.63 %
STL Priority Queue 18.75 %
STLStack 12.50 %

7 Linear DP(24)
STLVector 33.33%
STL Queue 33.33%
STLMap 12.50%

1734 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
60973121.

REFERENCES

[1] G. Zhu and L. Fu, "Automatic Organization of
Programming Resources on the Web," in Advances in
Computer Science and Information Engineering. vol. 168,
D. Jin and S. Lin, Eds., ed: Springer Berlin Heidelberg,
2012, pp. 675-681. doi: 10.1007/978-3-642-30126-1_106.

[2] ACM/ICPC. http://cm.baylor.edu/welcome.icpc, 2012-11-
20/2012-12-25.

[3] G. Zhu and Z. Zhang, "Knowledge unit discovery for
programming tutoring based on Formal Concept Analysis,"
in Educational and Information Technology (ICEIT), 2010
International Conference on, 2010, pp. V3-476-V3-479.
doi: 10.1109/ICEIT.2010.5607545.

[4] J. Fagerberg, M. Fosaas and M. Sapprasert, "Innovation:
Exploring the knowledge base," Research Policy, vol. 41,
pp.1132-1153, 2012. doi: 10.1016/j.bbr.2011.03.031.

[5] H. Gao and X. Chen, "Ontology and CBR-based Dynamic
Enterprise Knowledge Repository Construction," Journal
of Software, vol. 7, pp. 1211-1218, Jun 2012. doi:
doi:10.4304/jsw.7.6.1211-1218.

[6] W. Gao and T. Xu, "Characteristics of Optimal Function
for Ontology Similarity Measure via Multi-dividing,"
Journal of Networks, vol. 7, pp. 1251-1259, Aug 2012.
doi:10.4304/jnw.7.8.1251-1259.

[7] Studer R., Benjamins V.R., and Fensel D., "Knowledge
engineering: Principles and methods, " Data & Knowledge
Engineering, vol. 25, pp.161-197, March 1998. doi:
10.1016/j.bbr.2011.03.031.

[8] C. Brewster and K. O'Hara, "Knowledge representation
with ontologies: the present and future," Intelligent Systems,
IEEE, vol. 19, pp. 72-81, 2004. doi: 10.1109/MIS.2004.
1265889.

[9] M. Vargas-Vera, E. Motta, J. Domingue, S.B. Shum and M.
Lanzoni, "Knowledge Extraction Using an Ontology-Based
Annotation Tool",Workshop on Knowledge Markup &
Semantic Annotation, ACM Press, New York, 2001, pp.5-
12.

[10] H. Alani, et al., "Automatic ontology-based knowledge
extraction from Web documents," Intelligent Systems,
IEEE, vol. 18, pp. 14-21, 2003. doi: 10.1109/MIS.2003.
1179189.

[11] D. C. Wimalasuriya and D. Dou, "Ontology-based
information extraction: An introduction and a survey of
current approaches," J. Inf. Sci., vol. 36, pp. 306-323, 2010.
doi: 10.1177/0165551509360123.

[12] L. Zhang, M. Zhu and W. Huang, "A Framework for an
Ontology-based E-commerce Product Information
Retrieval System," Journal of Computers, vol. 4, pp. 436-
443, Jun 2009. doi: 10.4304/jcp.4.6.436-443.

[13] B. Jiang, M. Zhu and J. Wang, "Ontology-Based
Information Extraction of Crop Diseases on Chinese Web
Pages," Journal of Computers, vol. 8, pp. 85-90, Jan 2013.
doi: 10.4304/jcp.8.1.85-90.

[14] KAON2. http://kaon2.semanticweb.org, 2012-11-20/2013-
01-10.

[15] Protégé. http://protege.stanford.edu, 2012-11-01/2012-12-
20.

Guojin Zhu is an associate professor at
the Department of Computer Science,
Donghua University (DHU), Shanghai,
China. He received his M.S. and Ph.D.
degrees from DHU in 1991 and 2007,
respectively. He was a visiting scholar at
the Department of Computer Science and
Engineering, Michigan State University,
East Lansing, Michigan, USA from

November 2007 to November 2008. His current research
interests include semantic web, knowledge discovery, and
neural computing.

Zhiyue Yu is a graduate student of
Computer Application Technology at
Donghua University. She was born in
Hebei province, P.R. China in 1987, and
received her Bachelor of Science degree
from Shaanxi University of Science and
Technology in 2010. Her current main
research interest is computer network
and artificial intelligence.

Jiyun Li is an associate professor at the
Department of Computer Science,
Donghua University (DHU), Shanghai,
China. She received her M.S. and Ph.D.
degrees from DHU in 1996 and 2003,
respectively. She has been visiting
scholar at the Department of Psychology
and Brain Science in Indiana University
and Textile and Fashion Institute in
Hongkong Polytechnique University.

Her current research interests include cognitve modeling,
knowledge discovery, and neural computing.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1735

© 2013 ACADEMY PUBLISHER

