
An Exercise Management System for Teaching
Programming

Sho-Huan Tung, Tsung-Te Lin, and Yen-Hung Lin

National Yunlin University of Science and Technology / Department of Information Management, Yunlin, Taiwan
Email: {tungsh, lintt, lyhcode}@yuntech.edu.tw

Abstract—An effective learning activity in a computer
programming course is to study and practice computer
programs. In order to help students to submit exercises and
to assist instructors to mark programming exercises, a
number of program submissions and assessment systems
have been developed. However, these systems do not provide
sufficient support for instructors to design exercises that can
help students to study and practice computer programs in
an incremental manner. With the primary aim to improve
the teaching and learning of computer programming, we
have developed a programming exercise management
system, namely Programming Learning Web (PLWeb), to
assist instructors to design computer programming exercises
and to help students to study and practice programming
exercises. PLWeb provides an integrated development
environment (IDE) which is used not only as an authoring
tool for instructors to compose exercises but also as a
novice-friendly editor for students to study programs and to
submit solutions. In addition, PLWeb allows instructors to
use visualized learning status to assist students with
difficulties. A plagiarism detection tool is also provided to
deter students from plagiarism.

Index Terms—programming learning tools, programming
exercises design, computer science education, architectures
for educational technology system, plagiarism detection

I. INTRODUCTION

Programming is not an easy subject for beginners to
study [1]. Besides syntax and semantics, beginning
programmers also face the challenge of learning abstract
concepts, as well as testing and debugging techniques to
be able to solve problems. Without proper assistance, it
can be very difficult for students to overcome all of these
challenges.

In a survey on the difficulties of novice programmers
[2], Lahtinen et al. suggested that “learning by doing”
should be a part of studying programming at all times.
Their survey reported that both students and teachers
agreed that practical learning situations were the most
useful. In particular, exercise sessions were rated more
useful than lectures, and practical sessions in computer
rooms as well as programming by themselves were rated
more useful than studying by themselves. In addition,
example programs were considered as the most useful
type of material. However, novice learners still need
assistances in order to overcome erring, floundering, and
a variety of problems encountered while practicing
programming [3].

To compensate this, van Merrienboer proposed a
completion strategy as the basis of a programming tutor
for beginners to assist their learning [4, 5]. The
completion strategy uses commonly used programming
idioms, patterns, or well-designed programs and their
partially completed versions as model programs for
students to finish, modify and extend. For example,
students may be required to finish a partially completed
count-controlled-loop by fill-in-the-blanks for its count
control variables before attempting to solve other similar
problems. This strategy forces students to study and
analyze the model programs so that they can imitate them
properly. The benefits of the completion strategy have
been demonstrated in [4, 5].

In addition to exercises that support the completion
theory, other types of programming exercises such as
multiple-choice, debugging, and tracing program
execution can also help students to comprehend the
theory, syntax, semantics, and behaviors of programs.

In order to support learning programming by doing
exercises, the instructor has to prepare many kinds of
programming exercises for students to practice. A
programming exercise has several components: a
problem statement, a solution, test cases, and optionally a
partial or buggy version for students to complete or debug.
The instructor also needs to package and upload them to a
server to deliver to students. These tasks added too much
workload to the instructor [6]. An adequate tool is needed
to help instructors to compose and students to practice
exercises to learn programming.

The typical steps associated with the preparation and
processing of exercises are the following: composing and
distributing exercises, writing and submitting solutions,
and marking submissions and returning feedback [7].
These steps can be divided into two phases: the
preparation phase and the processing phase. The
preparation phase includes the steps of composing and
distribution of exercises. The other steps can be
subsumed in the processing phase. A wide variety of
tools have been developed to support the processing
phase of programming exercises, but few tools are
available to support the preparation phase [7].

In this context, PLWeb was designed to satisfy the
needs of both the preparation and processing phase of
programming exercises. A unique design of PLWeb is a
dual-purpose IDE which is used not only as an authoring
tool for authors to produce exercises but also as a novice-
friendly editor for students to write, test, and submit

1718 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1718-1725

solutions. Furthermore, the system allows instructors to
visualize students’ learning status in order to actively
provide assistance to needed students. A plagiarism
detection tool is also developed to deter students from
plagiarism.

II. RELATED WORKS

Over the years, a number of program submissions and
assessment systems that put emphasis on the processing
phase of programming exercises have been developed [6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The majority of
the systems verify the correctness of a student’s program
based on its outputs. They compare the outputs generated
by a student’s program and the expected outputs provided
by the teacher.

Although the method is simple and popular, some
researchers have offered additional features to improve
the testing process. RoboProf [8, 9] uses a set of test data
that may be generated randomly in order to prevent
students from tricking the system by writing code to print
the appropriate output. CourseMarker [10] compares the
textual outputs by matching to regular expressions that
define the expected outputs. VIOPE [11, 12, 13] can
check whether the student’s program is done using a
certain structure, e.g. for-loop. PASS [6, 14] allows
teachers to store some predefined comments with some
specific patterns of mistakes, and the system can show
the comments to the students to help the students to
debug the program. BOSS [15] does not rely solely on
testing through textual outputs but also on the JUnit
testing mechanism when Java is the language used, and a
similar design can also be found in Oto [7] and Marmoset
[16]. Oto [7] provides instant feedback to students while
testing their programs before the final submission.
Marmoset [16] does not allow students to access the
instructor’s private test cases in order to encourage
students to start their work early and to think critically
about their work. Web-CAT [17] emphasizes correctness
and completeness of testing which can be judged in
comparison to a reference set of tests provided by
instructors.

Some of the systems allow instructors to customize the
marking process or to extend the assessment features in
order to provide more flexibility and detailed marking
results. CourseMarker [10] allows instructors to
customize the marking process using a file that contains
Java code and can access CourseMarker’s state or call
external tools. CourseMarker incorporates a variety of
marking components such as typography, testing, specific
feature inspection, and plagiarism detection. Web-CAT
[17] allows the marking process to be customized using
XML configuration files, and it incorporates a number of
components to check commenting conventions,
adherence to coding style guidelines, and use of
potentially bug-inducing coding practices. The marking
process of Oto [7] can be customized and the system can
be extended with various marking components such as
testing, style, structure, etc.

In addition to programming exercises, some of the
systems also provide multiple-choice questions for
students [10, 12, 15].

A combination of various systems can also be found in
the literature. For example, EduJudge [18] integrates a
submission system with automated evaluation into the
Moodle e-learning platform and a competitive learning
tool. It shows that the system can motivate students and
improve students’ academic outcomes.

These above systems are server-based, since they
require students to submit their programs to a server for
assessment and receive feedback from it. The assessment
mechanism of PLWeb differs from the server-based
assessment systems in that PLWeb’s IDE integrated
assessment with compiling and execution steps and runs
on the user’s computer. In addition, the IDE can load
several exercises at a time for students to practice them
one after another without delay. This feature makes
PLWeb easier and more efficient to use than server-based
assessment systems.

Besides assessment, some program submission
systems also contain plagiarism detection tools for
detecting plagiarism. CourseMarker [10] and BOSS [15]
call for the help of external plagiarism software to detect
program submissions that are similar. RoboProf [8, 9]
detects plagiarism by adding an identifying watermark at
the end of the main method in a Java source file. A
technique for detecting plagiarism is also found in
PLWeb. Unlike aforementioned techniques, PLWeb
determines plagiarism suspects by analyzing the testing
history and the editing events collected while students are
editing their programs.

Although most of the program submission systems
focus on automating the processing phase, a few systems
also support the preparation phase. In PASS [6, 14], the
test cases are grouped into three levels of difficulty for
various ability levels. EduJudge [18] provides a problem
database with different levels of difficulty in order to help
students learn progressively. Both PASS and EduJudge
provide exercises at different levels of difficulty to allow
students to solve problems pertaining to their
corresponding ability levels, but they do not provide tools
to support exercise authors to create programming
exercises conveniently. PLWeb, however, provides
exercise authors an authoring tool to create multiple-
choice, debugging, output predication exercises as well as
exercises that support the completion strategy.

In addition, PLWeb provides better support for
teaching programming in computer classrooms. Most of
the program submission systems allow instructors to
monitor students’ progress. PLWeb improves the
monitoring feature by illustrating not only students’
progress but also the time spent on each exercise. Via a
visualization tool, the instructor can locate students’
difficulties that they encountered while in a laboratory
session. PLWeb also provides the instructor with
snapshots of students’ codes which are captured every
time when students test their programs (this similar
feature can also be found in Marmoset [16]). These
snapshots help the instructor to understand students’

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1719

© 2013 ACADEMY PUBLISHER

difficulties. If the instructor encounters many students
having similar problems, he or she can decide whether or
not to provide additional short lectures on the subject to
all students.

III. USING PLWEB IN A COMPUTER CLASSROOM

Although PLWeb can be used as a self-learning tool,
some of its features are designed for instructors to teach
programming in a computer classroom. After using
PLWeb, we experienced a change of our teaching from
presenting lectures to preparing and assisting students in
writing exercises. Usually a short lecture is given at the
beginning of a class. Following that, students are allowed
to download exercises to practice. Several types of
exercises can be downloaded and practiced using the IDE.
The first few exercises are usually multiple-choice
questions meant to test students’ understanding of the
lecture material just presented. These may be followed by
exercises that require students to correct a buggy program,
to predict the output of a program, to complete a partial
program, to extend an existing program, and to write new
programs.

Students are motivated by giving them immediate
feedback using the compiling, testing, and assessment
tools integrated with the IDE and a pie chart displaying
their learning progress on the web browser (see Figure 1).
Exercises not finished during class time are given as
homework assignments and need to be submitted before a
certain due date set by the instructor. After the due date,
solutions of the assigned exercises are posted on the web.

While students are practicing, instructors can monitor
students’ learning status and provide assistance to those
students needing help. Students are encouraged to help
one another while working on exercises. However, in
order to discourage students from copying other students’
solutions, PLWeb provides a plagiarism detector to deter
students from plagiarism. The plagiarism detector
displays a warning message when it finds any suspicious
plagiarism.

IV. SYSTEM STRUCTURE

PLWeb has two main components--the server and the
IDE (see Figure 2). The IDE can be downloaded from the
server when the user clicks a button to start practicing or
composing associated with a learning unit. It can also

record selected editing events and testing results and store
them into the server’s database. The server has two sub-
systems: the classroom status reporter and the plagiarism
detector. Both of them use information in the database to
produce students’ learning status and to detect plagiarism.

A. The IDE
The IDE is a modified version of jEdit [19] – an open

source program editor written in Java. jEdit provides
features indispensable for writing programs such as
“automatic indentation” and “bracket matching.” In
PLWeb, several additional plug-in components are
embedded in jEdit to help exercise authors/instructors and
students to perform their tasks.

The IDE consists of four areas (see Figure 3): the
description area (top-left), the editing area (top-right), the
test sample area (bottom-left), and the testing area
(bottom-right). The description area is a mini browser,
which displays problem statements written in HTML. For
an exercise with a partial solution, the file associated with
the partial solution is shown in the editing area. The
student can complete the exercise by extending or filling
in code in the editing area.

The process of using the IDE is shown in Figure 4.
When a student clicks the Exercises button on a web page,
the IDE is started with a set of exercises downloaded
from the server using the Java Web Start technology [20].
The student can read the exercise description and starts
practicing using the program in the editing area. This
program may be a partial program, a buggy program, or a
program that interact with the student to answer multiple-
choice questions. Upon clicking the execute button, the
IDE calls a pre-installed compiler in the student’s

Figure 3. The IDE.

Student

Instructor

IDE
Exercise
Author

DatabasePlagiarism
Detector

Classroom
Status

Reporter

author

practice

view

analyze

record

view

Server

download

Figure 2. System structure overview.

Figure 1. Students can see their learning progress by a pie chart.

1720 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

computer to compile and execute the program in the
editing area. The student can test the program by typing
its input data using information provided in the test
sample area. Whenever the student finishes testing a
program, the program and the test results are sent to the
server automatically.

For most exercises, a comparison between the outputs
of the program and the contents in the test sample area is
sufficient to determine whether the program has passed
the test. For more involved problems, the exercise author
may choose to provide additional assessment rules to
further assist the assessment.

Assessment rules are written in XML. Figure 5 shows
a fragment of an example assessment rule. The
<patterns> element defines a set of specific patterns,
which contains one or more <pattern> element(s). Each
<pattern> element designates a particular pattern
represented by regular expressions. The assessment rules
in Figure 5 mean that a student’s program must contain
exactly one occurrences of the keyword “for” in the
Account class in order to pass the check. This feature is
useful when students are required to write a “for” loop

rather than other types of loop to solve a problem. The
assessment tool can also perform checks on indentation
and existence of comments in students’ programs in order
to improve the quality of students’ code.

For Java exercises, testing programs written in JUnit
can also be used to assess students’ solutions.

The textual comparison mechanism also supports
assessment of multiple-choice and output prediction
questions. A complete program that prints the description
of the question and waits for students to enter the answer
can be loaded in the editing area. Executing the program
displays the question in the command shell and students
can answer the questions by typing their answers. For
these kinds of questions the test sample area is left empty.

After finishing writing and testing an exercise, the
student can click the right arrow (next) button in the IDE
to start working on the next one. This feature allows the
student to work on one exercise followed by the next
without delay.

Different from server-based program submission
systems which require several steps from the user to
compile/execute a program, submit it, and wait for the
assessment results, PLWeb’s IDE compiles, executes, and
assesses tasks on the client’s computer by clicking a
single button. This design not only reduces the load and
complexity of the server but also makes PLWeb easier
and more efficient to use than the server-based systems.
As a result, students can practice a set of exercises step
by step to learn programming in an incremental manner.
In addition, the partial solutions for some of the exercises
further help students to focus on primary concepts
without being distracted by details of less important
program statements.

Figure 5. A fragment of an example of assessment rules.

Figure 4. The process of using the IDE.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1721

© 2013 ACADEMY PUBLISHER

Creating exercises requires even more supporting
features than practicing exercises. When the IDE is
placed in the authoring mode, it opens three file-tabs in
the editing area. The exercise author can edit any one of
the following three areas: 1) problem statements, 2)
solutions, or 3) partial solutions by switching these three
tabs. The exercise author can also optionally set
assessment rules using a fill-in form. By clicking the
execute button, the exercise author can test the solution
program by entering its input data into the command shell.
The content of the command shell is automatically saved
for students to use as test sample. Upon finishing creating
one exercise, the exercise author can click on the right
arrow button to edit the next one. After finishing
producing all the exercises, the exercise author can click
the upload button to package and upload the set of
exercises to the server.

Without the IDE, exercise authors need to use several
different tools to create, package, and upload description
files, solution files, partial solution files, screen dump
files, and assessment rule files of exercises to the server.
The IDE helps exercise authors to perform these tasks
and reduces their workload tremendously, thus enable
them to produce exercises that fulfill “learning by doing.”

B. The Classroom Status Reporter
While students are practicing, instructors can see a

bird’s-eye view of learning status of an entire class via a
visualization tool called the classroom status reporter (see
Figure 6). The classroom status reporter displays the time
spent on each exercise for each student using a colored
bar chart which uses yellow, green, dark green, and red
to represent the learning state as editing, completed, late,
or error respectively. The height of each colored bar
represents the time spent on each exercise.

By observing the colored bar chart, the instructor can
obtain information such as students’ programming speeds,
as well as correctness, or problems encountered while
working on an exercise. For example, a student having
many short green bars can be identified as a fast problem
solver with good precision, and a student having many
long red bars is a student encountering learning

difficulties. In addition, the instructor can open a
snapshot of a student’s code by clicking on a color bar in
order to understand the student’s difficulties. This
information helps the instructor to decide whether to
modify an exercise or to provide additional hints to all
students or only to those students needing assistance.

C. Plagiarism Detector
Learning by doing is the core concept of PLWeb. It is

therefore important for students to practice programming
by themselves.

Students who work honestly and students who
plagiarize should have different forms of behavior. The
plagiarism detector uses this fact to determine plagiarism
suspects by analyzing the testing history and the editing
events. For example, if the number of keys typed by a
student to finish an exercise is lower than a reasonable
range, then he/she may have plagiarized by copying and
pasting another student’s program. Similarly, if the
amount of time spent by a student to finish an exercise is
too short, then he or she might also have plagiarized. In
normal situations, it is difficult to finish a program
without going through several compile-execute-debug
cycles and such cycles can be determined by the number
of tests attempted and the modification keys (such as
backward, forward, delete, etc.) typed. If a student does
not go through such cycles, then he or she may also have
plagiarized.

The plagiarism detector uses statistics to determine a
reasonable range for normal situations. Values out of the
reasonable range are outliers. Two methods are employed
to detect outliers: Z-Score and Box-Plot. A normal Z-
Score is derived by subtracting the population mean from
an individual raw value and dividing the difference by the
population standard deviation. However, computing the
normal range usually returns a Platykurtic distribution in
the situation, which is inappropriate to detect outliers. In
order to obtain an approximate standard normal
distribution, a logarithm is adopted. The modified
formulas are

n

X
X

n

i
i∑

== 1
2)(log

(1)

n

XX
n

i
i∑

=

−

= 1

2
2)log(

σ

(2)

)(2 σ•−= pXfnc (3)

Where X denotes the mean; n denotes the number of
students; σ denotes the standard deviation; and fnc is the
lower fence; p is an adjustable parameter. A smaller p can
reveal more outliers. In the plagiarism detector, p can be
1.0, 1.5, 2.0, 2.5, or 3.0, the default value is 1.5. If Xi is
less than fnc, then Xi is an outlier.

Figure 6. The classroom status reporter.

1722 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

On the other hand, Box-Plot detects outliers by
medians and quartiles. The formula is

)(LQUQpLQfnc −•−= (4)

Where LQ denotes the lower quartile; UQ denotes the
upper quartile; p is an adjustable parameter. A smaller p
can reveal more outliers. In the plagiarism detector, p can
be set to 1.0, 1.5, 2.0, 2.5, or 3.0 with 1.5 as the default
value. If Xi is less than fnc, then Xi is an outlier.

Instructors can choose the modified Z-Score or Box-
Plot to detect outliers according to characteristics of
exercises. If some exceptionally large values exist,
instructors should choose Box-Plot to palliate the impact
of extreme values. Otherwise, the modified Z-Score
works well. Additionally, instructors can adjust the p
value depending on the value of standard deviation and
the strict level to detect plagiarism. If the standard
deviation is large or the strict level is lower, then the
instructor can choose a larger p value.

The plagiarism detector displays a “Warning” when it
finds an outlier in one or more of the Time-spend, Error,
Key-Stroke, or Modification Keys categories. If a student
wants to dodge the detection, he/she must imitate the acts
of normal practice. Imitating those acts is not only
difficult but also time consuming. As a result, students
are discouraged from plagiarism with the help of the
system.

V. EVALUATION

Two evaluation instruments were used in this study: 1)
an experiment, which analyzes the effects of PLWeb on
students’ learning outcomes, and 2) a survey, which
measures students’ satisfaction on their experiences using
PLWeb.

A. The Experiment
The experiment took place in 2009 for two sessions of

a required C programming course offered in the freshman
year by the Department of Electronic Engineering at
National Yunlin University of Science and Technology in
Taiwan. The two sessions were taught by the same
instructor in a computer classroom with over 50 personal
computers and their course contents were identical. The
two sessions were allocated 3 hours per week and the
numbers of students were 51 and 31 respectively. One
session was assigned as the experimental group, and the
other was assigned as the control group.

Students taking the course were selected by a highly
competitive national entrance exam, and some of them
may not know that they are not interested in or suitable
for programming before being admitted. This is quite
different from other experiments on program submission
systems conducted in universities where every student of
the university may choose to take an introductory
programming course with hundreds of students before
declaring their major.

The first exam of the course, the pre-test in the
experiment, was held in the fifth week. After examining
the scores by t-test, the results revealed that there was no

significant difference between the two groups on
participants’ programming abilities (p=0.33). The
participants were classified as having low, medium, or
high programming ability based on the scores of the pre-
test.

The experiment was held in the sixth week. The
objective of the lesson was for students to understand the
usage of pointers. Before the experiment, it was discerned
that none of the participants had ever learned about
pointers, but that they were already familiar with PLWeb
since they had used PLWeb for five weeks. The
experimental group used PLWeb and the control group
did not use PLWeb. A 30 minutes exam, the post-test,
was conducted before the end of the lesson. It is difficult
to conduct experiments that take a longer period of time,
since it is unfair for students who are unable to use
PLWeb to assist learning.

Table 1 shows the mean (M) and the standard
deviation (SD) of the scores obtained by the post-test.
The students who used PLWeb achieved significantly
better outcomes than those who did not use it (p=0.034).

TABLE 1.
COMPARATIVE OF THE POSTTEST RESULTS.

 Experimental
Group

Control
Group T-Test

p value

 n M SD n M SD

High 13 90.8 13.8 8 85.0 12.0 0.171

Medium 27 79.6 13.4 15 66.0 19.9 0.006**

Low 11 25.5 19.2 8 17.5 17.5 0.184

Total 51 70.8 28.5 31 58.4 30.9 0.034*

* Results are significantly different at p<0.05(T-Test).

** Results are significantly different at p<0.01(T-Test).

A deeper analysis shows an interesting finding. The

students with medium programming ability who used
PLWeb achieved significantly better outcomes than those
students in the same level but who had not used it
(p=0.006). However, the students with high or low
programming abilities who used PLWeb had better
outcomes than those students in the same levels who did
not use PLWeb, but it has not yet achieved a significant
level (p>0.05). The reason for this phenomenon is
probably that students with a high programming ability
are less affected by learning tools, and students with a
low programming ability may not be interested in or
suitable for programming.

B. The Survey
The evaluation surveyed students who used PLWeb for

1 or 2 semesters during 2010 to 2011. A total of 203
students answered the questionnaires. Responses were
received from 3 universities in Taiwan: National Yunlin
University of Science and Technology (78 respondents),
National Formosa University (57 respondents), and Lin-
Tung University of Technology (68 respondents). Most
(85.3%) of the students taking part in the survey had

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1723

© 2013 ACADEMY PUBLISHER

TABLE 2.

QUESTIONS AND RESULTS IN THE STUDENTS’ QUESTIONNAIRES.
Code Question Result

S1 Which of the following types of materials is
most helpful to you?

Lecture Notes: 8 (3.9%)
Slides: 6 (3.0%)
Textbooks: 10 (4.9%)
Program examples, exercises, and
solutions: 179 (88.2%)

S2 Listening lectures is helpful to you. AVG: 3.52 STDEV: 1.02

S3 Practicing exercises without PLWeb is
helpful to you. AVG: 3.43 STDEV: 0.93

S4 Practicing exercises with PLWeb is helpful to
you. AVG: 4.10 STDEV: 0.85

S5
Given the same amount of time, using PLWeb
allows you to practice more exercises than
otherwise.

Disagree: 16 (8.3%)
Agree: 187 (91.7%)

S6
Given the same amount of time, using PLWeb
to learn programming is more effective than
not using PLWeb.

Strongly Disagree: 2 (1.0%)
Disagree: 3 (1.5%)
Neutral: 42 (20.7%)
Agree: 95 (46.8%)
Strongly Agree: 61 (30.0%)

experience in programming before using PLWeb.
The questions and results of students’ questionnaire are

shown in Table 2. Most of the respondents (88.2%)
considered that program examples, exercises, and
solutions (S1) were the most useful type of material.

The purpose of statements S2~S4 is to compare the
helpfulness among different learning styles. The
statements asked the respondents to evaluate on a five-
point scale from very unhelpful (1) to very helpful (5).
The respondents rated practicing exercises using PLWeb
(S4) more helpful than listening lectures (S2) or
practicing exercises without PLWeb (S3). Furthermore,
examining paired t-test results on S2 and S4 as well as S3
and S4 shows that both p values are much less than 0.01.

Statements S5 and S6 asked respondents to compare
the learning effectiveness between using PLWeb and not
using it. Most respondents (91.7%) agreed that in the
same amount of time, using PLWeb allowed them to
practice more exercises than otherwise, and most
respondents (76.8%) agreed or strongly agreed that
PLWeb is an effective tool for learning programming.

We also asked six instructors who used PLWeb for at
least one semester about their experiences in using
PLWeb. Four of the instructors indicated that they
provided over 80% of the time to students for practicing
exercises or discussing in class. And the other two
instructors provided over 70% and 60% of the time for
practicing exercises, respectively. All of the six
instructors agreed that PLWeb is helpful with teaching
programming courses and would continue to use PLWeb
in the following semester.

VI. CONCLUSION

PLWeb allows the teaching and learning of computer
programming using the “learning by doing” approach. By
progressively practicing a series of pedagogic exercises
step by step, the steep learning curve is effectively eased.
The results of the surveys revealed that students like

PLWeb since they regard it as helpful, effective, and
efficient in learning programming.

The IDE not only improves students learning but also
allows exercise authors to apply learning strategies on
designing exercises efficiently. The classroom status
reporter allows instructors to monitor students’ learning
status and to actively assist students with difficulties. In
addition, the plagiarism detector can deter students from
plagiarism.

PLWeb currently provides exercises and learning
materials for Scheme, C, and Java. In addition to self-
learning, it is a helpful tool for teaching programming in
the computer classroom and has been successfully used in
several universities in Taiwan.

ACKNOWLEDGMENT

This project is partly supported by an educational
improvement fund from the Ministry of Education of the
Republic of China. The authors would like to thank many
students who have participated in the development of
PLWeb.

REFERENCES

[1] C. Kelleher and R. Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers,” ACM Computing
Surveys, vol. 37, pp. 83-137, 2005.

[2] E. Lahtinen, K. Ala-Mutka and H.-M. Järvinen, “A study
of the difficulties of novice programmers,” ACM SIGCSE
Bulletin, vol. 37, pp. 14-18, 2005.

[3] D. C. Merrill, B. J. Reiser, S. K. Merrill and S. Landes,
“Tutoring: Guided learning by doing,” Cognition and
Instruction, vol. 13, pp. 315-372, 1995.

[4] J. J. G. V. Merriënboer, “Strategies for programming
instruction in high school: Program completion vs.
Program generation,” Journal of Educational Computing
Research, vol. 6, pp. 265-285, 1990.

[5] J. J. G. V. Merrienboer and M. B. M. D. Croock,
“Strategies for computer-based programming instruction:

1724 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Program completion vs. Program generation,” Journal of
Educational Computing Research, vol. 8, pp. 365-394,
1992.

[6] Y. T. Yu, C. K. Poon, and M. Choy, “Experiences with
PASS: Developing and using a programming assignment
assessment aystem,” In Proceedings of the Sixth
International Conference on Quality Software, Beijin,
China, pp. 360-368, 2006.

[7] G. Tremblay, F. Guérin, A. Pons and A. Salah, “Oto, a
generic and extensible tool for marking programming
assignments,” Software: Practice and Experience, vol. 38,
pp. 307-333, 2008.

[8] C. Daly and J. M. Horgan, “An automated learning system
for Java programming,” IEEE Transactions on Education,
vol. 47, pp. 10-17, 2004.

[9] C. Daly and J. Horgan, “A technique for detecting
plagiarism in computer code,” The Computer Journal, vol.
48, pp. 662-666, 2005.

[10] C. A. HIGGINS, G. GRAY, P. SYMEONIDIS and A.
TSINTSIFAS, “Automated assessment and experiences of
teaching programming,” ACM Journal of Educational
Resources in Computing, vol. 5, pp. 1-21, 2005.

[11] U. Nikula, O. Gotel and J. Kasurinen, “A motivation
guided holistic rehabilitation of the first programming
course,” ACM Transactions on Computing Education,
vol.11, issue 4, article no. 24, 2011.

[12] E. Vihtonen and E. Ageenko, “VIOPE - computer
supported environment for learning programming
languages,” In Proceedings of International Symposium on
Technologies of Information and Communication in
Education for Engineering and Industry, pp. 371-372,
Lyon, France, 2002.

[13] J. Carver and L. Henderson, “Viope as a tool for teaching
introductory programming: An empirical investigation,” In
Proceedings of the 19th Conference on Software
Engineering Education and Training, Turtle Bay,
Hawaiian, pp. 9-16, 2006.

[14] F. L. Wang and T. L. Wong, “Designing programming
exercises with computer assisted instruction,” Lecture
Notes in Computer Science, vol. 5169, pp. 283-293, 2008.

[15] M. Joy, N. Griffiths and R. Boyatt, “The boss online
submission and assessment system,” ACM Journal of
Educational Resources in Computing, vol. 5, pp. 1-27,
2005.

[16] J. Spacco, et al., “Experiences with Marmoset: Designing
and using an advanced submission and testing system for
programming courses,” ACM SIGCSE Bulletin, vol. 38, pp.
13-17, 2006.

[17] S. H. Edwards and M. A. Perez-Quinones, “Experiences
using test-driven development with an automated grader,”
Journal of Computing in Small Colleges, vol. 22, pp. 44–
50, 2007.

[18] E. Verdú, L. M. Regueras, M. J. Verdú, J. P. Leal, J. P. d.
Castro and R. Queirós, “A distributed system for learning
programming on-line,” Computers and Education, vol. 58,
pp. 1-10, 2012.

[19] S. Pestov, J. Gellene and A. Ezust, “jEdit 4.5 user's guide,”
http://www.jedit.org/users-guide/index.html, accessed:
September 2012.

[20] Oracle, “Java Web Start guide,”
http://docs.oracle.com/javase/6/docs/technotes/guides/java
ws/developersguide/contents.html, accessed: September
2012.

Sho-Huan Tung is a professor in Information Management
Department at National Yunlin University of Science and
Technology, Taiwan. He received his Ph.D. in Computer
Science from Indiana University, USA in 1992. His research
areas are programming learning environments and program
visualization systems.

Tsung-Te Lin is a Ph.D. student in Information Management
Department at National Yunlin University of Science and
Technology, Taiwan. He received his master degree in
Information Management from National Yunlin University of
Science and Technology, Taiwan in 2002. His research areas
are programming learning environments and ontology.

Yen-Hung Lin is a software developer at National Yunlin
University of Science and Technology, Taiwan. He received
his master degree in Information Management from National
Yunlin University of Science and Technology, Taiwan in 2009.
He is interested in developing open source software for on-line
publishing and learning.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1725

© 2013 ACADEMY PUBLISHER

