1660

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

Multi-agent Information System Design and
Implementation: Empirical Analysis of IS
Subsystems Execution and Development Order
Algorithm

Robert Kudeli¢
University of Zagreb/Faculty of Organization and Informatics,
Pavlinska 2, 42000 Varazdin, Croatia
Email: robert.kudelic@foi.hr

Mladen Konecki and Alen Lovrencié
University of Zagreb/Faculty of Organization and Informatics, Pavlinska 2, 42000 Varazdin, Croatia
Email: {mladen.konecki, alen.lovrencic}@foi.hr

Abstract— Designing an information system demands
intense efforts, although a lot of operationsthat areinvolved
have a potential to be automated or semiautomated. In our
previous work we developed advanced agents for automatic
determination of IS subsystems through k-way cuts and
automatic determination of IS subsystems execution order
through an evolutionary approach. Another development
was also achieved in automatic database normalization with
a view to facilitate and speed up IS design. In this paper we
conduct empirical analysis of the algorithm for automatic
determination of 1S subsystems execution order to establish
what its limitations are, whether it behaves satisfactorily
and what further improvements are possible to ensure its
wider application.

Index Terms—information system, agent, algorithm, linear
order, automatic, empirical analysis

1. INTRODUCTION

Information system (IS) design is performed by means
of case tools that have seen major advancements although
room for their improvement remains. A considerable
number of procedures depend on designers’ manual effort,
while the tool is only used for monitoring results. We
therefore decided to automate the entire procedure of IS
design that would require minimal corrections on the
designer part or at least reduce the amount of work to be
executed wherever possible. Our intention was to develop
an agent or a series of agents that would intelligently
search the solution space. In other words, considering that
the entire solution space consists of a series of subsets
these agents could search the subsets to devise a solution.
The agents would have common access to all data and
would communicate and make adjustments among
themselves until the solution is reached. In terms of IS
design methodology, our information system would run
in a way that processes which constitute information

©2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1660-1665

system subsystems are first isolated from the data

process/class matrix.
Generati b Source
AgentW on of ingent} 2t aﬁe AgentW code
1 subsyste 3 noartr;anlz 4 Eenerati
ms on
1ation system
TABLE 1:

PSEUDO-CODE FOR MULTI-AGENT SYSTEM

near

order
jgenerati
on

Agent 1 Agent 2 Agent 3,4
Input: agent 1
. output
L Output: linear
process/class
. order of
matrix execution
Output: set of
RIS 1. Find starting Still in early
order matrix stages of
1. Execute
. through data development.
minimum k-way .
class delivery
cut on
rule
process/class

2. Find final
solution through
evolutionary
improvement

matrix and find
IS subsystems

Take note that agent 1 and 2 can run simultaneously if
agent 2 takes process/class matrix as its input. This can
reduce execution time of the multi-agent system
considerably.

A process is a series of activities that are relevant for
the business system while a data class refers to any
formalized data set relevant for the business system that
circulates among IS processes/subsystems. In our
approach, on the basis of the isolated information system

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

subsystems a linear order of executing IS subsystems
would be developed with a minimum number of
feedbacks to ensure that the given IS is more
appropriately implemented and tested. The next step in
the automation would be automatic database
normalization with a minimum possible redundancy. The
last step in the automation would be the development of a
certain descriptive language by means of which we would
automatically generate source code (at least global code
structure with already implemented data retrieval and
display). We demonstrated and described the first part of
creating IS subsystems from the process/class matrix in
[11,[2]. We also performed and published the second step
in [3],[4]. Automatic database normalization and
grammar development are still in progress. The system
would thus be divided into at least four agents, each of
which would be assigned particular operations. The
common output for all the agents would constitute the
final solution that would represent a successfully
automatedly designed and partially implemented IS.

So far in our research the first two agents have almost
entirely been developed, in which a lot of artificial
intelligence algorithms was implemented including k-way
cuts, as described in [1] [2]. An evolutionary approach to
solving a second agent problem was used in [4] [3].
Furthermore, we adapted a lot of algorithms or re
implemented new ones that are more suitable for our
specific problem.

II. RELATED WORK

At the beginning of our research we proposed an
algorithm that solves the problem of determining the IS
subsystems execution and implementation order, this
execution and development order is done by second agent
[4]. As suggested in [4], the execution and
implementation order should not be performed arbitrarily
or by taking into account only business rules, which is
common practice. Instead, data classes that are exchanged
between IS subsystems should be observed. The reason
why we opted for such an approach are various problems
that arise in IS implementation, execution and testing.
Therefore we assumed, and later demonstrated, that the
subsystem that is least dependent on the rest of the IS
should be implemented first, since in that case that
subsystem will have a major part that can be implemented
and tested. Moreover, since in that case it will depend on
a small part of the remaining IS it will be easier to fully
implement it [4]. Naturally, exceptions will occur in
which the system is so complex that the starting point of
the execution is of no consequence. However, it is
unlikely that this will continuously be the case
considering that most systems are small-scale. Since, at
the beginning of our research, we found that a number of
the algorithms exist that are somewhat identical though
not entirely compatible, we decided to develop a new
algorithm that will be elaborated, analyzed, implemented
and tested in detail. The algorithms that were most
similar to problem of linear ordering of IS subsystems
were topological sorting [5]-[8] and the Hamiltonian path
[9]-[15]. Topological sorting is the algorithm first

©2013 ACADEMY PUBLISHER

1661

described by Kahn [8]. This algorithm is very efficient
and can solve problem in a very short time. Unfortunately,
since topological sorting is only applicable to a DAG we
were not able to use that algorithm in our problem. The
Hamiltonian path was first described by Hamilton [13],
[14]. A Hamiltonian path refers to a path that visits each
node exactly once, whereas a Hamiltonian cycle, as
suggested by its name, also involves a cycle [13]-[15]. It
was not possible to apply the Hamiltonian cycle to our
problem considering that in our case adjacent nodes in a
linear order do not need to be connected, which is not in
accordance with the Hamiltonian cycle definition. Our
main concern was to obtain a global minimum number of
feedbacks, while the connection with adjacent nodes is
irrelevant. Since during literature review we did not find
an algorithm that would be directly applicable to our
problem we decided to develop a new algorithm that
would be appropriate for its resolution. The description of
the developed algorithm is provided here. Owing to
problem complexity, which makes devising any kind of
order difficult, we decided to divide the algorithm into
two parts. In the first part heuristics would be used to
determine the order that is assumed to be very close to the
final solution, whereas the second part would actually
enable for the final solution to be obtained. In other
words, it would iteratively find increasingly better
solutions until the final solution, i.e., a minimum number
of feedbacks, is achieved. In the first part, the LPT rule
[16], [17] is used to distribute processes to be executed in
a way that the process with the longest processing time
comes first. The algorithm aims to find the minimum
time for running a given set of processes by running them
in shortest job last order so as to avoid process
accumulation that would prolong their execution. This
algorithm is analogously applicable to our problem
regarding that in our case the execution time 1is
represented by feedbacks that are implied in the
adjacency matrix. The LTP rule has proved to generate
near-optimal solutions in general.

A. Multi-agent System Research so far: Agent 2

The algorithm first calculates the number of entry and
exit connections in accordance with the formulas in [4].
Yj=1D(E)y 1)
i=1 D(E)yy)
Based on the calculated values of entry and exit
connections in the adjacency matrix we determine the
starting IS subsystems execution order [4] using the
aforementioned rule, i.e., greedy algorithm [18].
After that, subsystems are first ordered in accordance
with
out
max[v; — D(E);] 3)
which means that the subsystems with a maximum
number of exit connections that are considered to service
a large number of subsystems, thus enabling fewer
feedbacks in the entire order, should be scheduled first
[4]. In case that the maximum number of exit connections
is not unique entry, connections are considered as follows

[4]:

1662

m
min [V]- - D(E)j]. @)
Subsystems with the maximum number of entry
connections are pushed to the end of the cycle since they
are data class consumers that, if found in the initial
position, will create a large number of feedbacks in the
final solution. Therefore, in case of identical subsystems
the subsystem that has a minimum number of entry
connections will be selected and scheduled at the end of
the predefined linear order [4]. If the maximum number
of entry connections is equal to the maximum number of
exit connections, either can be selected and scheduled at
the end of the existing order, considering that no criteria
by which we would determine subsystems priority exists.
If the adjacency matrix is expressed as [4]

1-3[2] 1-2[2]

2-3[8] 2-1[1]

35 1[1] 3-2[3] 3- 4[2], (5)
4-2[3] 4-5[1]

5 - 2[1]

in accordance with formulas (1) and (2) we get

TABLE 2.

IN/ OUT DEGREE OF SUBSYSTEMS REPRESENTED BY (1) [4]

Subsystem In-Degree Out-Degree
1 2 4
2 9 9
3 10 6
4 2 4
5 1 1

Next, as described in [4], on the basis of feedbacks we
need to determine the initial order that will be further
improved later. After calculating feedbacks in accordance
with (3) and (4) and transferring results via subsets, as
described in [4], we get the initial order of subsystems
that will be improved until the final solution is reached.
The initial matrix of subsystems upon which further
improvements will be performed is as follows:

TABLE 3.

INITIAL ORDER MATRIX (IOM) [4]

Subsystem In-Degree Out-Degree
2 9 9
3 10 6
1 2 4
4 2 4
5 1 1

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

TABLE 4.

PSEUDO-CODE FOR IOM ALGORITHM [4]

IOM Algorithm

Input: adjacency matrix
Output: IOM matrix

1. Find maximal D(E); for v; in the set of subsystems
from the adjacency matrix.

2. When a subsystem with max[v; = D(E);] is found,
that subsystem is eliminated from the set IS and added at
the end of the sorted set IS". The set IS needs to be
searched as long as IS#Q.

t
3. If max[v; = D(E);] is not unique move subsystems
into IS"” and calculate in degree.

4. Find min [vj = D(E)]-] D(E); for v in the set IS"".
5. Eliminate found subsystem from the set IS.

6. Revert set IS”” to @. The set IS needs to be searched as
long as IS#Q.

7. If min [vl- = D(E)]-] is not unique select either
subsystem from a set of equals, eliminate it from the set
IS and add it at the end of the sorted set IS’.

8. The set IS”" is reverted to @. The set IS needs to be
searched as long as IS#Q.

Once the initial order has been obtained, we need to
consider whether it represents the final solution. Common
logic suggests that it does not, taking into account the
used algorithms on the one hand and the widely-
established theoretical foundations on the other. This
solution therefore needs to be improved in terms of the
feedback/feedforward ratio, as described in [4]. Further
improvements are constantly made by examining the
existing order in accordance with the formula as stated in
(4]

maX({ZE;i[ISSp(BCp—k) —18s,-k(Fep)]} < 0) (6)

As described in [4], if we apply formula (6) to the
adjacency matrix, i.e., the initial order in table 2, where
the initial order is expressed as

S0 =1{2,3,1,4,5}, @)
the final solution
SO={1,4,5,2,3} ®)
is obtained in which further improvements are not
possible so the final solution is the one with the best ratio
of feedbacks and sequential connections, as illustrated in
figure 3.

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

Figure 2. Best linear order for (5) [4]

Once the algorithm that is briefly described above (for
details see [4]) has been developed we proceeded with
algorithm implementation and its analysis published in
[3]. Considering that the algorithm is divided into four
parts it was necessary to implement formulas (1), (2), (3),
(4) and (6). According to [3] an algorithm is divided into:

1. method for finding in-degree, (1),

2. method for finding out-degree, (2),

3. method for finding starting order, (3) and (4),

4. method for improving starting order and
incrementally finding final solution (6).

After the implementation we performed complexity
calculation. The complexity of the first function is O(n%),
which, considering the used data structure (a two-
dimensional array) selected for its performance,
represents appropriate complexity for the simple reason
that it is proportional to the size of the data structure that
holds the data. In other words, we can consider this
function to be very efficient [3]. The complexity of the
other two functions is also O(n’) so the same
interpretation can also apply to them, while the
complexity of the fourth function is higher than that we
would find satisfactory [3], amounting to O(n). The
complexity of the fourth function is not aligned with the
size of the data structure that holds the data since
additional calculations are necessary for the final solution

to be achieved, which itself implies higher complexity [3].

As suggested in the previous paper [3], O(n’)
represents satisfactory complexity with regards to the
number of IS subsystems that can occur in a real-world
example. However, from a purely theoretical point of
view or in terms of the potential of the implementation of
the algorithm on a problem with a large number of nodes
to be resolved, the question remains whether even such
complexity would be satisfactory. We therefore decided
to conduct empirical analysis of the algorithm to
determine what its limitations are, that is, to identify
cases in which the algorithm runs satisfactorily as well as
those in which that is not the case.

I11. EMPIRICAL ANALYSIS

Before presenting the results of the empirical analysis,
we will describe the procedure in which the analysis was

conducted and the data that the algorithm was tested upon.

With regards to the complexity of functions that we
discussed in the previous section, we will only test the

©2013 ACADEMY PUBLISHER

1663

function that obtains the final solution, since that is the
function with highest complexity (O(n)) that also
represents the exact place in the algorithm where a
bottleneck will occur concerning execution time. In
addition, it is the only function whose complexity is not
aligned with the size of the data structure that holds the
data. In terms of the data to be tested, we will use an
accidental number generator to generate the adjacency
matrix as the entry parameter for our algorithm. Since the
accidental number quality, sufficient randomization, is of
no consequence in our case, it is not necessary to use
more complex algorithms for accidental number
generation. We will therefore use the default class for
accidental number generation in C#. The data will be
randomized so that we determine the number of
subsystems that the agent, i.e., the algorithm, will run on,
while the function for accidental number generation will
help us to fill large matrices. As a matter of fact, during
testing it is not necessary and would not be advisable to
fully randomize the algorithm since with this type of
problems we already know in which cases malfunction
will occur. We will thus conduct testing in a way that we
will ourselves regulate the parameter of the number of
subsystems between which connections will be generated
so that the most accurate possible data are obtained.
Entering the number of subsystems (nodes) manually will
enable higher flexibility during testing. Conducting worst
case testing would be recommendable although that
would require that the problem of the maximum number
of feedbacks in an IS, which in ideal case is as complex
as the present problem, is resolved first. If this testing
approach should prove unsatisfactory, we would obtain
results that are highly unexpected, so we would proceed
with solving the former problem as well. The results of
the empirical analysis are provided here. We will
generate connections for each number of subsystems. For
each case we will measure the time needed for the agent
to obtain the final solution. In addition, for each case we
will change the maximum random number that a random
function can generate to establish the dependence
between the number of subsystems and the number of
connections. Next we will analyze the results and create
tables to show solution times for each case with regards
to the total number of connections for a particular number
of subsystems. Finally, for each pair (number of
subsystems-number of connections) the mean value will
be calculated so as to obtain the measure of central
tendency of that case regarding the generated data.

First we included five subsystems for which
connections were generated. The results are as follows:

TABLE 5.

TESTING AGENT ON 5 NODES

Time for number of connections (number
of connections = Subsystems x n, n[2, 3,

Subs;stems 4) / sec
10 15 20
connections connections connections
0,0000145 0,0000489 0,0000339

1664

0,0000241 0,0000958 0,0000921
0,0000693 0,0000724 0,0000857
0,0000164 0,0000844 0,0000795
0,0000175 0,0000283 0,0000479
Mean 0,0000284 0,0000660 0,0000678

As table 4 shows, in this case everything will work
flawlessly, which was to be assumed from [4]. There is a
slight difference in the increase of the number of
connections, but it is negligible. However, if a difference
amounting to a unit of time can be noticed with such
short times, it is to be expected that for a greater number
of subsystems that difference would be even more
noticeable. That difference cannot be attributed to
running the entire application since only the execution
time of the code that performs the calculations is
measured. After the first test we decided to run another
test on 20 subsystems taking into account that this is the
maximum number of subsystems that a company of an
average or above-the-average size should comprise. The
results are as follows:

TABLE 6.

TESTING AGENT ON 20 NODES

Time for number of connections (number
of connections = Subsystems x n, n[2, 3,

Sub 2Ot 47) / sec
ubsystems m 50 20
connections connections connections
0,0003097 0,0004321 0,0004577
0,0004176 0,0003063 0,0003323
0,000331 0,0003268 0,000581
0,0004415 0,0003221 0,0002227
0,0004168 0,0003182 0,0003425
Mean 0,0003833 0,0003411 0,0003872

If we observe the second test with 20 subsystems, it is
interesting that there are hardly any differences between
results. However, although the times, when compared to
the previous test, are short, a considerable difference in
the increase of execution time is still noticeable. It is
evident that this difference arose from the selection of the
initial order for which the final solution aims to be
obtained. In other words, the algorithm performed a lot
fewer replacements in the first test than in the second one,
which was to be expected regarding the increase in the
number of subsystems and the number of connections.
Hence, since the agent, i.e., the part of the algorithm
referred to as subsystem in the introduction to system
description, works satisfactorily for 20 subsystems, which
is more than sufficient for implementation purposes in IS
design and implementation, no further code optimization
is required. Consequently, the problem concerning its
practical application that we referred to in [3] and [4],
prior to the empirical analysis which showed that
concerning problem complexity everything had properly
functioned, does not need to be resolved either.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

After these two tests we decided to investigate the
extreme limitations of the algorithm regarding the
increase in the number of subsystems and the total
number of connections between subsystems, and,
consequently, permutations.

First considerable delays started to occur with 250
subsystems and 500 connections, where the time needed
for calculating the final solution started to reach 1.7
seconds. With 500 subsystems and 100 connections
between subsystems the time needed for calculating the
final solution rose to 7 seconds and, in some instances, to
even 10 seconds. With a further increase in the total
number of connections between subsystems and,
especially, in the number of subsystems, the number of
permutations needed for calculating the final solution is
drastically increased, which also implies an increase in
execution time. Therefore, regardless of reasonable
complexity O(n®), problem complexity does not allow for
the algorithm to be executed within one second for 200
subsystems and more. Although the execution time that
amounts to, for instance, several minutes or half an hour
would be satisfactory for problems where an instant
solution is not imperative since with 500 subsystems we
could easily design information system of any kind. With
problems that have a huge number of subsystems and
work in real time or near-real time this algorithm would
no longer be usable. Alternatively, it would either have to
be further optimized or the aforementioned delays would
have to be acceptable.

Runtime growth with respect to the
number of subsystems and number of
connections (in seconds)

Figure 3. Runtime order of growth for tested function

The graph in figure 3 shows a comparative test of
algorithm execution with regards to the increase in the
number of subsystems and connections between them.
Since the complexity of the third function is a third-order
polynomial, the graph also represents the cubic function
growth. Unfortunately, with a large number of
permutations such complexity is not beneficial.

Furthermore, as evident in the previous results, the
number of connections between subsystems is itself of no
consequence since with a small number of permutations
the difference is hardly noticeable. Likewise, with a large
number of permutations or subsystems the number of
permutations is too large for the difference to be

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

noticeable since, in general, the total number of
connections between subsystems that is less the number
of subsystems is not to be expected. This is explained by
the fact that those connections, i.e., data classes [4] need
to service particular IS subsystems so the IS could work
properly. Otherwise the question would arise of whether
that whole, if it is so poorly interconnected, can be
referred to as a system.

IV. CONCLUSION

The goal of this part of research was to examine the
functioning of an algorithm we previously developed
[3],[4] in real conditions beyond theoretical
considerations. Having conducted the empirical analysis
of the agent for automatic determination of IS subsystems
order execution, we can conclude that the algorithm
proved to be suitable for application during IS design and
implementation. Furthermore, if the number of
subsystems to be processed is large and it is necessary to
run a large number of permutations without the real time
operation requirement, the algorithm is applicable and
works satisfactorily. The only issue concerning the
application of this algorithm is related to using it in
conditions in which an almost simultaneous response is
expected and the number of nodes it should be run on is
huge. Although it is true that the algorithm had not been
developed for such conditions, from the purely scientific
perspective it is possible to apply the algorithm to that
type of a problem as well.

As mentioned in our previous research, we assumed
that such a situation would occur and here reaffirm our
conclusion that an approximation algorithm could be
developed by means of topological sorting and resolution
of cycles that would be much less complex and would
work properly. Naturally, when such an algorithm is
developed it will need to be compared with the one
presented in this paper. Moreover, considering our
research in machine learning [19],[20], automatic or
semiautomatic generation of the process/data class matrix
is possible, although it may be too early to discuss that
option. Also, it is possible that approximation algorithm
could be developed with DFS [18],[21],[22],[23] as well,
but, this notion would require more thorough research.

ACKNOWLEDGMENT

This research was conducted within the project
“Automation of Procedures in Information Systems
Design” financed by the Croatian Ministry of Science,
Education and Sports.

REFERENCES

[11 A. Lovren¢i¢, An efficient algorithm for information
system decomposition, Journal of Information and
Organizational Sciences, Vol. 22, n. 2, pp. 137-151, 1998.

[2] A. Lovrenci¢, The problem of optimization of the process
of decomposition of an information system, Journal of
Information and Organizational Sciences, Vol. 1, n. 22, pp.
27-43,1997.

[3] Robert Kudeli¢, Alen Lovrencic,
Information system subsystems

Mladen Konecki,
execution and

©2013 ACADEMY PUBLISHER

1665

development order algorithm implementation and analysis,
International Journal of Computer Science Issues, Vol. 9,
Issue 2, No 3, March 2012.

[4] R. Kudeli¢, A. Lovren¢i¢, Automatic determination of
information system subsystems execution and development
order, IRECOS (2011).

[5] Huang Wei J., Cai Li Gang, Hu Yu Jing, Wang Xue L.,
Ling Ling, Process planning optimization based on genetic
algorithm and topological sort algorithm for digraph,
Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, Volume 15, n. 9, pp. 1770-1778,
2009.

[6] Moon Chiung K., Yun Youngsu S., Leem Choon Seong,
Evolutionary algorithm based on topological sort for
precedence constrained sequencing, IEEE Congress on
Evolutionary Computation, 2007, pp. 1325-1332, 2008.

[71 Li YL. Zhang JH. Li CA, NOTE ON SOME
TOPOLOGICAL PROPERTIES OF SETS IN
INFORMATION SYSTEMS, Kybernetes, Volume 27,
1998.

[8] Kahn, A. B. (1962), "Topological sorting of large
networks", Communications of the ACM 5 (11): 558-562.

[9] Lijiang Zhao, A matrix solution to Hamiltonian Path of any
graph, Proceedings - 2010 International Conference on
Intelligent Computing and Cognitive Informatics, pp. 440-
442, 2010.

[10] Feng JF., Giesen HE., Guo YB., Gutin G., Jensen T.,
Rafiey A., Characterization of edge-colored complete
graphs with properly colored Hamilton paths, Journal of
Graph Theory, Volume 53, pp. 333-346, 2006.

[11] Dyer M., Frieze A., Jerrum M., APPROXIMATELY
COUNTING HAMILTON PATHS AND CYCLES IN
DENSE GRAPHS, SIAM Journal on Computing, Volume
27, pp. 1262-1272, 1998.

[12] Michael R. Garey, David S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness
(W.H. Freeman, First Edition 1979).

[13] Hamilton, William Rowan, "Memorandum respecting a
new system of roots of unity". Philosophical Magazine, 12
1856.

[14] Hamilton, William Rowan, "Account of the Icosian
Calculus". Proceedings of the Royal Irish Academy, 6
1858.

[15] Ore, O "A Note on Hamiltonian Circuits." American
Mathematical Monthly 67, 55, 1960.

[16] Ellis Horowitz, Sartaj Sahni, Fundamentals of computer
algorithms, Computer Science Press, 1978.

[17] Graham, Bounds on Multiprocessing Timing Anomalies.
SIAMJournal on Applied Mathematics 17, 416-429, 1969.

[18] Cormen, Leiserson, and Rivest, Introduction to Algorithms,
1990.

[19] Kudeli¢, R, Konecki M, Lovren¢i¢ A. Mind Map
Generator Software Model with Text Mining Algorithm.
Proceedings of the 33rd International Conference on
Information Technology Interfaces, 2011, p. 487.

[20] Kudeli¢, R, Malekovié, M, Lovrenci¢ A. Mind Map
Generator Software. International Conference on Computer
Science and Automation Engineering, accepted for
publication, 2012.

[21] Charles P. Tremaux, French engineer of the telegraph,
1859-1882.

[22] Even, Shimon, Graph Algorithms (2nd ed.), Cambridge
University Press, pp. 4648, 2011.

[23] Sedgewick, Robert, Algorithms in C++: Graph Algorithms
(3rd ed.), Pearson Education, 2002.

