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Abstract—In this paper, we consider the problem of 
frequency estimation of superimposed exponential signals 
in the presence of multiplicative and additive noise. We 
propose a subspace method based iterative procedure for 
estimation of signal frequency parameters. The proposed 
method is based principal eigenvalue vectors of a special 
constructed data matrix and the weighted least squares 
(WLS) techniques. Simulations studies are performed to 
ascertain the performance of the proposed method. It is 
observed that the proposed method works well in terms of 
the computational efficiency and estimation accuracy.  
 
Index Terms—Superimposed exponential signals, 
Multiplicative noise, Frequency estimation, Eigenvalue 
vectors, Weighted least squares 
 

I.  INTRODUCTION 

Estimating the parameters of a superimposed 
exponential signal in noise from the observed data is a 
classical but active problem, finding applications in a 
wide range of areas such as speech signal processing 
[1-3], biomedical signal processing [4], modeling of 
biological systems [5], radio location of distant objects 
[6], and seismic waves processing.  

A number of methods for estimation of the parameters 
of a superimposed exponential signal have been 
proposed in the past. Notable among these include the 
Gaussian Maximum Likelihood (GML), Fourier 
Transform (FT), Modified Forward Backward Linear 
Prediction (MFBLP) method [7], Estimation of Signal 
Parameters using Rotational Invariance Technique 
(ESPRIT) [8], Noise Space Decomposition method 
(NSD) [9], and so on. However, these methods above 
consider the parameter estimation under the assumption 
that harmonics are only contaminated by the additive 
noise or harmonics with constant amplitude.  

It is interesting to observe that in many real life 
applications, the multiplicative noise may occur, or in 
other words, the received signals may be random 
amplitude modulation. For example, in Doppler-radar 
processing, the knowledge of the frequency from a pulse 
train reflected from a moving object yields the target’s 
velocity, and it is more appropriate to model the 
harmonic as having random rather than constant 
amplitude when the target scintillates [10]. Several 

methods have been suggested to estimate the parameters 
of superimposed exponential signals in presence of 
multiplicative and additive noise, such as cyclic statistics 
method [10], higher order spectra method [11] and three 
step iterative method [12]. But the subspace method 
based iterative procedure for the frequency estimation of 
a superimposed exponential model with both 
multiplicative and additive noise has not been 
considered.   

Recently, [13-16] introduced a principal 
singular-value-vector utilization for model analysis 
(PUMA) method based iterative procedure for parameter 
estimation of sinusoidal signals in additive noise. It is 
observed that such a method works satisfactorily for 
estimation of the signal parameters in terms of 
computational complexity and accuracy. The greatest 
advantage of the method lies in that they make full use of 
the inner relationship between the weighting matrix for 
iteration and the parameters to raise the accuracy of the 
estimators iteratively. Inspired by the works [13-16], in 
this paper, we generalize the PUMA method to the case 
of the superimposed exponential signals in the presence 
of multiplicative and additive noise. It is observed from 
computer simulations that the proposed method provides 
fast and accurate frequency estimates at small noise 
deviation. 

The rest of this paper is organized as follows. In 
Section 2, we present the data model and propose the 
subspace method for estimating frequencies of 
superimposed exponential signals in multiplicative and 
additive noise. Simulation results are provided to 
evaluate the performance of the proposed method in 
Section 3. Lastly, the conclusions are drawn in Section 4. 

II. PROPOSED FREQUENCY ESTIMATION METHOD 

We consider the following model of superimposed 
exponential signals in multiplicative and additive noise: 

( )

1

( ) ( ) ( );  1,2, ,k k

p
j t

k
k

y t s t e v t t Nω ϕ+

=

= + =∑ " ,    (1) 

where multiplicative noise { ( )}ks t  is a sequence of 
independent identically distributed (i.i.d.) random 
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variables with finite mean 0kμ ≠  and variance 2
kσ . 

Additive noise { ( )}v t  is a sequence of i.i.d. random 

variables with zero-mean and finite variance 2
vσ . The 

multiplicative noise and additive noise are assumed to be 
mutually independent. The number of superimposed 
signal components, p , is assumed to be known. 

[ , ]kϕ π π∈ −  is the unknown phase. kω  is the 
unknown frequencies such that { ;  }l m l mω ω≠ ≠  and 

( , )kω π π∈ − . In this paper, our main purpose is to 
estimate the unknown frequencies kω , given a sample 
of size N , namely { (1),   (2), , ( )}y y y N" . 

Since { ( )}ks t  is a sequence of i.i.d. random variables 

with finite mean kμ  and variance 2
kσ , if we note 

( ) ( )k k kt s tε μ= − , then ( )k tε  is a sequence of i.i.d. 

random variables with zero mean and variance 2
kσ , so 

we have ( ) ( )k k ks t tε μ= + . If we note N L M= × , 
where L  and M  are integers, then using (1) we 
obtain a L M×  matrix X�  given by  

         
(1) ( 1) ( ( 1) 1)
(2) ( 2) ( ( 1) 2)

( ) (2 ) ( )

(1) ( 1) ( ( 1) 1)
(2) ( 2) ( ( 1) 2)

   

( ) (2 ) ( )

(1) ( 1) ( ( 1) 1)
(2) ( 2) ( ( 1)

   

y y L y L M
y y L y L M

y L y L y LM

x x L x L M
x x L x L M

x L x L x LM

q q L q L M
q q L q L M

X =

+ − +⎡ ⎤
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ − +⎡ ⎤
⎢ ⎥+ − +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ − +
+ −

+

"
"�

# # #
"
"
"

# # #
"
"
" 2)

( ) (2 ) ( )
   

q L q L q LM
X + Q

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=

# # #
"

,  (2) 

where X�  is the noise version of X , 
( )

1
( ) ( ) ( )k k

p
j t

k
k

q t t e v tω ϕε +

=

= +∑ , ( )

1
( ) k k

p
j t

k
k

x t e ω ϕμ +

=

= ∑  

and the noiseless data matrix 

(1) ( 1) ( ( 1) 1)
(2) ( 2) ( ( 1) 2)

( ) (2 ) ( )

x x L x L M
x x L x L M

x L x L x LM

+ − +⎡ ⎤
⎢ ⎥+ − +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X

"
"

# # #
"

.  (3)                      

It is easily showed that { ( )} 0E q t = , where { }E i  
denotes the expectation operator. 

We observe that X  can be factorized as 
ΤX = GΛH ,                (4)                                 

where 

1 2

1 2

1 2

2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
   [ , , , ]

p

p

p

jj j

jj j

jj jL L L

p

e e e

e e e

e e e

G

g g g

ωω ω

ωω ω

ωω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

"

"
# # #

"
"

,        (5)        

1 2

1 21 1 1

1 2

1 1 1

( ) ( ) ( )
   [ , , , ]

p

p

jLjL jL

jLjL jLM M M

p

e e e

e e e

H

h h h

ωω ω

ωω ω− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

"

"
# # #

"
"

, (6)         

  1 2
1 2diag{ , , , }pjj j

pe e e ϕϕ ϕμ μ μ=Λ "  ,        (7) 

and ( )T⋅  denotes the transpose. It can be observed that 
the frequency information is contained in G  and H  
but the frequency estimation is not directly available 
from { ( )}y t . In this paper, we use the PUMA method 
[13-16] for frequency estimation as follows. 

Let the singular value decomposition (SVD) of the 
matrix X  be  

 H H H
s s s n n n= = +X UDV U D V U D V .       (8) 

Here, ( )H⋅ denotes the complex conjugate transpose. 

1 2[ , , , ]L=U u u u"  and 1 2[ , , , ]M=V v v v"  are two 
unitary matrices, D  indicates the singular value matrix 
in which each diagonal element represents a singular 
value and all entries are arranged in a non-increasing 
order. 1 2[ , , , ]s p=U u u u" , 1 2[ , , , ]s p=V v v v" and

1 2diag{ , , , }s pλ λ λ=D " contain p principal components, 
i.e., principal left singular vectors, principle right 
singular vectors and principle singular values of X , and 

nU , nD  and nV  contain remaining components.  
From (4) and (8), we observe that G  and sU  span 

the same subspace, namely, there must exist a p p×  
non-singular matrix ( )ijΓ ζ=  such that 

sU GΓ= .                (9) 

Note that in (9), each column of sU , namely, ku , 
1,2, ,k p= " , can be expressed as 

1 2

1 2

1 2

1 1 2 2

1 2

2 2 2
1 2

1 2

( ) ( ) ( )
    

( ) ( ) ( )

p

p

p

k k k p pk

jj j
k k pk

jj j
k k pk

jj jL L L
k k pk

e e e

e e e

e e e

ωω ω

ωω ω

ωω ω

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

= + + +

⎡ ⎤+ + +
⎢ ⎥

+ + +⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

u g g g"

"

"
#

"

. (10) 
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From (10), [ ]k l
u  can be expressed as [17]  

1 1 2 2[ ] [ ] [ ] [ ]

               1,2, , ,   1, ,
k l k l k l p k l pc c c

k p l p L

u u u u− − −= − − − −

= = +

"
" "

.  (11) 

where [ ]ia  denotes the i th element of a . By simple 
calculations it can be shown that the following 
p -degree polynomial 

1
1 1 0  p p

p pz c z c z c−
−+ + + + ="        (12)                       

has roots 1 2, , , pjj je e e ωω ω " . Here it indicates that when 

1 2, , , pc c c" are estimated, 1 2, , , pω ω ω" can be 
estimated.  

We write (11) as following matrix form 

+1 1

+2 1 2 1

1

[ ] [ ] [ ] 1
[ ] [ ] [ ]

   

[ ] [ ] [ ]

;       1, ,

k p k p k

k p k p k

k L k L k L p p

k k k

c

c

k p

u u u
u u u

u u u

A c b Cu 0

+

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − = = =

…
…

# # # #
…

"

,     (13) 

where 

1 1

+1 2

1 2

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

k p k p k

k p k p k
k

k L k L k L p

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u u u
u u u

A

u u u

…
…

# # #
…

,      (14) 

                       

1 2[ ] ,[ ] , ,[ ]
T

k k p k p k L+ +⎡ ⎤= − ⎣ ⎦b u u u" ,     (15)                      

1 2[ , , , ]T
pc c c=c " ,          (16)                                

and 

         
1 2 3 1

1 2 2 1

1 1 ( )

1 0 0 0 0
0 1 0 0 0

0 0 0 0 0 0 1

p p p p

p p p

p p L p L

c c c c c
c c c c c

c c c

− − −

− −

− − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C

" "
" "

# # # # # # # # # #
" "

        (17) 

Putting all of these ((13) for 1, ,k p= " ) together, we 
find that                        

1 1 1

2 2 2 vec( )s

p p p

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥− = = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A c b Cu
A c b Cu

Ac b CU 0

A c b Cu
# #

, (18)                  

where  

        

1

2

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
A

A

A
#

 and 

1

2

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b
b

b

b
#

.            (19)           

In order to obtain the estimation of c , we need 
exploit the SVD of noise data matrix X� , which is given 
by 

H H
s s s n n n= + = = +X X Q UDV U D V U D V� � � � � � � � � � ,   (20)            

where 1 2[ , , , ]L=U u u u� � � �" and 1 2[ , , , ]M=V v v v� � � �" are 

two unitary matrices, and D�  indicates the singular 
value matrix in which each diagonal element represents a 
singular value and all entries are arranged in a non-incre- 
asing order, 1 2[ , , , ]s p=U u u u� � � �" , 1 2[ , , , ]s p=V v v v� � � �" , 

and 1 2diag{ , , , }s pλ λ λ=D � � �� "  contain the p principal 
components, i.e., the principal left singular vectors, 
principle right singular vectors and principle singular 
values of X� , and nU� , nD�  and nV�  contain the 

remaining components. Let s s s= + ΔU U U�  and 

s s s= + ΔV V V� , where XΔ  is the perturbation of X , 
respectively. 

Now consider the expression −Ac b� � . As the 
perturbation sΔU  [19] is 1H

s n n s s
−Δ =U U U QV D , we 

can deduce { } 0sE Δ =U  and  

   { } {vec( }
{vec( ( ))} {vec( )} 0

s

s s s

E E
E E

Ac - b CU
C U U C U

=

= + Δ = Δ =

� � �
. (21) 

From (21), we get 

≈Ac b� � .                 (22) 

The WLS solution of (22) is given by [20] 
1ˆ ( )H H

WLS
−≈c A WA A Wb� � � � .      (23)  

where â  denotes the estimation of a  and W  is a 
weighting matrix. The optimum weighting matrix W  
can be expressed as [20]     

1

1

[ {( )( ) }]
   [ {vec( )(vec( ) }]

H

H
s s

E
E

W Ac - b Ac - b
C U C U

−

−

=

= Δ Δ

� �� �
.  (24)            

Based on 1H
s n n s s

−Δ =U U U QV D , we have 

1

1

1

1

    {vec( )(vec( ) }

{[( )vec( )]

       [( )vec( )] }

( ) {vec( )(vec( )) }

  ( )

H
s s

T H
s s n n

T H H H
s s n n

T H H
s s n n

H H
s s n n

E

E

E

C U C U

D V CU U Q

D V U U C Q

D V CU U Q Q

V D U U C

−

−

−

∗ −

Δ Δ

= ⊗ ⋅

⊗

= ⊗

⊗
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2 1 1

2 2

2 2

2 2

( ) ( )

=

= ( )

=

T H H H
s s s s n n n n

H H
s n n

H H
s L s s

H
s

D V V D CU U U U C

D CU U C

D C I U U C

D CC

σ

σ

σ

σ

− ∗ −

−

−

−

= ⊗

⊗

⊗ −

⊗

, (25) 

where ⊗  denotes the Kronecker product, 
2 { ( )( ( )) }E q t q tσ ∗=  and ( )∗⋅ denotes the conjugate. 
Thus,  

2 2 1

2 1
1

2 1
22

2 1

( )

( )
( )

    

( )

H
s

H

H

H
p

σ

λ
λ

σ

λ

− −

−

−
−

−

= ⊗

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W D CC

CC O O
O CC O

O O CC

"
"

# # #
"

                                          (26) 

It can be observed that the value 2σ  can be canceled 
out from (23), thus ĉ  can be represented as  

2 1 1 2 1

1 1

ˆ ( ( ) ) ( )
p p

H H H H
k k k k k k

k k

λ λ− − −

= =

≈ ∑ ∑c A CC A A CC b� � � �( ) 

(27)                

Since kλ  is not available from the observed data, we 

will substitute kλ  with kλ�  in (27) thus,   

2 1 1 2 1

1 1

ˆ ( ( ) ) ( )
p p

H H H H
k k k k k k

k k

λ λ− − −

= =

≈ ∑ ∑c A CC A A CC b� � � � � �( ). 

(28)                   

The estimation procedure based on the principal left 
singular vectors sU�  of X�  is summarized as follows. 

Step1:Use the observed signal to construct a matrix X�  
by (1) and (2). 

Step2: Compute the two matrices sU� and sD� of (20) by 
performing the singular value decomposition 
on X� . 

Step3: Build kA�  of (14) and kb�  of (15) by using 

each column of sU� , namely, ku , and build 

kλ�  by using sD� .  

Step4: Set H
L p−CC = I . 

Step5: Compute ĉ  by using (28). 
Step6: Compute updated C  by using (17). 
Step7: Iterate steps 5-6 until a stopping criterion is 

reached. 
Step8: Substitute 1 2ˆ [ , , , ]T

pc c c=c " in (12) and solve 
for the roots  

ˆ{ ;   1,2, , }ka k p= " .         (29)                            

Step9: Estimate the frequencies as follows: 

,ˆ ˆ{ ( );   1,2, , }L k ka k pω = ∠ = " ,      (30) 

where ∠  is the phase angle operator. 

Basically, we can use similar manner above to solve 
for ,ˆR kω  (let ,ˆ ˆR k kLω ω= ) obtained from the principal 

right singular vectors sV�  of X� . However, ,ˆR kω  

corresponds to 2 / 2 1L +⎢ ⎥⎣ ⎦  possible estimates of ˆkω , 

where a⎢ ⎥⎣ ⎦  denotes the maximum integer not 
exceeding a , denoted by 

, ,ˆ ,   / 2 , / 2 1, , / 2R k i i L L Lω = − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦" : 

,
, ,

ˆ 2
ˆ R k

R k i

i
L

ω π
ω

+
= .            (31) 

A simple way of finding ˆkω  from , ,ˆ{ }R k iω  is to 

compare each of them with ,ˆL kω , that is, the estimation 
of frequencies based on the principal right singular 
vectors sV�  of X� is given by 

, ,
ˆ

R k i
ω ∗ , where i∗  is 

obtained from 

, , ,{ /2 , /2 1, , /2 }
ˆ ˆarg min  R k i L ki L L L

i ω ω∗

∈ − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= −

"
.  (32)            

However, this is required to determine the correct 
pairs of , ,ˆ ˆ( , )R k L kω ω . We follow [14] to achieve 

frequency pairing , ,ˆ ˆ( , )R k L kω ω  in an automatic manner 
as follows. 

From (2) and (4), we get 

ˆ TX GF≈� .                (33) 

Here, Ĝ  is constructed according to  

1 2
ˆ ˆ ˆ ˆ[ , , , ]p=G g g g" ,           (34)            

and ˆ{ }kg is obtained from ˆ{ }ka , T TF ΛH=  and  

1 2

1 2

1 1 2 2

[ , , , ]

 [ , , , ]p

p

jj j
p pe e e

F f f f

h h hϕϕ ϕμ μ μ

=

=

"

"
.  (35)            

From (33), the least square (LS) estimate of F  is  

†ˆˆ ( )T TF X G≈ .             (36) 

We use the notation X  and X  to denote the matrix 
X  with the first and last row omitted, respectively. 

From (35), we have 

ˆ ˆ
k k kbf f=                  (37) 

where ,{ }R kk jjL
kb e e ωω= = . Following [18], the WLS 

estimate of kb  is computed as: 

1ˆ ˆ ˆ ˆ ˆ( )f Z f f Z fH H
k k k k k k kb −≈ ,         (38) 
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1( )H
k k kZ B B −= ,            (39)                                     

and 

( 1)

1 0 0 0 0
0 1 0 0 0

0 0 0 1

k

k
k

k M M

b
b

b

B

− ×

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

"
"

# # # # # #
" "

. (40) 

Finally, the estimate of ,ˆR kω  is 

,ˆ ( );   1,2, ,R k kb k pω = ∠ = " .     (41)                     

The estimation procedure based on the principal right 
singular vectors sV�  of X�  is summarized as follows. 
Step1:Use (29), (33), (34) and (36) to obtain the 

matrix F̂ . 

Step2:Build the matrices k̂f , and k̂f  by using F̂ . 

Step3:Set 1
H

k k MB B = I − . 

Step4:Compute k̂b  by using (38). 
Step5:Compute updated kB  by using (40). 
Step6:Iterate steps 4-5 until a stopping criterion is 

reached. 
Step7: Compute ,ˆ ( );   1, 2, ,R k kb k pω = ∠ = " . 

Step8:Determine 
, ,

ˆ
R k i

ω ∗  from ,ˆR kω  according to 

(31)-(32). 
It will be shown in Section 3 that using 

, ,
ˆ

R k i
ω ∗  has a 

much higher accuracy that that of ,ˆL kω . Therefore, 

, ,
ˆ

R k i
ω ∗  is considered as the final estimates. 

III. NUMERICAL EXPERIMENTS 

In this section, we present some experimental results 
to see how the proposed method behaves for finite 
samples. We consider the following model:             

(0.3 0.1) (1.2 0.2)
1 2( ) ( ) ( ) ( );  

             1,2, ,

j t j ty t s t e s t e v t
t N

+ += + +
= "

.  (42) 

We assume that { ( )}v t  is taken as a sequence of i.i.d. 
Gaussian complex random variable with zero-mean and 
finite variance 2

vσ . We consider 1{ ( )}s t  and 2{ ( )}s t  
to be i.i.d. Gaussian real random variables with means 2, 
2 and deviations 0.2, 0.3 respectively. We want to see 
how the proposed subspace method behaves for different 
noise levels and for different sample sizes. We consider 

vσ =0.5, 1, 1.5 and 256N = , 1024. In all cases, we use 
three iterations because no significant improvement is 
observed for more iterations. We compute the mean 
estimations (ME) and the mean square errors (MSEs) of 
the frequency estimates of model (42) over 1000 
simulation runs based on a computer with Intel Core 2.67 
GHz processors and 3.25 GB RAM and the results are 

presented in Tables 1-3. In each table the first row in 
each of the cell represents the true frequency values, the 
corresponding ME and MSEs are reported in the second 
and last rows, respectively. 

Tables 1-2 show the performance of the proposed 
method based on ,ˆL kω  and 

, ,
ˆ

R k i
ω ∗ at 256N = with 

different combinations of L and M, respectively. It is 
very clear from Tables 1-2 that ( , ) (8,32)L M = , (32,8)  
and (16,16) are best choices. It is also observed that the 
biases increase as the additive noise deviation increases, 
which indicates that the proposed method for larger vσ  
it is more difficult to estimate the unknown frequencies. 
Compare Table 1 with 2, for different values of vσ , 

, ,
ˆ

R k i
ω ∗  works better than ,ˆL kω . Moreover, the results of 

the simulation experiments show that the proposed 
subspace method based on 

, ,
ˆ

R k i
ω ∗ is also fairly good 

even when vσ  is large. For 256N = , the average 
computation times of the proposed estimator based on 

, ,
ˆ

R k i
ω ∗ with ( , ) (4,64)L M = , (8,32) , (16,16) , (32,8)  

and (64,4)  are measured as 39.12 10−× s, 33.42 10−× s, 
39.12 10−× s, 34.67 10−× s and 21.32 10−× s, respectively. 

Summarizing the results, 
, ,

ˆ
R k i

ω ∗  is considered as the 

best estimates and the best combination in terms of 
accuracy and computational complexity is L M≈ . 

In table 3, we report the ME and MSEs when the 
additive noise deviation is 1, and the sample sizes 

256N =  and 1024N =  with ( , ) (16,16)L M =  and 
( , ) (32,32)L M = , respectively. It is observed that as the 
sample size N  increases the MSEs decrease, it verifies 
the consistency property of the proposed method for the 
frequency estimation. 

TABLE III.  

THE ME AND MSES OF FREQUENCIES WITH N = 256, 1024 AND vσ =1 

vσ Estimate ( , ) (16,16)L M =  ( , ) (32,32)L M =  

 
1 

Parameter 
ME 

MSEs 

0.3000     1.2000 
0.3000     1.2000 
2.88e-4    2.49e-4 

0.3000     1.2000
0.3000     1.2000
6.97e-5    6.16e-5

IV. CONCLUSIONS 

In this paper, we considered the estimation of 
frequencies of a superimposed exponential signal model. 
We generalized the PUMA method [13-16] from 
sinusoids with additive noise to multiple signals with 
multiplicative and additive noise. The techniques SVD 
and WLS are used to obtain the frequency estimation. 
Computer simulations show that the proposed subspace 
method is computationally attractive and work well in 
the case of long sample size and/or small noise deviation. 
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TABLE I. 

 THE ME AND MSES OF FREQUENCIES WITH N = 256 AND ,ˆL kω  

vσ  Estimate ( , ) (4,64)L M =  ( , ) (8,32)L M =  ( , ) (16,16)L M = ( , ) (32,8)L M =  ( , ) (64,4)L M =  

 

0.1 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.2993   1.2003 

1.97e-2  2.01e-2 

0.3000   1.2000 

0.2997   1.2002 

3.83e-3  2.61e-3 

0.3000   1.2000 

0.2999   1.2000 

1.64e-3  9.94e-4 

0.3000  1.2000 

0.3000  1.2000 

7.94e-4  4.72e-4 

0.3000   1.2000

0.3000   1.2000

4.23e-4  2.41e-4

 

1 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.2978   1.2012 

4.80e-2  4.42e-2 

0.3000   1.2000 

0.2995   1.2002 

1.03e-2  9.31e-3 

0.3000   1.2000 

0.3000   1.2003 

4.71e-3  4.24e-3 

0.3000   1.2000 

0.3000  1.2001 

2.30e-3  1.97e-3 

0.3000   1.2000

0.3000   1.2000

1.11e-3  9.80e-4

 

2 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.2990   1.2077 

1.02e-1  9.36e-2 

0.3000   1.2000 

0.2993   1.2007 

2.07e-2  1.89e-2 

0.3000   1.2000 

0.2994   1.2005 

9.22e-3  8.20e-3 

0.3000   1.2000 

0.2998   1.2000 

4.56e-3  3.96e-3 

0.3000   1.2000

0.2988   1.2003

2.86e-3  2.21e-3

TABLE II.  

THE ME AND MSES OF FREQUENCIES WITH N = 256 AND
, ,

ˆ
R k i

ω ∗  

vσ  Estimate ( , ) (4,64)L M =  ( , ) (8,32)L M =  ( , ) (16,16)L M = ( , ) (32,8)L M =  ( , ) (64,4)L M =

 

0.1 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.3000   1.2000 

1.37e-4  1.10e-4 

0.3000   1.2000

0.3000   1.2000

1.03e-4  5.86e-5

0.3000   1.2000

0.3000   1.2000

1.01e-4  5.98e-5

0.3000   1.2000 

0.3000   1.2000 

1.05e-4  5.73e-5 

0.3000   1.2000

0.3000   1.2000

1.06e-4  6.16e-5

 

1 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.3000   1.2000 

3.57e-4  3.21e-4 

0.3000   1.2000

0.3000   1.2000

3.00e-4  2.48e-4

0.3000   1.2000

0.3000   1.2000

2.88e-4  2.49e-4

0.3000   1.2000 

0.3000   1.2000 

3.07e-4  2.51e-4 

0.3000   1.2000

0.2900   1.2000

2.95e-4  2.58e-4

 

2 

Parameter 

ME 

MSEs 

0.3000   1.2000 

0.3000   1.2001 

7.06e-4  7.48e-4 

0.3000   1.2000

0.3000   1.2000

5.43e-4  4.85e-4

0.3000   1.2000

0.3000   1.2000

5.79e-4  5.01e-4

0.3000   1.2000 

0.3000   1.2000 

5.74e-4  5.08e-4 

0.3000   1.2000

0.3000   1.2000

5.88e-4  5.09e-4
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