
Mu
Im

Sub

Un

Abstract— D
intense effort
have a potent
previous wor
determination
automatic de
through an e
was also achi
a view to faci
conduct emp
determination
what its limi
and what fur
wider applica

Index Terms—
order, autom

Informatio
of case tools
room for th
number of pr
while the to
therefore dec
design that
designer part
executed whe
an agent or
search the so
the entire so
these agents
The agents w
would comm
themselves u
design metho
in a way th

ulti-ag
mplem
system

niversity of Za

Designing an
ts, although a l
tial to be auto
k we develope
n of IS subsy

etermination o
evolutionary a
eved in autom
ilitate and spee
irical analysis
n of IS subsyst
itations are, w
rther improve
ation.

—information
atic, empirical

I. INT

on system (IS)
that have see

heir improvem
rocedures dep

ool is only us
cided to autom
would requir
t or at least re
erever possibl
a series of a

olution space.
olution space
could search
would have c

mmunicate an
until the solut
odology, our
hat processes

gent In
mentat
ms Ex

University

agreb/Faculty
Ema

information
lot of operation
omated or sem
ed advanced ag
ystems throug
of IS subsystem
approach. An

matic database
ed up IS desig
s of the algori
tems execution
whether it beh
ements are pos

system, agent
l analysis

RODUCTION

) design is pe
n major advan
ment remains

pend on design
sed for monit
mate the entir
re minimal c
educe the amo
le. Our intenti
agents that w
In other word
consists of a
the subsets to

common acce
nd make adj
tion is reache
information

s which cons

nform
tion: E

xecutio
Al

R
of Zagreb/Fa

Pavlinska 2
Email: r

Mladen Kon
of Organizatio
ail: {mladen.k

system dem
ns that are inv
iautomated. In
gents for autom
gh k-way cuts
ms execution o
other develop
normalization

gn. In this pape
ithm for autom
n order to esta
haves satisfact
ssible to ensur

t, algorithm, l

erformed by m
ncements alth
s. A conside
ners’ manual e
toring results
re procedure o
corrections on
ount of work
ion was to dev

would intellig
ds, considering
a series of su
o devise a solu
ess to all data
justments am
ed. In terms o
system would

stitute inform

mation
Empiri
on and
lgorith

Robert Kudel
aculty of Orga
2, 42000 Varaž
robert.kudelic

necki and Ale
on and Inform
konecki, alen.l

mands
volved
n our
matic
s and
order

pment
n with
er we
matic
ablish
torily
re its

linear

means
hough
erable
effort,
. We
of IS
n the
to be
velop

gently
g that
ubsets
ution.
a and
mong
of IS
d run

mation

syste
proc

Inpu
proc
matr
Out
subs

1. E
mini
cut o
proc
matr
IS su

Ta
age

A
the
form
circu
appr

Ag

Syste
ical A
d Deve
hm
lić
anization and I
ždin, Croatia
c@foi.hr

en Lovrenčić
matics, Pavlins
lovrencic}@f

em subsystem
cess/class matr

PSEUD

Agent 1

ut:
cess/class
rix
tput: set of
systems

xecute
imum k-way
on
cess/class
rix and find
ubsystems

ake note that a
ent 2 takes pro
reduce execu

A process is a
business sys

malized data s
ulates amon
roach, on the

Generati
on of

subsyste
ms

ent
1

Ag

Figure 1: Multi-a

m De
Analysi
elopm

Informatics,

ć
ska 2, 42000 V
foi.hr

ms are first
rix.

TABLE

O-CODE FOR MUL

Agent
Input: agen
output
Output: lin
order of
execution

1. Find star
order matri
through dat
class delive
rule
2. Find fina
solution thr
evolutionar
improveme

agent 1 and 2 c
ocess/class ma
ution time of t

considera

series of acti
tem while a

set relevant fo
g IS proce
basis of the is

Linear
order

generati
on

gent
2

A

agent system for a

sign a
is of I

ment O

Varaždin, Cro

t isolated fro

1:

LTI-AGENT SYSTE

t 2 A
nt 1

near

rting
ix
ta
ery

al
rough
ry
ent

Still
stag
deve

can run simul
atrix as its inp
the multi-agen
ably.

ivities that ar
data class r

or the busines
esses/subsyste
solated inform

Database
normaliz

ation

Agent
3

automatic inform

and
IS

Order

oatia

om the data

EM

Agent 3,4

l in early
es of
elopment.

ltaneously if
put. This can
nt system

e relevant for
refers to any
ss system that
ms. In our

mation system

Source
code

generati
on

Agent
4

mation system

a

r
y
t
r

m

1660 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1660-1665

subsystems a linear order of executing IS subsystems
would be developed with a minimum number of
feedbacks to ensure that the given IS is more
appropriately implemented and tested. The next step in
the automation would be automatic database
normalization with a minimum possible redundancy. The
last step in the automation would be the development of a
certain descriptive language by means of which we would
automatically generate source code (at least global code
structure with already implemented data retrieval and
display). We demonstrated and described the first part of
creating IS subsystems from the process/class matrix in
[1],[2]. We also performed and published the second step
in [3],[4]. Automatic database normalization and
grammar development are still in progress. The system
would thus be divided into at least four agents, each of
which would be assigned particular operations. The
common output for all the agents would constitute the
final solution that would represent a successfully
automatedly designed and partially implemented IS.

So far in our research the first two agents have almost
entirely been developed, in which a lot of artificial
intelligence algorithms was implemented including k-way
cuts, as described in [1] [2]. An evolutionary approach to
solving a second agent problem was used in [4] [3].
Furthermore, we adapted a lot of algorithms or re
implemented new ones that are more suitable for our
specific problem.

II. RELATED WORK

At the beginning of our research we proposed an
algorithm that solves the problem of determining the IS
subsystems execution and implementation order, this
execution and development order is done by second agent
[4]. As suggested in [4], the execution and
implementation order should not be performed arbitrarily
or by taking into account only business rules, which is
common practice. Instead, data classes that are exchanged
between IS subsystems should be observed. The reason
why we opted for such an approach are various problems
that arise in IS implementation, execution and testing.
Therefore we assumed, and later demonstrated, that the
subsystem that is least dependent on the rest of the IS
should be implemented first, since in that case that
subsystem will have a major part that can be implemented
and tested. Moreover, since in that case it will depend on
a small part of the remaining IS it will be easier to fully
implement it [4]. Naturally, exceptions will occur in
which the system is so complex that the starting point of
the execution is of no consequence. However, it is
unlikely that this will continuously be the case
considering that most systems are small-scale. Since, at
the beginning of our research, we found that a number of
the algorithms exist that are somewhat identical though
not entirely compatible, we decided to develop a new
algorithm that will be elaborated, analyzed, implemented
and tested in detail. The algorithms that were most
similar to problem of linear ordering of IS subsystems
were topological sorting [5]-[8] and the Hamiltonian path
[9]-[15]. Topological sorting is the algorithm first

described by Kahn [8]. This algorithm is very efficient
and can solve problem in a very short time. Unfortunately,
since topological sorting is only applicable to a DAG we
were not able to use that algorithm in our problem. The
Hamiltonian path was first described by Hamilton [13],
[14]. A Hamiltonian path refers to a path that visits each
node exactly once, whereas a Hamiltonian cycle, as
suggested by its name, also involves a cycle [13]-[15]. It
was not possible to apply the Hamiltonian cycle to our
problem considering that in our case adjacent nodes in a
linear order do not need to be connected, which is not in
accordance with the Hamiltonian cycle definition. Our
main concern was to obtain a global minimum number of
feedbacks, while the connection with adjacent nodes is
irrelevant. Since during literature review we did not find
an algorithm that would be directly applicable to our
problem we decided to develop a new algorithm that
would be appropriate for its resolution. The description of
the developed algorithm is provided here. Owing to
problem complexity, which makes devising any kind of
order difficult, we decided to divide the algorithm into
two parts. In the first part heuristics would be used to
determine the order that is assumed to be very close to the
final solution, whereas the second part would actually
enable for the final solution to be obtained. In other
words, it would iteratively find increasingly better
solutions until the final solution, i.e., a minimum number
of feedbacks, is achieved. In the first part, the LPT rule
[16], [17] is used to distribute processes to be executed in
a way that the process with the longest processing time
comes first. The algorithm aims to find the minimum
time for running a given set of processes by running them
in shortest job last order so as to avoid process
accumulation that would prolong their execution. This
algorithm is analogously applicable to our problem
regarding that in our case the execution time is
represented by feedbacks that are implied in the
adjacency matrix. The LTP rule has proved to generate
near-optimal solutions in general.

A. Multi-agent System Research so far: Agent 2
The algorithm first calculates the number of entry and

exit connections in accordance with the formulas in [4].
 ∑ ̅ (1)
 ∑ D E ̅ (2)

Based on the calculated values of entry and exit
connections in the adjacency matrix we determine the
starting IS subsystems execution order [4] using the
aforementioned rule, i.e., greedy algorithm [18].
After that, subsystems are first ordered in accordance
with
 max	v D E (3)
which means that the subsystems with a maximum
number of exit connections that are considered to service
a large number of subsystems, thus enabling fewer
feedbacks in the entire order, should be scheduled first
[4]. In case that the maximum number of exit connections
is not unique entry, connections are considered as follows
[4]:

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1661

© 2013 ACADEMY PUBLISHER

 min v → D E . (4)
Subsystems with the maximum number of entry

connections are pushed to the end of the cycle since they
are data class consumers that, if found in the initial
position, will create a large number of feedbacks in the
final solution. Therefore, in case of identical subsystems
the subsystem that has a minimum number of entry
connections will be selected and scheduled at the end of
the predefined linear order [4]. If the maximum number
of entry connections is equal to the maximum number of
exit connections, either can be selected and scheduled at
the end of the existing order, considering that no criteria
by which we would determine subsystems priority exists.
If the adjacency matrix is expressed as [4]

1 → 3 2 1 → 2 22 → 3 8 2 → 1 13 → 1 1 3 → 2 3 3 → 4 24 → 2 3 4 → 5 15 → 2 1 , (5)

in accordance with formulas (1) and (2) we get

TABLE 2.

IN / OUT DEGREE OF SUBSYSTEMS REPRESENTED BY (1) [4]

Subsystem In-Degree Out-Degree

1 2 4
2 9 9
3 10 6
4 2 4
5 1 1

Next, as described in [4], on the basis of feedbacks we

need to determine the initial order that will be further
improved later. After calculating feedbacks in accordance
with (3) and (4) and transferring results via subsets, as
described in [4], we get the initial order of subsystems
that will be improved until the final solution is reached.
The initial matrix of subsystems upon which further
improvements will be performed is as follows:

TABLE 3.

INITIAL ORDER MATRIX (IOM) [4]

Subsystem In-Degree Out-Degree

2 9 9
3 10 6
1 2 4
4 2 4
5 1 1

TABLE 4.

PSEUDO-CODE FOR IOM ALGORITHM [4]

IOM Algorithm
Input: adjacency matrix
Output: IOM matrix

1. Find maximal for in the set of subsystems
from the adjacency matrix.
2. When a subsystem with 	 is found,
that subsystem is eliminated from the set IS and added at
the end of the sorted set IS´. The set IS needs to be
searched as long as IS≠∅.	

3. If 	 is not unique move subsystems
into IS´´ and calculate in degree.
4. Find → for in the set IS´´.
5. Eliminate found subsystem from the set IS.
6. Revert set IS´´ to ∅.	The set IS needs to be searched as
long as IS≠∅.		
7. If → is not unique select either
subsystem from a set of equals, eliminate it from the set
IS and add it at the end of the sorted set IS´.
8. The set IS´´ is reverted to ∅. The set IS needs to be
searched as long as IS≠∅.

Once the initial order has been obtained, we need to
consider whether it represents the final solution. Common
logic suggests that it does not, taking into account the
used algorithms on the one hand and the widely-
established theoretical foundations on the other. This
solution therefore needs to be improved in terms of the
feedback/feedforward ratio, as described in [4]. Further
improvements are constantly made by examining the
existing order in accordance with the formula as stated in
[4]
 max ∑ ISs Bc ISs Fc 0 (6)

As described in [4], if we apply formula (6) to the
adjacency matrix, i.e., the initial order in table 2, where
the initial order is expressed as

 SO 2, 3, 1, 4, 5 , (7)
the final solution

SO = {1, 4, 5, 2, 3} (8)
is obtained in which further improvements are not

possible so the final solution is the one with the best ratio
of feedbacks and sequential connections, as illustrated in
figure 3.

1662 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Once the a
details see [
algorithm im
[3]. Conside
parts it was n
(4) and (6). A

1. met
2. met
3. met
4. met

incrementally
After the

calculation. T
which, cons
dimensional
represents ap
that it is prop
holds the da
function to b
other two
interpretation
complexity o
would find
complexity o
size of the
additional ca
to be achieve

As sugge
represents sa
number of IS
example. Ho
view or in te
the algorithm
to be resolve
complexity w
to conduct
determine w
cases in whic
those in whic

Before pre
we will desc
conducted an
With regard
discussed in

Figure 2. Best l

algorithm that
4]) has been

mplementation
ering that the
necessary to im
According to [
thod for findin
thod for findin
thod for findin
thod for im
y finding fina
implementat

The complexi
sidering the

array) sel
ppropriate com
portional to th
ata. In other
be very effici
functions is

n can also
of the fourth
satisfactory

of the fourth f
data structu

alculations are
ed, which itsel
ested in the
atisfactory co
S subsystems
owever, from
erms of the po
m on a problem
ed, the questi
would be sati

empirical a
what its limita
ch the algorith
ch that is not t

III. EMPIR

esenting the r
cribe the proce
nd the data tha
ds to the com

the previous

linear order for (5

t is briefly de
developed w

n and its ana
algorithm is

mplement form
[3] an algorith
ng in-degree, (
ng out-degree,
ng starting ord
mproving sta
l solution (6).
tion we perfo
ity of the first

used data s
lected for
mplexity for
he size of the

words, we
ient [3]. The
s also O(n2

apply to t
function is hi
[3], amountin
function is no
ure that hold
e necessary fo
lf implies high
e previous p
omplexity wi
 that can occ

m a purely th
tential of the
m with a large
ion remains w
isfactory. We
analysis of t
ations are, th
hm runs satisf
the case.

RICAL ANALYS

esults of the e
edure in whic
at the algorithm
mplexity of f
s section, we

5) [4]

scribed above
we proceeded
lysis publishe
divided into

mulas (1), (2)
hm is divided i
(1),
, (2),
der, (3) and (4
arting order

ormed compl
t function is O
structure (a
its performa
the simple re
data structure
can consider
complexity o

2) so the
them, while
igher than tha
ng to O(n3).
ot aligned with
ds the data
r the final solu
her complexit
paper [3], O
th regards to

cur in a real-w
heoretical poin
implementatio
e number of n
whether even

therefore dec
the algorithm
hat is, to ide
factorily as we

SIS

empirical anal
h the analysis
m was tested
functions tha
will only tes

e (for
with

ed in
four

), (3),
into:

),
and

lexity
O(n2),

two-
ance,
eason
e that
r this
of the
same

the
at we

The
th the
since
ution
ty [3].
O(n3)
o the
world
nt of
on of
nodes

such
cided
m to
entify
ell as

lysis,
s was
upon.

at we
st the

func
func
repr
bottl
addi
align
data
acci
matr
acci
no c
mor
gene
acci
rand
subs
whil
help
testi
fully
prob
will
will
subs
so t
Ente
enab
case
wou
of fe
as th
appr
resu
with
the
gene
each
to ob
will
func
betw
conn
table
to th
of
subs
be c
tend

F
conn

Sub

ction that obta
ction with h
esents the ex
leneck will
ition, it is the
ned with the

a. In terms of
dental numbe
rix as the entr
dental numbe
consequence
e complex
eration. We w
dental numbe

domized so
systems that th
le the function

p us to fill lar
ing it is not n
y randomize
blems we alre

occur. We w
ourselves re

systems betwe
that the most
ering the numb
ble higher flex
e testing wou
uld require tha
eedbacks in a
he present pr
roach should

ults that are hi
h solving the

empirical an
erate connecti
h case we will
btain the fina
change the m

ction can ge
ween the num
nections. Nex
es to show so
he total numbe
subsystems.

systems-numb
calculated so

dency of that c
irst we inc
nections were

5
systems

Ti
of

con
 0,

ains the final
highest comp
xact place in
occur concer
only function

size of the da
f the data to
er generator t
y parameter f

er quality, suff
in our case,

algorithms
will therefore
er generation
that we de

he agent, i.e.,
n for accident
ge matrices. A

necessary and
the algorithm

eady know in
ill thus condu
gulate the pa
een which con
t accurate po
ber of subsyst
xibility during
uld be recom
at the problem
an IS, which i
roblem, is res
prove unsatis

ighly unexpec
former proble
nalysis are
ons for each n
l measure the
l solution. In

maximum rand
enerate to e

mber of subsy
t we will ana

olution times
er of connectio
Finally, for

ber of connect
as to obtain

case regarding
cluded five
generated. Th

TABLE

TESTING AGENT O

ime for numbe
f connections

10
nnections c
0000145

 solution, sin
plexity (O(n3

n the algorit
rning execut
n whose com
ata structure t
be tested, we
to generate t

for our algorit
fficient random

it is not nec
for acciden

e use the defa
in C#. The

etermine the
the algorithm

ntal number ge
As a matter o
would not be

m since with
n which cases
uct testing in a
arameter of th
nnections will
ossible data
tems (nodes) m
g testing. Con
mmendable a

m of the maxi
in ideal case i
solved first. I
sfactory, we
cted, so we w
em as well. T
provided he
number of sub

e time needed
addition, for

dom number t
establish the
ystems and th
alyze the resu
for each case
ons for a parti

r each pair
tions) the me
n the measu

g the generated
subsystems

he results are

5.

ON 5 NODES

er of connecti
= Subsystems
4]) / sec

15
connections
0,0000489

nce that is the
3)) that also
thm where a
ion time. In

mplexity is not
that holds the
e will use an
the adjacency
hm. Since the

mization, is of
essary to use
ntal number

fault class for
data will be
number of

m, will run on,
eneration will

of fact, during
e advisable to

this type of
s malfunction
a way that we
he number of
l be generated
are obtained.
manually will
ducting worst
although that
imum number
is as complex
If this testing
would obtain

would proceed
The results of
re. We will
bsystems. For
for the agent
each case we

that a random
dependence

he number of
ults and create
e with regards
icular number

(number of
ean value will
ure of central
d data.

for which
as follows:

ions (number
s x n, n[2, 3,

20
connections
0,0000339

e
o
a
n
t
e
n
y
e
f
e
r
r
e
f
,
l
g
o
f
n
e
f
d
.
l
t
t
r
x
g
n
d
f
l
r
t
e

m
e
f
e
s
r
f
l
l

h

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1663

© 2013 ACADEMY PUBLISHER

 0,0000241 0,0000958 0,0000921
 0,0000693 0,0000724 0,0000857
 0,0000164 0,0000844 0,0000795
 0,0000175 0,0000283 0,0000479

Mean 0,0000284 0,0000660 0,0000678

As table 4 shows, in this case everything will work

flawlessly, which was to be assumed from [4]. There is a
slight difference in the increase of the number of
connections, but it is negligible. However, if a difference
amounting to a unit of time can be noticed with such
short times, it is to be expected that for a greater number
of subsystems that difference would be even more
noticeable. That difference cannot be attributed to
running the entire application since only the execution
time of the code that performs the calculations is
measured. After the first test we decided to run another
test on 20 subsystems taking into account that this is the
maximum number of subsystems that a company of an
average or above-the-average size should comprise. The
results are as follows:

TABLE 6.

TESTING AGENT ON 20 NODES

20
Subsystems

Time for number of connections (number
of connections = Subsystems x n, n[2, 3,

4]) / sec
40

connections
60

connections
80

connections
 0,0003097 0,0004321 0,0004577
 0,0004176 0,0003063 0,0003323
 0,000331 0,0003268 0,000581
 0,0004415 0,0003221 0,0002227
 0,0004168 0,0003182 0,0003425

Mean 0,0003833 0,0003411 0,0003872

If we observe the second test with 20 subsystems, it is

interesting that there are hardly any differences between
results. However, although the times, when compared to
the previous test, are short, a considerable difference in
the increase of execution time is still noticeable. It is
evident that this difference arose from the selection of the
initial order for which the final solution aims to be
obtained. In other words, the algorithm performed a lot
fewer replacements in the first test than in the second one,
which was to be expected regarding the increase in the
number of subsystems and the number of connections.
Hence, since the agent, i.e., the part of the algorithm
referred to as subsystem in the introduction to system
description, works satisfactorily for 20 subsystems, which
is more than sufficient for implementation purposes in IS
design and implementation, no further code optimization
is required. Consequently, the problem concerning its
practical application that we referred to in [3] and [4],
prior to the empirical analysis which showed that
concerning problem complexity everything had properly
functioned, does not need to be resolved either.

After these two tests we decided to investigate the
extreme limitations of the algorithm regarding the
increase in the number of subsystems and the total
number of connections between subsystems, and,
consequently, permutations.

First considerable delays started to occur with 250
subsystems and 500 connections, where the time needed
for calculating the final solution started to reach 1.7
seconds. With 500 subsystems and 100 connections
between subsystems the time needed for calculating the
final solution rose to 7 seconds and, in some instances, to
even 10 seconds. With a further increase in the total
number of connections between subsystems and,
especially, in the number of subsystems, the number of
permutations needed for calculating the final solution is
drastically increased, which also implies an increase in
execution time. Therefore, regardless of reasonable
complexity O(n3), problem complexity does not allow for
the algorithm to be executed within one second for 200
subsystems and more. Although the execution time that
amounts to, for instance, several minutes or half an hour
would be satisfactory for problems where an instant
solution is not imperative since with 500 subsystems we
could easily design information system of any kind. With
problems that have a huge number of subsystems and
work in real time or near-real time this algorithm would
no longer be usable. Alternatively, it would either have to
be further optimized or the aforementioned delays would
have to be acceptable.

Figure 3. Runtime order of growth for tested function

The graph in figure 3 shows a comparative test of
algorithm execution with regards to the increase in the
number of subsystems and connections between them.
Since the complexity of the third function is a third-order
polynomial, the graph also represents the cubic function
growth. Unfortunately, with a large number of
permutations such complexity is not beneficial.

Furthermore, as evident in the previous results, the
number of connections between subsystems is itself of no
consequence since with a small number of permutations
the difference is hardly noticeable. Likewise, with a large
number of permutations or subsystems the number of
permutations is too large for the difference to be

1.530E-05 3.930E-024.814E-01

2.258E+00
3.923E+00

1.191E+01

2.027E+01

Runtime growth with respect to the
number of subsystems and number of

connections (in seconds)

1664 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

noticeable since, in general, the total number of
connections between subsystems that is less the number
of subsystems is not to be expected. This is explained by
the fact that those connections, i.e., data classes [4] need
to service particular IS subsystems so the IS could work
properly. Otherwise the question would arise of whether
that whole, if it is so poorly interconnected, can be
referred to as a system.

IV. CONCLUSION

The goal of this part of research was to examine the
functioning of an algorithm we previously developed
[3],[4] in real conditions beyond theoretical
considerations. Having conducted the empirical analysis
of the agent for automatic determination of IS subsystems
order execution, we can conclude that the algorithm
proved to be suitable for application during IS design and
implementation. Furthermore, if the number of
subsystems to be processed is large and it is necessary to
run a large number of permutations without the real time
operation requirement, the algorithm is applicable and
works satisfactorily. The only issue concerning the
application of this algorithm is related to using it in
conditions in which an almost simultaneous response is
expected and the number of nodes it should be run on is
huge. Although it is true that the algorithm had not been
developed for such conditions, from the purely scientific
perspective it is possible to apply the algorithm to that
type of a problem as well.

As mentioned in our previous research, we assumed
that such a situation would occur and here reaffirm our
conclusion that an approximation algorithm could be
developed by means of topological sorting and resolution
of cycles that would be much less complex and would
work properly. Naturally, when such an algorithm is
developed it will need to be compared with the one
presented in this paper. Moreover, considering our
research in machine learning [19],[20], automatic or
semiautomatic generation of the process/data class matrix
is possible, although it may be too early to discuss that
option. Also, it is possible that approximation algorithm
could be developed with DFS [18],[21],[22],[23] as well,
but, this notion would require more thorough research.

ACKNOWLEDGMENT

This research was conducted within the project
“Automation of Procedures in Information Systems
Design” financed by the Croatian Ministry of Science,
Education and Sports.

REFERENCES

[1] A. Lovrenčić, An efficient algorithm for information
system decomposition, Journal of Information and
Organizational Sciences, Vol. 22, n. 2, pp. 137-151, 1998.

[2] A. Lovrenčić, The problem of optimization of the process
of decomposition of an information system, Journal of
Information and Organizational Sciences, Vol. 1, n. 22, pp.
27-43, 1997.

[3] Robert Kudelić, Alen Lovrenčić, Mladen Konecki,
Information system subsystems execution and

development order algorithm implementation and analysis,
International Journal of Computer Science Issues, Vol. 9,
Issue 2, No 3, March 2012.

[4] R. Kudelić, A. Lovrenčić, Automatic determination of
information system subsystems execution and development
order, IRECOS (2011).

[5] Huang Wei J., Cai Li Gang, Hu Yu Jing, Wang Xue L.,
Ling Ling, Process planning optimization based on genetic
algorithm and topological sort algorithm for digraph,
Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, Volume 15, n. 9, pp. 1770-1778,
2009.

[6] Moon Chiung K., Yun Youngsu S., Leem Choon Seong,
Evolutionary algorithm based on topological sort for
precedence constrained sequencing, IEEE Congress on
Evolutionary Computation, 2007, pp. 1325-1332, 2008.

[7] Li YL. Zhang JH. Li CA, NOTE ON SOME
TOPOLOGICAL PROPERTIES OF SETS IN
INFORMATION SYSTEMS, Kybernetes, Volume 27,
1998.

[8] Kahn, A. B. (1962), "Topological sorting of large
networks", Communications of the ACM 5 (11): 558–562.

[9] Lijiang Zhao, A matrix solution to Hamiltonian Path of any
graph, Proceedings - 2010 International Conference on
Intelligent Computing and Cognitive Informatics, pp. 440-
442, 2010.

[10] Feng JF., Giesen HE., Guo YB., Gutin G., Jensen T.,
Rafiey A., Characterization of edge-colored complete
graphs with properly colored Hamilton paths, Journal of
Graph Theory, Volume 53, pp. 333-346, 2006.

[11] Dyer M., Frieze A., Jerrum M., APPROXIMATELY
COUNTING HAMILTON PATHS AND CYCLES IN
DENSE GRAPHS, SIAM Journal on Computing, Volume
27, pp. 1262-1272, 1998.

[12] Michael R. Garey, David S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness
(W.H. Freeman, First Edition 1979).

[13] Hamilton, William Rowan, "Memorandum respecting a
new system of roots of unity". Philosophical Magazine, 12
1856.

[14] Hamilton, William Rowan, "Account of the Icosian
Calculus". Proceedings of the Royal Irish Academy, 6
1858.

[15] Ore, O "A Note on Hamiltonian Circuits." American
Mathematical Monthly 67, 55, 1960.

[16] Ellis Horowitz, Sartaj Sahni, Fundamentals of computer
algorithms, Computer Science Press, 1978.

[17] Graham, Bounds on Multiprocessing Timing Anomalies.
SIAMJournal on Applied Mathematics 17, 416-429, 1969.

[18] Cormen, Leiserson, and Rivest, Introduction to Algorithms,
1990.

[19] Kudelić, R, Konecki M, Lovrenčić A. Mind Map
Generator Software Model with Text Mining Algorithm.
Proceedings of the 33rd International Conference on
Information Technology Interfaces, 2011, p. 487.

[20] Kudelić, R, Maleković, M, Lovrenčić A. Mind Map
Generator Software. International Conference on Computer
Science and Automation Engineering, accepted for
publication, 2012.

[21] Charles P. Tremaux, French engineer of the telegraph,
1859–1882.

[22] Even, Shimon, Graph Algorithms (2nd ed.), Cambridge
University Press, pp. 46–48, 2011.

[23] Sedgewick, Robert, Algorithms in C++: Graph Algorithms
(3rd ed.), Pearson Education, 2002.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1665

© 2013 ACADEMY PUBLISHER

