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Abstract—Service-Oriented Computing is becoming a para-
digm of choice for implementing enterprise-level distributed 
applications, with a number of methodologies having been 
proposed to provide systematic guidance for the develop-
ment of service-oriented solutions. However, presently, 
there is a lack of well-defined and pragmatic Service-
Oriented (SO)-specific methodology evaluation approaches, 
making it difficult to evaluate and compare exiting method-
ologies in an informed manner. To this end, this paper pro-
poses an analytical framework for evaluating and compar-
ing SO development methodologies using a set of qualitative 
features and quantitative ratio-scale metrics. A case-study 
was conducted to demonstrate the practical application of 
the framework. 
 
Index Terms—Service-Oriented Computing (SOC), Soft-
ware development methodologies, evaluation framework. 
 

I. INTRODUCTION 

Service-Oriented Architecture (SOA) [8] or Service-
Oriented Computing (SOC) [44] is a development 
paradigm for implementing distributed and enterprise 
class systems, which employ software services as 
independent and reusable building blocks that 
collectively represent a software application. SOC is 
founded on the idea of discovery and composition 
whereby an executable business process can discover at 
runtime the most suitable services and orchestrate them in 
order to satisfy a particular domain or business 
requirement [34]. This flexibility can lead to new 
economic opportunities as software functionality is 
increasingly commoditised as Software as a Service 
(SaaS) in the Cloud [32].  

Developing SOA-based systems, which are typically 
heterogeneous, large, and complex, is a challenging and 
time-consuming exercise [9]. Add to this the ever-
increasing emphasis on non-functional requirements, as 
well as the need to support newer delivery models (such 
as SaaS in the Cloud), and Service-Oriented (SO) system 
development is only going to become more difficult [1]. 
To this end, development methodologies can bring formal 
and clearly specified processes that can instruct all or part 
of the software engineering life cycle. Specifically, 
incorporating a well-defined and mature methodology 
into the software development process can result in two 
important benefits: i) increase of developer productivity; 
and ii) product quality improvements [10]. Also, 

development methodologies provide support for building 
software systems aligned with specific paradigms and 
associated logical and technological constraints, which is 
especially important for newer and yet to be thoroughly 
understood and documented paradigms such as SOC [46]. 

A number of methodological approaches have been 
proposed and applied when developing SO solutions for 
different business domains, e.g. [1, 8-9, 43]. However, 
existing approaches are relatively new and typically lack 
theoretical foundation and empirical evaluation, making 
it difficult to establish the strengths and weaknesses of 
the incorporated activities, work products, and other 
methodological principles. This is further exacerbated by 
a lack of SO-specific methodology evaluation 
mechanisms. Specifically, the presently available 
evaluation methodology approaches, e.g. [7, 13, 26], are 
not sufficient to capture the unique requirements and 
constraints of SOC [46]. Also, such approaches suffer 
from a number of limitations (e.g. lack of objectivity) as 
discussed further in Section 2.2. 

Therefore, this paper proposes a novel analytical 
framework that supports the objective evaluation and 
comparison of software development methodologies 
using feature analysis [24, 27] and metrics-based 
assessment [14, 51]. Specifically, the proposed 
framework prescribes a set of desirable features that 
allow qualitative examination of various methodology 
characteristics (e.g. maturity and usability), and a set of 
quantitative ratio-scale metrics for assessing the internal 
properties of a methodology such as the structural 
dependencies between its tasks and work products.  

To support a more structured and focused evaluation 
process, the included features and metrics were organised 
in terms of a hierarchical quality model that supports 
methodology evaluation from three distinct perspectives, 
“structured artefact”, “underlying process”, and 
“deliverable product” as discussed further in Section III. 
Moreover, the framework was designed to be generic (i.e. 
it includes quality characteristics applicable to any 
software development methodology), and at the same 
time customisable insofar as those characteristics that are 
paradigm-specific can be adapted and applied to 
methodologies covering different development paradigms 
as has been done in this paper for the specific case of 
SOC. Additionally, the proposed framework is flexible, 
since it can be employed as part of different evaluation 
strategies, such as quantitative experiments or qualitative 
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case studies and surveys [27], each requiring varying 
level of assessment expertise and effort, and producing 
different levels of evaluation accuracy. Finally, for this 
paper, an exploratory case study (see Section VII) was 
employed as a proof of concept to demonstrate the 
practicality of the framework by using it to evaluate a 
subset of a mature and widely-used SO development 
methodology, SOMA [1].  

This paper is organised as follows: Section II defines a 
generic meta-model of a software development 
methodology, and reviews existing evaluation approaches 
including the discussion of their strengths and 
weaknesses. Section III provides an overview of the 
proposed framework, followed by the internal details of 
three covered evaluation perspectives, structured artefact, 
underlying process, and deliverable product, presented in 
Sections IV-VI respectively. The practical application of 
the framework, via an exploratory case study, is presented 
in Section VII; while Section VIII closes with a summary 
conclusions and discussion of future work. 

II. BACKGROUND 

2.1 A Meta-model of a Development Methodology 
A meta-model of a software development methodology 

was derived in order to provide a theoretical foundation 
and consistent formalism for the definition of 
methodology evaluation mechanisms in Sections IV-VI. 
This meta-model, shown in Fig. 1, combines core 
concepts and definitions extracted from existing mature 
methodological approaches (such as the Rational Unified 
Process (RUP) [29] and Object-Oriented Process, 
Environment and Notation (OPEN) [12]) into one generic 
model comprising a collection of process classes that 
represent significant elements of a development 
methodology, the relationships between them, and the 
applicable constraints (e.g. a Task must interact with at 
least one Work Product).  

The proposed meta-model is documented using UML 2 
notation and takes an OO approach (i.e. it uses standard 
class relationships, such as association and 
generalisation). This is in line with the “Software and 

Systems Process Engineering Meta-Model 2.0 (SPEM)” 
[41] specification that prescribes a comprehensive 
process engineering meta-model, defined as a set of 
generic UML 2 stereotypes, for modelling and enacting 
software development methodologies and their 
components. However, in contrast to SPEM, which 
includes more than fifty different process classes and has 
a relatively complex hierarchical structure, the meta-
model presented in this section is simple and intuitive 
covering only the main process classes necessary to 
support the proposed analytical framework.  

The process classes themselves are categorised into 4 
different types (indicated as UML stereotypes in Fig. 1):  

(1) Core classes that represent fundamental 
measurable components of any development process. 

(2) Structural classes that provide logical structure for 
the relevant core classes, thereby supporting more 
targeted methodology evaluation insofar as the evaluation 
procedure can be applied to the individual structures of 
interest (e.g. lifecycle phases). 

(3) Abstract classes that serve as conceptual 
placeholders for a set of related process classes. 

(4) Supporting classes that provide assistance to the 
core classes.  

Specifically, according to the proposed meta-model, a 
software development methodology (M) incorporates a 
number of lifecycle phases (LP) that represent major 
logical partitions of the development process and provide 
a natural organisation and timing to the execution of 
development activities (A), and the production of work 
product sets (WPS). 

The work product sets are composed of collections of 
related work product (WP) types that represent anything 
of value that is produced, modified, or reviewed during 
the execution of the development process. The work 
product types can support both input and output 
interactions with the development tasks (T) that 
symbolise low-level functionally cohesive executable 
process operations encapsulated into and time boxed by 
the corresponding activities.  

The tasks are performed by the producers (P) which 
can be either human participants or dedicated software 
tools that perform automated manipulation of work 

Fig. 1. A meta-model of the software development methodology
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products. Finally, the tasks are supported by optional 
techniques (Te(T)) which can be classified as quantitative 
(e.g. software metrics or transformation algorithms) or 
qualitative (e.g. set of informal design guidelines). 

The detailed definitions of all process classes, together 
with associated examples, can be found in Appendix A. 

2.2 Existing Methodology Evaluation Approaches 
A number of approaches (e.g. [7, 13, 26]) have been 

proposed for evaluating and comparing software 
development methodologies with the aim of: 

(1) Providing an understanding of particular strengths 
of a methodology. 

(2) Assisting methodology enhancement by 
identifying shortcomings. 

(3) Supporting an informed and structured 
comparison of methodologies. 

(4) Allowing extraction of valid process fragments 
(i.e. WU and WP) from existing methodologies for the 
purpose of assembling a new methodology. 

According to the DESMET [27] meta-methodology for 
evaluating software engineering methods and tools, 
methodology evaluation processes can be broadly 
classified into two categories, referred to as internal and 
external in this paper, and described further below. 

Internal evaluation is applied to the methodology itself 
in order to establish its validity or conformance to some 
accepted norm (e.g. as captured by a set of required 
features or ontological representations, see Sections 2.2.1 
and 2.2.2). Such evaluation allows examining process, 
(structured) artefact, and (deliverable) product aspects of 
methodologies. That is, although a methodology 
prescribes a process used to build software products, it 
can also be considered as a constructed artefact 
structured in terms of a collection of inter-dependent 
meta-classes (see Section 2.1), and delivered as a 
physical product comprised of documentation, supporting 
tools, and training; as explained further in Section III. 

External evaluation is performed to establish the 
impact, or measurable effects, of methodologies when 
applied in practice. Such evaluation aims to quantify the 
impact of a given methodology on: i) the quality of the 
produced work product instances (i.e. Quality (WP[instance])); 
and ii) the process efficiency as reflected by the 
productivity of the producers (P) in terms of a number of 
produced work product instances per unit of time (i.e. 
Efficiency (P-> WP[instance])). 

There are three main methodology evaluation 
approaches that can be employed as part of internal or 
external evaluation processes (or both) – feature analysis, 
ontological evaluation, and metrics-based assessment. 

2.2.1 Feature Analysis  
Feature analysis is a widely referenced informal and 

qualitative methodology evaluation approach [24, 27, 53]. 
Using this technique, the evaluators extract a set of 
important features from available methodologies and 
combine them into an evaluation checklist, which is then 
applied to methodologies either within the same 
development paradigm or across paradigms [24]. The 
evaluation itself is done by examining the structure and 

documentation of selected methodologies, and assigning 
an ordinal-scale number or category to a given checklist 
feature (or evaluation criterion). 

The strength of this strategy is that it is easy and fast to 
execute if the set of criteria is well defined [27]. Also, this 
approach is flexible insofar as it can be used as part of 
internal and external evaluation processes. Moreover, due 
to its simplicity, the feature analysis technique is 
commonly used to evaluate methodologies defined for 
newer and/or not well-understood development 
paradigms [53]. For example, the Methodology 
Evaluation Framework for Component-Based 
Development (CBD) [7], which was proposed at the time 
when CBD was still in its inception, used feature analysis 
to evaluate whether a given methodology can be deemed 
CBD-specific. Also, more recently, [18] proposed a set of 
evaluation features, distilled from the research literature, 
that cover some of the unique characteristics and design 
requirements of Service-Oriented software engineering. 

A major limitation of feature analysis is its inherent 
subjectivity. Firstly, the evaluation checklists are usually 
developed based on the subjective opinions of the 
evaluators with limited formal justifications provided for 
the inclusion of particular features, making it difficult to 
assess their completeness and internal consistency [56]. 
Secondly, the actual evaluation process (i.e. criteria 
application) is commonly conducted in an informal 
manner, thereby heavily depending on how the evaluators 
subjectively score the methodology features against the 
checklist criteria [24]. 

2.2.2 Ontological Evaluation 
Ontological evaluation [15, 17, 26] is based on the idea 

of evaluating the constructs (e.g. work products (WP) and 
work units (WU)) of existing methodologies by matching 
them with pre-defined ontological constructs. More 
specifically, the ontological evaluation can be applied at 
two different levels of abstractions, representation and 
design process, as follows: 

(1) Representation level [58] – the expressive power 
of a given methodology is evaluated for its completeness 
and clarity in respect to a predefined ontology [58]. 
Completeness in the context of ontological evaluation 
refers to the ability of a methodology’s grammar (i.e. 
language/s used to specify work units and work products) 
to describe all the prescribed ontological constructs. 
Clarity refers to the degree to which the methodology’s 
grammar can be interpreted unambiguously. For example, 
[58] proposed a generic representational model (BWW) 
capturing fundamental concepts of any information 
system using 29 ontological constructs (e.g. system, 
subsystem, properties, event, etc.). They also introduced 
the concepts of construct overload, redundancy, excess, 
and deficit that allow formal reasoning about the strength 
of a mapping between specific methodologies and 
relevant ontology. Those concepts were then used to 
evaluate the ontological expressiveness of IS analysis and 
design grammars. In later work, [17] demonstrated the 
process of applying this generic ontological model for the 
purpose of determining the ability of the selected 
integrated process modelling grammar to provide “good 
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representations of the perceptions” of business analysts.  
(2) Design process level [15] – the expressive power 

of a given methodology is evaluated for its ability to 
represent generic design processes, and other applicable 
concepts of the Function-Behaviour-Structure (FBS) [15] 
framework that accounts for the situatedness of the 
design, viewing it as a dynamic activity driven by 
interactions between designers and the work products 
being designed. Specifically, FBS subdivides the design 
process into five distinct sub-processes: formulation, 
synthesis, analysis, evaluation, documentation, and three 
reformation types that link functions, behaviours and 
structures at expected and actual levels. 

The main advantage of ontological evaluation is that it 
provides stronger theoretical foundation and formal 
evaluation semantics compared to feature analysis [15]. 
However, ontological evaluation requires a formal 
representation of a methodology grammar to be available, 
which is not always the case given that a majority of 
existing methodologies are documented and managed 
using natural language descriptions rather than formal 
specifications [41]. To this end, producing a valid formal 
grammar for a given methodology can be a difficult and 
time consuming task. Additionally, assuming that the 
methodology grammar is readily available, the tasks of 
classifying grammar fragments into the specific 
ontological constructs and evaluating the strengths of 
their mapping are still subjective.  

Finally, the validity of existing ontology models 
themselves is questionable. For example, it was 
suggested that BWW ontology [58] is over-engineered 
and at the same time not capable of capturing the essence 
of specific paradigms and modelling objectives [17]. To 
this end, there may be a need to extend and tailor existing 
ontological models, which can be a time consuming 
exercise especially for the newly emerged paradigms [26], 
such as SOC, that lack accepted design principles. 

2.2.3 Metrics-based Assessment 
Metrics can provide a formal and objective mechanism 

for both internal (e.g. [14]) and external (e.g. [21, 52]) 
methodology assessment.  

Internal assessment, in this context, involves analysing 
the complexity of software development methodologies 
(M) and incorporated work products (WP) and tasks (T) 
using a set of dedicated ratio-scale metrics. However, at 
present, there is a lack of theoretically valid and 
empirically evaluated methodology-specific internal 
metrics. To our knowledge, the “Framework for the 
modelling and evaluation of software processes” (FMESP) 
[14] is the only available approach that provides a basic 
suite of validated (using the Distance-based framework 
[49]) and empirically evaluated metrics for quantifying 
the cognitive1 complexity of a given methodology (M). 
Specifically, FMESP treats the structure of a 
methodology as a bi-directional graph, where vertices 
 

 
1 Cognitive complexity can be defined in terms of the level of effort 
needed to understand a given methodological component (e.g. task (T)) 
and apply it in practice [51]. 

symbolise three fundamental process classes, activities 
(A), work products (WP), and producers (P); and edges 
correspond to the relationships between these entities  

(i.e. P->performsT and T<->interactsWP, see Section 2.1).  
To measure this structure, FMESP proposed a suite of 

twelve metrics, six of which indicated a statistically 
significant correlation with the perceived cognitive 
complexity of investigated methodologies: i) NPR 
(number of producers involved in the methodology 
application); ii) NA (number of activities); iii) NWP 
(number of work products); iv) NDWPin (number of input 
dependencies of the work products with the activities); v) 
NDWPout (number of output dependencies of the work 
products with the activities); and vi) NDWP ([total] 
number of work product and activity dependencies). 

In addition to FMESP, Rossi and Brinkkemper [51] 
proposed a suite of ratio-scale metrics for quantifying the 
total conceptual complexity of the individual work 
product (WP) types modelled in terms of three main 
meta-types: i) objects (O) (e.g. service interface); ii) 
properties (P) (e.g. interface name and interface 
operations); and iii) relationships (R) (e.g. “exposes” and 
“uses”). Note that although their metrics were defined in 
a systematic and formal manner [51], they were not 
theoretically validated or empirically evaluated. 

 
As stated previously, the application of any software 

development methodology is said to result in two major 
external benefits [10]: i) product quality improvements; 
and ii) increase of productivity. In previous work, the 
product quality was shown to be affected by its structural 
design properties [47-48], and as such, a number of 
researchers proposed evaluating methodologies in terms 
of their impact on the structural properties of the 
produced work products (WP). For example, design 
metrics have been previously used to compare the 
structure (e.g. complexity) of OO class diagrams that 
resulted from applying different OO development 
methodologies to the same problem domain [52]. 
Similarly, software metrics (e.g. from ISO/IEC 9126 
standard [19]) can be used to measure the productivity of 
producers (P) in order to determine the impact of a 
particular  methodology on the overall process efficiency. 

 
The main advantage of both internal and external 

metrics-based assessment is that it supports formal, 
objective, and automated methodology evaluation. 
However, the number of currently available internal 
metrics is limited, and the derivation and validation of 
new metrics can be a significant and complex research 
undertaking. Also, external metric values can only be 
calculated by observing the (real-life) behaviour of 
producers (P) applying the methodology in practice, 
and/or evaluating the quality of the produced (complete) 
work products. This type of evaluation is also more 
resource intensive compared to the feature analysis and 
ontological techniques [27]. 
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2.2.4 Summary and Limitations 
The examined evaluation approaches, feature analysis, 

ontological evaluation, and metrics based assessment, are 
summarised in Table 1. Specifically, this table: i) shows 
which specific approaches are covered by the framework 
proposed in Sections IV-VI; ii) illustrates overall 
applicability of a given approach to different internal and 
external evaluation targets, and iii) indicates the 
associated degrees of evaluation effort, and the 
objectivity and formality of the evaluation procedures 
and ensuing outcomes. For example, metrics based 
assessment can be deemed as both formal and objective 
given that the evaluation procedure is supported by the 
means of automated and formally defined ratio-scale 
measures. However, such assessment requires a high 
degree of effort to derive and validate new internal 
metrics, or obtain data necessary to calculate the values 
of external metrics. In contrast, although feature analysis 
can be employed with minimal effort as part of the initial 
evaluation process, this approach is inherently informal 
and subjective. Finally, ontological evaluation can 
potentially replace or enhance feature analysis with more 
formal and targeted evaluation semantics. However, the 
process of producing methodology grammars; and then 
classifying grammar fragments into ontological 
constructs is subjective and resource-consuming. 

The evaluation framework proposed in this paper 
follows the feature analysis and metrics-based 
assessment approaches, which can cover a broad 
spectrum of internal and external evaluation targets as 
shown in Table 1. Moreover, these approaches can be 
considered complementary insofar as the evaluation of a 
methodology can be performed: i) informally with 
minimal required resources, using the feature analysis 
approach; and ii) in a formal and structured, but more 
resource-intensive manner as warranted by the 
application of metrics. Note however that in future work 
the framework could be augmented with ontological 
constructs so as to provide a more formal foundation for 
the evaluation process. 

III. METHODOLOGY EVALUATION FRAMEWORK 
- OVERVIEW 

The proposed framework incorporates a set of 
unambiguous qualitative features defined on a five point 
ordinal Likert scale, and a collection of quantifiable 
ratio-scale metrics. These features and metrics were 
identified based on a comprehensive and critical analysis 
of the related literature (see Section II), and then 
expanded with a set of characteristics extracted from 
existing SO methodological approaches (e.g. [1-2, 8-9, 
43]).  

To provide a formal foundation for the framework 
derivation and inclusion of specific features and metrics, 
and to support a more focused evaluation process, the 
decision was made to structure the framework according 
to existing software measurement [11] and quality [3, 19] 
models 2  that treat the concept of quality using a 
hierarchical structure where quality is divided into a 
number of quality characteristics which are then further 
decomposed into measurable sub-characteristics. Such 
hierarchical structure can support a more focused 
evaluation process, insofar as the evaluators can 
concentrate on the specific evaluation aspects based on 
the available resources and overall evaluation goals and 
requirements. This is also in line with the DESMET [27] 
meta-methodology that suggests that the evaluation 
mechanisms can be complex concepts in themselves, and 
thus should be decomposed into conceptually simpler 
items structured in a hierarchical manner. Moreover, it 
has been previously suggested that hierarchical models 
are easier to analyse and maintain [25]. 

To this end, the framework is structured in terms of a 
hierarchical quality model, shown in Fig. 2, comprising 
three quality perspectives (structured artefact, underlying 
process, and deliverable product) that encapsulate seven 
high-level quality characteristics (C1-C7) subdivided 
into twenty-two sub-characteristics (SC1.1-SC7.4) that 
can be directly assessed using ordinal features or ratio-
 

 
2 Evaluating a methodology using the feature analysis and metric-based 
approaches is similar to assessing its quality. This is because in the area 
of empirical software engineering any evaluation process is said to 
involve measurements of entities and their quality characteristics [11]. 

TABLE 1. 
EXISTING METHODOLOGY EVALUATION APPROACHES - SUMMARY 

Evaluation 
Approach 

Evaluation Target
Evaluation 

Process Internal 
<Artefact> 

Internal 
<Process> 

Internal 
<Product> 

External 
<Product Quality> 

External 
<Process Efficiency> 

Metrics <C> * + (e.g. [14]) <C> * <C> * <C> + (e.g. [6, 20]) <C> + (e.g. [21]) 
• High effort 
• Formal 
• Objective 

Feature      Anal-
ysis 

= <C> * + (e.g. [27]) <C> * + (e.g. [27]) = = 
• Low effort 
• Informal 
• Subjective 

Ontological Not Applicable + (e.g. [15], [30]) + (e.g. [17], [58]) Not Applicable Not Applicable 
• High effort 
• Formal 
• Subjective 

<C> Covered by the proposed framework;           * Introduced in this paper;           + Previously available ;           = Can be defined in future work;  
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scale metrics:  
- The “structured artefact” perspective treats a 

methodology as a constructed entity (or artefact) 
structured in terms of a collection of process classes and 
their relationships as covered by the meta-model of a 
software development methodology proposed in Section 
2.1. Specifically, this perspective aims to evaluate the 
comprehensibility (Characteristic C1) of any generic 
software development methodology (M) and incorporated 
tasks (T) and work products (WP) by quantifying their 
cognitive complexity.  

- The “underlying process” perspective, on the other 
hand, covers various characteristics of the prescribed 
development process and associated methodological 
guidance, and is designed to be tailored and adapted for 
a particular development paradigm as has been done in 
this paper for the specific case of SOC. For example, the 
“Completeness” characteristic (C2) incorporates the 
“Lifecycle” sub-characteristic (SC2.1), which evaluates 
methodologies with respect to their coverage of the core 
development lifecycle phases of SOC - Service 
Identification, Service Specification, and Service 
Realisation [1] (see Appendix B). 

- The “deliverable product” perspective treats a 
methodology as a physical (deliverable) product available 
in the form of three main components - documentation, 
supporting software tools, and training. The usability and 
availability of those components, as well as the maturity 

of the methodology as a whole, are evaluated by the 
proposed framework (Characteristics C5-C7).  

Finally, the proposed evaluation mechanisms (features 
and metrics), grouped into specific quality sub-
characteristics, can be applied at two different levels of 
granularity: i) individual task (T) and/or work product 
(WP); and ii) methodology (M) as a whole. The low-level 
(i.e. T and WP) mechanisms are intended to support 
targeted methodology assessment by identifying specific 
strengths and shortcomings of provided methodological 
components (e.g. T and WP). In contrast, the high-level 
(i.e. methodology) mechanisms include aggregated 
values for the low-level features/metrics, as well as 
broader evaluation mechanisms that cover generic aspects 
of methodologies (e.g. maturity, as reflected by sub-
characteristics SC5.1-5.3), and are designed to be a useful 
tool for comparing different methodologies in an 
objective and comprehensive manner. 

IV.  METHODOLOGY EVALUATION FRAMEWORK – 
“STRUCTURED ARTEFACT” PERSPECTIVE 

This section covers the structured artefact quality 
perspective and its sole characteristic (Characteristic C1. 
Comprehensibility), and associated sub-characteristics 
(denoted by the SC1.n marker) and metrics (denoted by 
SC1.n-Mn). The proposed sub-characteristics are described 
individually below in terms of the rationale behind their 

QUALITY          

CHARACTERISTIC 

LEGEND: 
Involves external evaluation

SUB-CHARACTERISTIC
[FEATURE-BASED] 

SUB-CHARACTERISTIC
[METRIC-BASED] 

Fig. 2. SO methodology evaluation framework – Quality Model: perspectives, characteristics, and sub-characteristics 
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inclusion in the framework, and measurement specifics 
covering the scale, granularity (WP, T, or M), and 
definitions of the provided metrics. Note that both scale 
and granularity will be the same for all the metrics 
included in a given sub-characteristic. Also, all included 
metrics are of the internal type (refer to Section 2.2). 

4.1 Characteristic C1. Comprehensibility  
In this framework, comprehensibility is defined as the 

cognitive effort of users to understand the internals of the 
individual methodological components (i.e. WP and T) 
and analyse the overall structure of the prescribed process 
(e.g. in terms of the inter-dependencies between all T and 
WP). Specifically, the proposed framework evaluates the 
comprehensibility by quantifying the cognitive (or 
conceptual) complexity at three different levels of 
granularity: work product (WP), task (T), and 
methodology (M) as a whole (Sub-characteristics SC1.1-
SC1.3 respectively). 

 Sub-characteristic SC1.1. Cognitive Complexity - 
Work Product 

According to Rossi and Brinkkemper [51], the total 
conceptual complexity of an individual work product 
type3 (WP) is reflected by the number of, and relationship 
between, its encapsulated objects, properties, and 
relationships (see Section 2.2.3). To this end, the relevant 
metrics defined in [51], see below, were integrated in the 
proposed evaluation framework as follows. 

Measurement Specifics: ratio-scale metrics (WP 
granularity) 

SC1.1:M1. n(O): number of object types per WP type 
SC1.1:M2. n(P): number of property types per WP type 
SC1.1:M3. n(R): number of relationship types per WP type 
SC1.1:M4. Po: mean number of properties per object type  
SC1.1:M5. Pr: mean number of properties per relationship 
SC1.1:M6. C’: total conceptual complexity of WP type 

(derivative of SC1.1:M1-M3, see [51]). 

 Sub-characteristic SC1.2. Cognitive Complexity - 
Task 

The cognitive complexity of individual tasks (T) can 
be reflected by the number and complexity of the 
associated input/output work products (WP) and 
techniques (Te(T)). Specifically, this paper proposes four 
dedicated metrics (see below) for the purpose of task 
complexity quantification.  

Measurement Specifics: ratio-scale metrics (T 
granularity) 

SC1.2:M1. BTI: basic task interaction, 
BTI = NWPin(T) + NWPout(T),  

where NWPin and NWPout are the numbers of input and output 
work products manipulated (i.e. interacted with, as per meta-
model from Section 2.1) by a task T. Although BTI can be 
 

 
3 Evaluating the complexity of a given work product type involves the 
(internal) assessment of its underlying meta-model (see Section 7.1). 
This is in contrast to the (external) complexity assessment of the work 
product instances resulted from applying a methodology in practice. 

easily calculated during the initial evaluation (or pre-screening) 
of a methodology, it represents a coarse estimation of the task 
complexity. In contrast, the following metric (WTI) requires 
greater measurement effort, but is more precise insofar as it 
considers the conceptual complexity of the involved WP types.  

SC1.2:M2. WTI: weighted task interaction, 
WTI = ∑C’(wpin)  +  ∑(C’(wpout)*F1), 

                      wpin∈WPin(T)          wpout∈WPout(T) 
where C’(wp) is the cognitive complexity of an input/output 

work product wp (see metric SC1.1:M7) multiplied by the 
(optional) task uniqueness factor [F1]. This factor is needed 
because the sets of input (WPin) and output (WPout) work 
product types manipulated by a given task can intersect (i.e. 
some, or even all, work product types can have both input and 
output roles within the context and scope of a given task). This 
can potentially reduce the cognitive effort needed to analyse 
intersecting sets of input and output work product types 
(compared to analyzing disjoint sets) given that the producer (P) 
will be analysing the structure and other relevant characteristics 
of intersecting work product types only once. In such cases, the 
cognitive complexity of any output work product type WPout that 
has a corresponding (i.e. same) input work product type WPin 
should be artificially decreased by a task uniqueness factor (F1) 
so as to provide more accurate assessment of task complexity. 
This is further illustrated in the example provided in Section 7.1. 
Note that at this stage the actual value of the uniqueness factor 
is set to the arbitrary value of 0.5 (i.e. F1 = 0.5). However, this 
value is provisional and should be evaluated empirically in 
future work. 

SC1.2:M3. N(Te(T)): number of supporting techniques for a 
task 

SC1.2:M4. WN(Te(T)): weighted number of supporting 
techniques for a task, 

WN(Te(T)) = N(Teqn(T)) + (N(Teql(T))*F2), 
where N(Teqn(T)) is the number of associated quantitative 

task techniques; and N(Teql(T)) is the number of associated 
qualitative task techniques multiplied by the technique 
weighting factor [F2] so as to differentiate between the 
quantitative and qualitative nature of the provided techniques. 
This is because quantitative techniques are beneficial to the 
overall development process since they allow the producers (P) 
to perform tasks (T) and evaluate the instances of manipulated 
work products (WP) in an objective and uniform manner. 
Furthermore, quantitative techniques provide opportunities for 
process automation where the applicable work products can be 
auto-generated by supporting tools. In contrast, qualitative 
techniques can have a negative effect on the cognitive 
complexity of tasks, and can also result in a production of 
internally inconsistent work products given that the application 
of the tasks will be less predictable (i.e. it requires discretional 
judgment) [10]. To this end, qualitative techniques should be 
weighted higher than quantitative ones so to provide more 
accurate measure of task complexity, with the weight factor is 
presently set to the arbitrary value of 2 (i.e. F2 = 2). Similarly 
to factor F1, in SC1.2:M2, this value is provisional and should 
be evaluated in future work. 

 Sub-characteristic SC1.3. Cognitive Complexity - 
Methodology 

The complexity of a methodology is evaluated via 
three complementary measurement approaches:  

- Using validated and empirically evaluated metrics 
proposed in FMESP [14] (see Section 2.2.3), which are 
designed to quantify the structural properties of software 
development methodologies based on the total number of 
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producers (P), work product types (WP), and tasks (T), as 
well as the inter-dependency between all T and WP [14]. 
Metrics SC1.3:M1-M6 below are taken from FMESP. 

- Deriving the combined and mean cognitive 
complexity of all incorporated work products types and 
tasks as quantified by [51] (see Sub-characteristic SC1.1) 
and the newly proposed metrics (Sub-characteristic 
SC1.2)  respectively. See metrics SC1.3:M7-M10 below. 

- Quantifying the usage of of included quantitative 
(Teqn) and qualitative (Teql) techniques using a set of 
newly-proposed metrics SC1.3:M11-M14 below. 

Measurement Specifics: ratio-scale metrics (M 
granularity) 

SC1.3:M1. NP: number of producers [14] 

SC1.3:M2. NWP: number of work product types [14] 

SC1.3:M3. NT: number of tasks (adapted4 from [14]) 

SC1.3:M4. NDWPTin: number of input dependencies of all 
WP with all T (adapted from [14]) 

SC1.3:M5. NDWPTout: number of output dependencies of 
all WP with all T (adapted from [14]) 

SC1.3:M6. NDWPT: number of dependencies between all 
WP and all T (adapted from [14]) 

NDWPT = NDWPTin + NDWPTout 

SC1.3:M7. C’ (M): total WP complexity of a methodology 
[51], 

C’(M) = ∑ C’(wp),   
                 wp∈WP         

 where C’(wp) is the conceptual complexity of a given work 
product type wp (see metric SC1.1:M8).                          
SC1.3:M8. MWPC: mean WP complexity of a methodology, 

MWPC = C’(M)/NWP, (see metrics SC1.3:M7 and 
SC1.3:M2). 

SC1.3:M9. TTI: total T interaction of a methodology, 
TTI = ∑ WTI(t),    

                      t∈T         
where WTI(t) is the weighted task (t) interaction (see metric 
SC1.2:M2). 
SC1.3:M10. MTI: mean T interaction of a methodology, 

MTI = TTI/NT,   (see metrics SC1.3:M9 and SC1:3:M3). 

SC1.3:M11. NTe: total number of (quantitative and 
qualitative) techniques 

SC1.3:M12. WNTe: weighted number of techniques 
WNTe = ∑ WN(Te(t)),    

                             t∈T         

where WN(Te(t)) is the weighted number of task (t) 
techniques (see metric SC1.2:M4). 
SC1.3:M13. TTR: technique to task ratio, 

TTR = NTe/NT, (see metrics SC1.3:M11 and SC1.3:M3).  

SC1.3:M14. TQD: technique quantification degree, 
TQD = NTeqn / NTe, 

where N(Teqn) is the total number of quantitative techniques. 
Possible Values: [0 (total lack of quantitative techniques) to 1 

 

 
4 FMESP utilised activities (A) as a target work unit type; however, 
using finer-grained tasks (T) could result in more precise measurement 
outcomes, and as such, the original metrics were updated accordingly. 

(full technique quantification)]. Note that the ratio of qualitative 
techniques will be inversely proportional to TQD. 

V.METHODOLOGY EVALUATION FRAMEWORK - 
“UNDERLYING PROCESS” PERSPECTIVE 

This section covers the process-related aspects of a 
software development methodology. As was the case with 
Section IV, the logically related sub-characteristics (again 
denoted by the SCn marker in the following sub-sections) 
are grouped together and presented in terms of three high-
level quality characteristics (denoted by Cn), 
Completeness (C2), Efficiency (C3), and Effectiveness 
(C4). The Completeness characteristic is designed to be 
tailored and customised for a particular development 
paradigm as has been done in this section for a specific 
case of SOC. Also, the Efficiency and Effectiveness 
characteristics are evaluated using external metrics. 

5.1 Characteristic C2. Completeness 
In this framework, completeness of a methodology is 

defined as the extent to which its underlying process is 
capable of providing paradigm-specific support for: i) the 
core development lifecycle phases (sub-characteristic 
SC2.1); ii) paradigm-specific modelling (SC2.2).; iii) 
relevant support technologies (or solution architectures) 
and standards (SC2.3); iv) verification and validation 
mechanisms (SC2.4); and v) project management 
activities (SC2.5). Note that the purpose of this 
characteristic is to outline an explicit approach to process 
evaluation and show examples of relevant features, rather 
than provide an exhaustive set of all possible features. 
Moreover, for brevity, only the features pertinent to Sub-
Characteristics SC2.1 and SC2.2 are shown in this section, 
with the remaining features (covering Sub-Characteristics 
SC2.2-2.4) provided in Appendix C. 

 Sub-characteristic SC2.1. Lifecycle 

According to the ISO/IEC 12207:2008 Systems and 
Software Engineering - Software life cycle processes 
standard [23], a core software development process can 
be subdivided into a number of lifecycle phases, 
including Software Requirements Analysis (SRA), 
Software Architectural Design (SAD), and Software 
Detailed Design (SDD). To this end, this sub-
characteristic is designed to evaluate development 
methodologies with respect to their paradigm-specific 
support of the SRA, SAD and SDD phases. In the case of 
SOC, the following mapping can be established and 
applied to guide the evaluation of the lifecycle support (in 
terms of the included tasks (T)) in the context of SOC: 
(1) SRA <-> Service Identification (SI) [1] (or SO Discovery [8]); 
(2) SAD <-> Service Specification (SS) [1] (or SO Analysis [8]); 
(3) SDD <-> Service Realisation (SR) [1] (or SO Design [8]). 
NOTE: The ISO/IEC 12207:2008 standard also includes a 
Software Coding and Testing phase (SCT) as one of the core 
development phases. This phase and associated activities (e.g. 
coding, and preparing and executing test cases) are not covered 
in the proposed framework. Firstly, the coding activities are 
highly dependent on the specific technology in use, and as such, 
the existing SO methodologies do not cover them in detail. 
Secondly, the ISO/IEC 12207:2008 standard recommends 
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independent verification and validation processes; therefore, 
methodological support for testing activities should be provided 
independently from the core development methodology. 

Measurement Specifics: ordinal-scale feature [1(no 
support) – 5 (full support)] (T granularity) 

SC2.1:F1. Provides support for a core lifecycle task (Tx) 
NOTE: This feature should be applied (individually) to each 

and every core development task (Tx) included in the Service 
Identification (SI), Service Specification (SS), and Service 
Realisation (SR) phases (see Appendix B for an example list of 
common tasks extracted from existing literature).  

 Sub-characteristic SC2.2. Paradigm-Specific 
Modelling 

One of the main objectives of any software 
methodology is to provide comprehensive support for the 
fundamental design principles of a given development 
paradigm. 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (M granularity) 

SC2.2:F1. Provides explicit coverage of different types of SO 
systems (e.g. SOS, PARSOS, PURSOS [46]) 

SC2.2:F2. Provides explicit coverage of different types of SO 
relationships (e.g. intra-service, indirect extra-service, and 
direct extra-service [46]) 

Provides explicit coverage of different types of services 
according to their: 

SC2.2:F3. Purpose (e.g. process, task, entity, utility) 
SC2.2:F4. Compositional aspect (e.g. composite and atomic) 
SC2.2:F5. Functional scope/granularity (e.g. fine- and 

coarse- grained) 

SC2.2:F6. Enforces the service metamorphosis (or a 
“metamorphosis embodiment”) [2] in which service concept 
is consistently propagated  throughout development phases 
and activities, and transformed from:  conceptual service -> 
analysis service -> design service -> solution service 

SC2.2:F7. Promotes loose-coupling between services (e.g. 
provides explicit quantitative or/and qualitative techniques 
(Te) for avoiding direct-extra service relationships [48] 

SC2.2:F8. Incorporates techniques for evaluating and 
managing service granularity [2] 

Provides methodological support for the core tasks needed to 
define, publish, and maintain service contracts, including: 

SC2.3:F9. Definition of service contracts using formats 
prescribed by the registry in use (i.e. project and 
infrastructure dependent) 

SC2.3:F10. Publication and maintenance of service 
contracts in external registries (e.g. UDDI)  [59] 

SC2.3:F11. Publication and maintenance of service 
contracts in internal registries (e.g. WSO2 Governance 
Registry http://wso2.com/products/governance-registry/) 

Provides methodological support for the major service 
discovery and integration tasks, including: 

SC2.2:F12. [At the provider level] Documenting service 
interfaces using semantic languages (e.g. SWSL [8]) 

SC2.2:F13. [At the consumer level] Static evaluation, 
selection, and integration of external SaaS offerings [2] 

SC2.2:F14. [At the consumer level] Dynamic discovery, 
selection, and integration of external SaaS offerings [45] 

 Sub-characteristic SC2.3. Support Technologies 
and Standards 

Supporting contemporary paradigm-specific 
technologies and standards can potentially increase the 
practical applicability of a software development 
methodology [10]. In the case of SOC, such technologies 
and standards can include, but are not limited to, ESB 
architecture [5], internal and external service registries 
[59], and various ws* standards [8]. Refer to Appendix C 
for the list of corresponding features. 

 Sub-characteristic SC2.4. Verification and 
Validation  

Evaluating architectural correctness (or verifiability) of 
the system using formal verification analysis techniques5 
can minimise future reliability issues [10]. Also, 
according to the ISO/IEC 12207:2008 Systems and 
Software Engineering - Software life cycle processes 
standard [23], a development process should encourage 
architectural consistency (or validity) via the means of 
requirements traceability and design consistency [12]. 

- Refer to Appendix C for the list of corresponding 
features. 

 Sub-characteristic SC2.5. Project Management  

Providing paradigm-specific support for quality 
management, and effort and cost estimation activities can 
encourage the production of quality software products in 
line with the available resources and timelines [35]. Also, 
formal project planning tasks can support an incremental 
and iterative development process, which is 
recommended by the existing software engineering 
standards and methodologies [10, 12, 23, 29], and is of 
particular significance to SOA-based projects due to its 
support for: i) continuous integration and 
verification/validation of the evolving services ecosystem; 
ii) early delivery of capability subsets (i.e. collection of 
services); and iii) early detection and mitigation of 
defects. Refer to Appendix C for the list of corresponding 
features. 

 Sub-characteristic SC2.6. Total Completeness  

This sub-characteristic quantifies overall process 
completeness of a methodology according to sub-
characteristics SC2.1-SC2.5.  

Measurement Specifics: ratio scale metrics (M 
granularity) 

SC2.6:M1. LSC: lifecycle coverage, 
LSC = NST / NIT,  

where NST and NIT are the numbers of supported and 
included (i.e. as per Appendix B) lifecycle tasks (T) respectively. 
An expected task is deemed to be supported according to the 
values assigned to the corresponding feature SC2.1:F1, see Note 
 

 
5 The verification analysis is done by providing a formal proof on an 

abstract mathematical model, the correspondence between the model 
and the nature of the system being otherwise known by construction [4]. 
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below. Possible Values: [0 (total lack of lifecycle coverage) to 1 
(totally covered)].  

NOTE: The decision was made to quantify the lifecycle 
coverage, as well as the other coverage related metrics shown in 
this and the next sections, by calculating the percentage of the 
“agree” (the value 4) and “strongly agree” (the value 5) feature 
responses, instead of calculating the arithmetic mean of all the 
responses. This was done in order to satisfy one of the key 
principles of measurement theory and scale types [57] in which 
ordinal scale data (e.g. Likert item used in SC2.1:F1) can only be 
tested for equality and order (via formal relations ‘=’, ‘≠’, ‘<’, 
and ‘>’), but should not be used to produce mean values across 
the available data range. 

SC2.6:M2. PSC: paradigm-specific support coverage, 
PSC = NSF / NIF,  

where NSF is the number of supported features as reflected 
by the evaluation scores of 4 (“agree”) or 5 (“strongly agree”); 
and NIF is the total number of features included in sub-
characteristic SC2.2 (e.g., currently, NIF=14). 

SC2.6:M3. STC: support technologies coverage, 
STC = NSF / NIF,  

where NSF and NIF are the numbers of supported and 
included features of sub-characteristic SC2.3. 

SC2.6:M4. VVC: verification and validation coverage, 
VVC = NSF / NIF,  

where NSF and NIF are the numbers of supported and 
included features of sub-characteristic SC2.4. 

SC2.6:M5. PMC: project management coverage, 
PMC = NSF / NIF,  

where NSF and NIF are the numbers of supported and 
included features of sub-characteristic SC2.5. 

5.2 Characteristic C3. Efficiency 
In this framework, efficiency of a methodology is 

defined as the extent to which the productivity of the 
producers (P) is increased. Improving the process 
efficiency is considered to be one of the core objectives 
of any software development methodology [23]. 

 Sub-characteristic SC3.1. Developer productivity 

Measurement Specifics: external ratio-scale metric (T 
granularity) 

SC3.1:M1. PE: producer efficiency, 
PE= ∑ (Time (t) / WPiout(t)), 

                   t∈T(sp) 
where Time (t) is a total time in minutes spent on performing 

each task t needed to produce a complete software product sp; 
and WPiout (t) is a total number of individual work product 
instances produced by t. The lower value of PE indicates higher 
efficiency. Note that it is important to ensure that the PE is 
measured for comparably sized (i.e. in terms of functional and 
non-functional requirements) systems when analysing and 
comparing values obtained for different methodologies. Also, 
the quality and complexity of the produced work products 
should be taken into consideration. 

5.3 Characteristic C4. Effectiveness 
In this framework, effectiveness of a methodology is 

defined as the extent to which its underlying process 
supports the production of quality software products that 
meet user requirements and other pre-defined functional 
and non-functional constraints. Similar to process 
efficiency, improving the development effectiveness is 
considered to be one of the core objectives of any 

software development methodology [23]. 

 Sub-characteristic SC4.1. Work Product Quality 

The (external) quality characteristics (i.e. non-
functional properties) of a software product (e.g. 
reliability and maintainability) are shown to be affected 
by its structural properties (e.g. size, coupling, and 
cohesion) [16], and as such, it is beneficial to assess the 
quality of work product instances at both external and 
internal (i.e. structural) levels. 

Measurement Specifics: external ratio-scale metrics 
(WP granularity) 

SC4.1:M1. EQ: external quality of a produced product, 
EQ = ∑ (ExQualityFactor(wp)), 

                   wp∈WPiout 
where ExQualityFactor(wp) is a measurement of a given 

quality characteristic of a produced work product instance 
wp∈WPiout as measured by existing ISO/IEC:9126 metrics. The 
evaluator should select target quality characteristic (e.g. 
efficiency, portability, and reliability) based on the evaluation 
goals and requirements. 

SC4.1:M2. IQ: internal (structural) quality of a produced 
product, 

IQ = ∑ (InQualityFactor(wp)), 
                wp∈WPiout 
where InQualityFactor(wp) is a measurement of a 

given structural property of a produced work product 
instance wp∈WPiout as measured by existing SOC-
specific software metrics (e.g. [47-48]). Note that the 
evaluator should select target structural properties (e.g. 
coupling, cohesion, complexity, and size) based on the 
evaluation goals and requirements. 

VI. METHODOLOGY EVALUATION FRAMEWORK – 
“DELIVERABLE PRODUCT” PERSPECTIVE 

This section presents quality characteristics, sub-
characteristics, and associated features and metrics 
designed to evaluate inherent product characteristics of a 
methodology, such as its maturity (Characteristic C5), 
usability (C6), and availability (C7). Note that all 
proposed product-related features/metrics are of the 
internal type. 

6.1 Characteristic C5. Maturity 
In this framework, maturity of a methodology is 

defined as the extent to which its underlying model has 
been fully developed (or matured) insofar as its 
underlying model (i.e. tasks (T) and work product types 
(WP)): i) is standardised (Sub-characteristic SC5.1); ii) is 
stable (i.e. does not change frequently) (SC5.2); and iii) is 
indicated to be mature by the miscellaneous maturity 
metrics (SC5.3).  The maturity is an important 
characteristic of any methodology given that frequent 
changes to the methodology’s underlying model can 
attract high costs associated with producer re-training 
and tool updates [10]. 

 Sub-characteristic SC5.1. Standardisation 

While not immediately mature, standardised tasks (T) 
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and work products (WP) can potentially reflect the 
maturity of a methodology, and can also result in general 
quality improvements [33]. 

Measurement Specifics: ratio-scale metric (M 
granularity) 

SC5.1:M1. SD: standardisation degree, 
SD = (NST/NT + NSWP/NWP) / 2,  

where NST and NSWP are the numbers of standardised (e.g. 
by relevant standardisation bodies such as the IEEE, ISO/IEC, 
OASIS, and OMG) tasks Tst ⊆ T and work product types WPst ⊆ 
WP respectively; and NT and NWP are defined as part of Sub-
characteristic SC1.3. Possible Values: [0 (total lack of 
standardisation) to 1 (total standardisation)]. 

 Sub-characteristic SC5.2. Stability 

Stability evaluates the degree of change in between 
methodology releases where a stable methodology is said 
to exhibit a low degree and frequency of release change. 

Measurement Specifics: ratio-scale metrics (M 
granularity) 

SC5.2:M1. LRCD: latest release change degree, 
LRCD = (NCT/NT + NCWP/NWP) / 2,  

where NCT and NCWP are the numbers of changed tasks Tch 
⊆ T and work product types WPch ⊆ WP respectively; and NT 
and NWP are defined as part of Sub-characteristic SC1.3. 
Possible Values: [0 (total lack of change in a given release) to 1 
(total change (i.e. a complete replacement))]. 

SC5.2:M2. MCD: mean change degree, 
                          NRV 

MCD = ∑ LRCDi /NRV, 
                           i=1         
where RCD is defined in SC5.2:M1; and NRV is the total 

number of all released versions of the methodology (see 
SC5.3:M2). Possible Values: [0 (total lack of change in between 
releases i.e. high stability) to 1 (total change in between each 
release i.e. low stability)]. 

 Sub-characteristic SC5.3. Miscellaneous Maturity 

This sub-characteristic covers miscellaneous properties 
of maturity not captured by the previous sub-
characteristics. 

Measurement Specifics: ratio-scale metrics (M 
granularity) 

SC5.3:M1. NYSR: number of years since the first public 
release of the methodology 

SC5.3:M2. NRV: number of released versions of the 
methodology 

6.2 Characteristic C6. Usability 
In this framework, usability is defined as the extent to 

which the methodology can be learned and applied by the 
users. Specifically, the proposed framework aims to 
quantify the usability, from perspective of producers, of 
three main (physical) deliverables of any software 
development methodology - documentation, supporting 
software tools, and training (Sub-characteristics SC6.1-
SC6.3 respectively).  

 Sub-characteristic SC6.1. Documentation 

An appropriate (e.g. consistent, comprehensive, and 

comprehensible) documentation can promote systematic 
application of a methodology by a broad spectrum of 
potential producers (P) [28]. The documentation itself can 
be classified into formal and informal types. Formal 
documentation includes formal grammars, transformation 
algorithms, process algebra definitions, graphical 
notation, etc. Informal documentation can take a form of 
natural language descriptions, illustrations (e.g. screen 
captures, diagrams, figures/tables), and practical 
examples or case studies. 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (T and WP 
granularity) 

- Provides appropriate documentation for a task (T)/work 
product type (WP) 

SC6.1:F1. The documentation is consistent 
SC6.1:F2. The documentation is comprehensive 
SC6.1:F3. The documentation is comprehensible 
SC6.1:F4. The documentation is technology-neutral 
SC6.1:F5. The documentation is appropriately illustrated  
SC6.1:F6. The documentation provides realistic examples 
SC6.1:F7. Formal documentation affords6 its purpose 
NOTE: The above features should be applied individually to 

each and every T and WP included in the methodology, and can 
be readily decomposed and redefined for specific formal and 
informal documentation types on an as needed basis (e.g. 
SC6.1:F1 can be redefined as <Graphical notation is 
consistent> etc.). 

 Sub-characteristic SC6.2. Tool Support 

Integrated tool support (e.g. IDEs, CASE and project 
management and quality assurance tools) can increase 
productivity of the producers (P) (e.g. by supporting 
automated WP transformations and updates) and 
encourage task (T) and work product (WP) consistency. 
To this end, tool support is considered to be an integral 
part of any software development methodology [27]. 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (T granularity) 

- Provides appropriate software tool support for a task (T) 
SC6.2:F1. The tool support is consistent 
SC6.2:F2. The tool support is comprehensive 
SC6.2:F3. The tool support is comprehensible 
SC6.2:F4. The tool support includes realistic examples 
SC6.2:F5. Tool support affords6 its purpose 
SC6.2:F6. Tool support is usable according to chosen 

usability assessment techniques. Note: the choice of a 
particular technique should be dependent on the evaluator’s 
current expertise, existing organisational practices, and 
available evaluation resources. As an example, the following 
[37] usability heuristics can be applied:  

- User retention 
- User control and freedom 
- Consistency and standards 
- Error prevention 

 

 
6  A (perceived) affordance is the design aspect of an object that 

suggests how it might be used i.e. a visual representation of a “properly” 
designed object should provide an immediate clue to its function [38]. 
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- Recognition rather than recall 
- Flexibility and efficiency of use 
- Aesthetic and minimalist design 
- Help users diagnose, and recover from errors 
- Help and documentation 

 Sub-characteristic SC6.3. Training 

Dedicated training can improve the methodology’s 
learning process, thereby increasing its usability [55].  

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (T granularity) 

SC6.3:F1. On-site training is provided, by the methodology 
provider or relevant third parties, for a task (T) 

SC6.3:F2 Public workshops are conducted for a task (T) 
SC6.3:F3. Self-guided training is available for a task (T) 
SC6.3:F4. Formal certification is provided for a task (T) 
NOTE: The above features should be applied individually to 

each and every T included in the methodology, and can be 
refined to evaluate three important aspects of the above training 
modes - consistency, comprehensiveness, and comprehensibility 
(as was the case with Sub-characteristics SC6.1 and SC6.2).     

 Sub-characteristic SC6.4. Total Usability 

This sub-characteristic reflects overall (i.e. 
documentation, tool support, and training) usability 
coverage of a methodology according to Sub-
characteristics SC6.1-SC6.3.  

Measurement Specifics: ratio scale metrics (M 
granularity) 

SC6.4:M1. DUC: documentation usability coverage 
DUC = (Count(NDT)/NT + Count(NDWP)/NWP) / NSF / 2,  

where NT and NWP are defined as part of Sub-characteristic 
SC1.3; NSF is the total number of evaluation features of SC6.1 
(currently NSF=7); and Count (NDT) and Count (NDWP) are 
the counts of all positive responses indicating appropriate 
documentation, for a given T or WP respectively, as reflected by 
the values 4 or 5 assigned to the corresponding (sub) features 
SC6.1:F1-F7. Possible Values: [0 (total lack of documentation) to 
1 (totally documented)].  

SC6.4:M2. TSUC: tool support usability coverage 
TSUC = Count (NST) / NT / NSF,  

where NT is defined as part of Sub-characteristic SC1.3; NSF 
is the total number of evaluation features of SC6.2 (currently 
NSF=6); and Count (NST) is the count of all positive responses 
indicating appropriate tool support as reflected by the values 4 
or 5 assigned to features SC6.2:F1-F6. Possible Values: [0 (total 
lack of appropriate tool support) to 1 (totally supported) by 
appropriate tools]. 

SC6.4:M3. TUC: training usability coverage 
TUC = Count (NTT) / NT / NSF, 

where NT is defined as part of Sub-characteristic SC1.3; NSF 
is the total number of evaluation features of SC6.3 (currently 
NSF=4); and Count (NTT) is the count of all positive responses 
indicating appropriate training as reflected by the values 4 or 5 
assigned to features SC6.3:F1-F4. Possible Values: [0 (total lack 
of appropriate training) to 1 (totally supported by training)]. 

6.3 Characteristic C7. Availability 
In this framework, availability is defined as the extent 

to which the methodology can be openly and/or freely 
accessed. Similarly to the usability characteristic, the 
availability of a methodology is quantified based on the 

availability of its documentation, tool support, and 
training (Sub-characteristics SC7.1-SC7.3 respectively). 
Assuming all other quality characteristics (i.e. 
Characteristics C1-C6) equal, higher availability is 
desirable [36]. 

 Sub-characteristic SC7.1. Documentation 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (M granularity) 

SC7.1-F1: The methodology’s documentation is available in 
the open or public domain7 (e.g. creativecommons.org) 

SC7.1-F2: The documentation upgrades are provided free of 
charge 

 Sub-characteristic SC7.2. Tool Support 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (M granularity) 

SC7.2-F1: The methodology’s tool support is available in 
the public domain (e.g. under GNU initiative) 

SC7.2-F2: The tool support upgrades are provided free of 
charge 

 Sub-characteristic SC7.3. Training 

Measurement Specifics: ordinal-scale features 
[1(strongly disagree) – 5(strongly agree)] (M granularity) 

SC7.3-F1: On-site training is provided free of charge 
SC7.3-F2: Public workshops are offered free of charge 
SC7.3-F3: Self-guided training resources are available in the 

public domain (e.g. creativecommons.org) 
SC7.3-F4: Formal certification is provided free of charge 

 Sub-characteristic SC7.4. Total Availability  

This sub-characteristic reflects overall (i.e. 
documentation, tool support, and training) availability 
coverage of a methodology according to Sub-
characteristics SC7.1-SC7.3. Note that for brevity the 
actual metric calculation formulas and details have been 
omitted since they follow the same pattern as the 
previous coverage metrics (e.g. SC6.4:M1-M3).  

Measurement Specifics: ratio scale metrics (M 
granularity) 

SC7.4-M1: DAC: documentation availability coverage 
SC7.4-M2: TSAC: tool support availability coverage 
SC7.4-M3: TAC: training availability coverage 

VII. PRACTICAL APPLICATION  

An exploratory case study was conducted to 
demonstrate practical applicability [27] of the proposed 
framework, and outline directions for future work. The 
case study involved the evaluation of a sub-set of the 
Service-oriented Modelling and Architecture (SOMA) [1] 
methodology using a sub-set of the proposed ordinal-
scale features and ratio-scale metrics. SOMA is an end-
to-end software development methodology for analysing, 
 

 
7  Open licensing model is common in ICT with a number of 

initiatives providing free and open access to software products and other 
works (e.g. http://www.gnu.org/ and http://creativecommons.org). 
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designing and building SOA-based solutions, which was 
initially proposed in 2004, and has since undergone three 
major revisions. SOMA has comprehensive 
documentation and tool support, and was chosen since it 
was readily available (via IBM Academic Initiative), and 
the present authors had practical experience with its 
application (see [47-48]).  

The goal of this case study is to demonstrate the 
application of selected parts of the proposed framework 
(i.e. provide a meaningful exemplar), rather than conduct 
a comprehensive evaluation of either SOMA or 
framework as a whole. Specifically, this section 
demonstrates the process of evaluating Sub-characteristic 
SC1.2 (Cognitive Complexity - Task) using two ratio-
scale complexity metrics (in Section 7.1), and also 
provides a brief example of feature analysis (in Section 
7.2), using eleven proposed features, as applied to Sub-
characteristic SC2.2 (Paradigm-Specific Modelling).  

7.1 Metrics based assessment 
The SOMA task, “identification of service capabilities 

from business processes”, is part of the Service 
Identification phase and was selected for the purpose of 
demonstrating the quantification procedure of the 
cognitive complexity of a task, including the application 
of relevant weight factors. This particular task was 
chosen because it is of manageable size and provides 
coverage of all structural constructs needed to calculate 
the task complexity values. Specifically the following 
constructs are covered: 

<Input> work product types (WPin):  
- BPMN process model 
- Service dependencies diagram (from SoaML8) 
<Output> work product types (WPout):  

- Service dependencies diagram 
<Quantitative> techniques (TEqn):  
- Decompose a given business process into 3 levels of 

decomposition, process, sub-process, leaf-level sub-process 
<Qualitative> techniques (TEql):  
- Eliminate highly abstract processes 

 

 
8  SoaML is an open source specification project from the Object 

Management Group, describing a UML profile and meta-model for the 
modelling and design of SO systems (www.omg.org/spec/SoaML). 

- Eliminate fine-grained tasks 

Metrics Calculation: 
SC1.2:M2. WTI: weighted task interaction, 
WTI = ∑C’(wpin)  +  ∑(C’(wpout)*F1), 
            wpin∈WPin(T)          wpout∈WPout(T) 
The first step in calculating the value of WTI involves  

determining the conceptual complexity of all manipulated 
input (C’(wpin)) and output (C’(wpout)) work product types, 
with this particular task having two input WP types 
(BPMN and ServiceDependenciesDiagram) and one output 
WP type (ServiceDependenciesDiagram): 

- The conceptual complexity of the BPMN work product 
type has been previously evaluated in [50], with the value 
of C’(BPMN) = 93.6; 

- To calculate the conceptual complexity of the 
ServiceDependenciesDiagram work product type, the meta-
model of which is depicted graphically in Fig. 3, all 
possible objects (O), properties (P), and relationships (R) 
were identified as follows: 
O= {capability, service interface} 
P= {capability name, capability operation, operation qualifier, 
service interface name} 
R= {use, expose} 

According to the above, the work product complexity 
values for the ServiceDependenciesDiagram can then be 
calculated as: 

SC1.1:M1. n(OServiceDependenciesDiagram) = 2 
SC1.1:M2. n(PServiceDependenciesDiagram) = 4 
SC1.1:M3. n(RServiceDependenciesDiagram) = 2 
SC1.1:M4. Po (ServiceDependenciesDiagram) = 2 
SC1.1:M5. Pr (ServiceDependenciesDiagram) = 2 
SC1.1:M6. C’(ServiceDependenciesDiagram)=√(n(O)^2+n(P)^2+n(R)^2) 

= 4.9 
It can be observed, that the total conceptual complexity 

of a service dependencies diagram (C’ = 4.9) is much 
lower than the complexity of BPMN (C’ = 93.6). This was 
expected given that a service dependencies diagram 
covers a limited number of objects, properties, and 
relationships compared to BPMN. This is also in line 
with the previous complexity calculations for simpler 
work product types evaluated by other researchers [54] 
(e.g. UML class (C’ = 26.4) and UML component (C’ = 
15.65) diagrams).  

The (total) input and output work product complexity 
can then be calculated as: 
∑C’(wpin) = C’(BPMN)+C’(ServiceDependenciesDiagram) = 93.6 + 4.9 = 98.4 

and 
∑C’(wpout)*F1 = C’(ServiceDependenciesDiagram)*0.5 = 2.45  

Note that the (optional) weight factor <F1=0.5> was 
applied since a ServiceDependenciesDiagram is used as 
both an input and output work product type.  

Finally, the total weighted task interaction (WTI) for 
the SOMA task, “identification of service capabilities 
from business processes” is: WTI = 98.4 + 2.45 = 100.85 

Note that since the aim of this study is to demonstrate 
the application of selected parts of the framework (rather 
than conduct a complete evaluation of SOMA), we do not 
draw any comparative or relative conclusions regarding 
the magnitude of this complexity value.  

Fig. 3 SoaML service dependencies diagram – meta-model 
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SC1.2:M4. WN(Te(T))  – weighted number of supporting 

techniques for a task, 
WN(Te(T)) = N(Teqn(T)) + (N(Teql(T))*F2), 
The SOMA task, “identification of service capabilities 

from business processes” is supported by one quantitative 
(Teqn) and two qualitative (Teql) techniques. To this end, 
the value of WN(Te(T)) can be calculated as: 
(1) N(Teqn) = 1 
(2)  N(Teq1)*F2 = 2*2 = 4 

Note that the weighting factor <F2=2> was applied to 
the qualitative techniques as was explained in Section IV. 

(3)  Finally, the weighted number of supporting 
techniques (WN(Te(T)))  for the SOMA’s 
“identification of service capabilities from business 
rocesses” task is: WN(Te(T)) = 1+4 = 5 

Again, as with WTI, no conclusions about the relative 
magnitude of this value can be drawn.  

7.2 Feature analysis 
 Providing a complete feature analysis for all the 

proposed feature-based sub-characteristics is beyond the 
scope of this paper. Instead, this section demonstrates the 
application of feature analysis to the arbitrary chosen sub-
characteristic “Paradigm-specific Modelling” and its 
corresponding features (SC2.2:F1-F11). The evaluation 
results, ranked by the first author and shown in Table 2, 
suggest that overall SOMA appears to provide strong 
support for the fundamental concepts of SOC (as 
reflected by features SC2.2:F1-F11). However, SOMA 
lacks methodological support for the service discovery 
tasks (e.g. integration of semantic languages, and static 
and dynamic service discovery, selection, and integration) 
as reflected by the low ranks assigned to features 
SC2.2:F12-F14 (highlighted in bold). This in turn 
suggests the area of possible methodological 
enhancements that can be applied to SOMA.  

VIII. CONCLUSION AND FURTHER RESEARCH 

This paper presented a comprehensive and novel 
analytical framework for evaluating SO development 
methodologies using a set of qualitative features and 
combination of existing and newly-derived quantitative 
ratio-scale metrics structured in terms of a hierarchical 
quality model covering three unique perspectives of any 
generic software development methodology: i) the 
“structured artefact” perspective that treats a 
methodology as a constructed entity structured in terms 
of a collection of process classes and their relationships; 
ii) the “underlying process” perspective designed to be 
tailored and adapted for a particular development 
paradigm as has been done in this paper for the specific  

 
 
 
 
 
 
 

 

TABLE 2.  
EXISTING METHODOLOGY EVALUATION APPROACHES – SUMMARY 

 
case of SOC; and iii) the “deliverable product” 
perspective, which treats a methodology as a physical 
(deliverable) product available in the form of 
documentation, supporting software tools, and 
training.An explorative case-study was presented in 
Section VII to demonstrate the practical applicability of 
the framework by applying a sub-set of the proposed 
metrics and features to a sub-set of a chosen SO 
development methodology, SOMA [1]. Specifically, the 
metric-based assessment illustrated the process of task 
complexity quantification, which can be replicated when 
measuring other methodological tasks and work products 
included in SOMA and other SO-specific methodological 
approaches (e.g. [2, 8, 43]). Also, it was shown that 
SOMA lacks methodological support for the service 
discovery tasks, thereby suggesting an area of possible 
methodological enhancements. In the future, it is 
envisioned that significant stakeholders will apply the 
proposed framework to perform an exhaustive evaluation 
and comparison of existing and/or newly-derived 
methodologies. For example, process engineers in 
commercial environments can apply the framework in 
order to gain an understanding of particular strengths and 
weaknesses of a methodology so as to perform an 
informed methodology enhancement. Also, the 
methodology users will be able to compare competing 
offerings, and select the best method according to specific 
project requirements and constraints. 

Additionally, in future work, some of the currently 
proposed features could be replaced with ratio-scale 
metrics in order to provide a more objective evaluation 
mechanism. Also, the possibility of extending the 
framework with ontological constructs (see Section 2.2.2), 
so as to provide a more formal alternative to feature 
analysis, could be explored. For example, an ontology of 
SO development constructs could be derived and 
integrated into the proposed framework together with the 
concepts from the Function-Behavior-Structure (FBS) 
approach [30]. 

SUB-CHARACTERISTIC ID FEATURE ID RANK VALUE 
1  2  3  4  5 

SC2.2. Paradigm-
Specific Modelling  

SC2.2:F1 
SC2.2:F2 
SC2.2:F3 
SC2.2:F4 
SC2.2:F5 
SC2.2:F6 
SC2.2:F7 
SC2.2:F8 
SC2.2:F9 
SC2.2:F10 
SC2.2:F11 
SC2.2:F12 
SC2.2:F13 
SC2.2:F14 

4 
3 
4 
5 
5 
4 
3 
4 
4 
3 
3 
1 
2 
1
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APPENDIX A.  A META-MODEL OF A SOFTWARE 
DEVELOPMENT METHODOLOGY - DEFINITIONS 

DEFINITION 1: Development Methodology (M) 
A model of the software development process that 
consists of a set of selected, tailored, and integrated 
lifecycle phases, work products, work units, and 
associated methodology producers.  
DEFINITION 2. Work Unit (WU) 
An abstract methodology component that models an 
executable process operation. 

D2.1. Activity (A) – a high-level structural work unit 
that encapsulates a cohesive set of tasks (T), and also 
defines their workflow sequencing. Note that a given task 
can be performed as part of different activities (resulting 
in many-to-many relationship between the activities and 
tasks). Example: Modelling business services.  

D2.2. Task (T) – a core methodology component 
representing a low-level functionally cohesive operation 
performed by one or more producers for the purpose of 
manipulating (i.e. producing, modifying, or reviewing) 
one or more related work products (WP). Example: 
Identification of candidate business service operations.  

D2.3. Technique (Te(T)) – is an abstract core work unit 
that models the way of performing a task (T). The 
techniques can be classified into quantitative or 
qualitative types. Examples: Service cohesion metrics 
(quantitative); Informal guidelines for analysing the 
cohesiveness of service operations (qualitative). 
DEFINITION 3. Producer (P) 
A core methodology component that models (i.e. defines 
a set of required expertise (E)) an entity that performs one 
or more tasks (T). The producers can take a primary or 
additional role when performing a given task/s. Also, a 
producer can be either a human participant or a dedicated 
software tool that performs automated manipulation of 
work products. Example: Software Architect. 
DEFINITION 4. Work Product (WP) 
A core methodology component that represents anything 
of value that is produced, modified, or reviewed during 
the performance of one or more tasks (T). The work 
products can be categorised as either mandatory or 
optional in the context of a particular task/s. Also, the 
work products can support both input and output 
interactions with a task (T). Example: SRS document. 
NOTE: a collection of work products (WPi) is said to be 
associated with a task (Ti) only if WPi is manipulated 
concurrently by Ti.  
DEFINITION 5. Work Product Set (WPS) 
A structural component that encapsulates a cohesive set 
of work products (WP) related by a lifecycle phase (LP). 
Example: Business process models and services. 
DEFINITION 6. Lifecycle Phase (LP) 
A structural component representing major logical 
partition of the development process. Lifecycle phases 
provide a natural organisation and timing to the 
performance of activities (A). Phases can be interleaved, 
overlapped, and iterated. Example: Software 
Requirements Analysis. 

APPENDIX B.  SERVICE-ORIENTED DEVELOPMENT 
LIFECYCLE - EXAMPLE TASKS 

An example list of core SO development tasks (T), 
extracted and amalgamated from existing major SO 
methodological approaches (e.g. [1-2, 8, 43]), is shown 
below. Note that the description of the individual tasks is 
beyond the scope of this paper. 

Service Identification Phase 

 SI.T1: Goal-Service Modelling [1] 
 - Identification of high-level business goals, and their re-

finement into sub-goals that must be met in order to fulfil 
the parent goal [1] 

 - Identification of Key Performance Indicators (KPI) and 
metrics for sub-goals [1] 
 SI.T2: Business Process Modelling [45] 
- Design of short-lived (sync) and long-lived (async) transac-

tion activities [40] 
- Design of concurrent/parallel transaction activities [40] 
- Definition of business process orchestration and choreogra-

phy specifications [45] 
 SI.T3: Existing Asset Analysis [1] 
 SI.T4: Domain Decomposition [1] 
- Identification of service capabilities from business process 

models [1] 
 SI.T5: Candidate Service identification [1] from: 
o business goals and sub-goals [1] 
o business rules [1] 
o business processes [45] 
o domain models [1] 
o functional models [8]  
o existing assets [1] 

Service Specification Phase 

 SS.T1: Integration of non-functional requirements into service 
ecosystem [1] 

 SS.T2: Identification and integration of security patterns [2]  
 SS.T3: Specification of service orchestration layer [8] 
 SS.T4: Specification of business (or task) service layer [8] 
 SS.T5: Specification of application service layer [8] 
 SS.T6: Refinement of application service layer into entity and 
utility layers [8] 

 SS.T7: Service Litmus Test [1] (i.e. applying a set of design 
criteria to determine which candidate services should be ex-
posed externally)  

 SS.T8: Application of Service Analysis operations [2]: 
o Service aggregation: combining fine-grained services into 

a larger coarse-grained service [2] 
o Service decomposition: partitioning coarse-grained ser-

vices into a collection of smaller fine-
grained services [2] 

o Service unification: merging services with comparable at-
tributes and business commonalities in order to avoid 
functional overlap/redundancy [2] 

o Service subtraction: reducing the scope of composite and 
atomic services (i.e. eliminating unnecessary functionality) 
[2] 

 SS.T9: Specification of service components (i.e. service im-
plementation elements) [1] 
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Service Realisation Phase 

 SR.T1: Identification and documentation of service realisation 
decisions (e.g. in-house development, transformation, sub-
scription, outsourcing) [1] 

 SR.T2: Technical feasibility exploration [1]  
 SR.T3: Service contract design including non-functional speci-
fication of service contracts9 (i.e. SLAs, QoS) [31] 

 SR.T4: Design of component-level interactions with the run-
time middleware infrastructure (e.g. ESB) [1] 

 SR.T5: Composite (i.e. orchestrated task) service layer design 
[2, 8] 

 SR.T6: Design of task service layer internals (i.e. design of 
service implementation components and their run-time rela-
tionships and collaborations) [8] 

 SR.T7: Design of entity service layer internals [8] 
 SR.T8: Design of utility service layer internals [8] 
 SR.T9: Definition of interfaces between service components 
and other operational (i.e. legacy) system layers [1] 

APPENDIX C.  PROCESS COMPLETENESS – EXAMPLE 
FEATURES FOR SUB-CHARACTERISTICS SC2.3-SC2.5 

This appendix provides a list of features pertinent to Sub-
characteristics SC2.3-SC2.5 (and for brevity omitted 
from the main body of the paper). Note that the included 
features are not exhaustive and could be extended and 
refined on an as needed basis. For example, the list of 
features provided for Sub-characteristic SC2.5 (“Project 
Management”) could be augmented with additional 
features covering important management activities of 
project governance, reporting, and risk management. 

Sub-characteristic SC2.3. Support Technologies and 
Standards 

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5(full support)] (M granularity) 
Provides support for the basic tasks needed to integrate the 
developed service ecosystem into ESB, including: 
SC2.3:F1. Registration of provided services in the ESB reposi-
tory 
SC2.3:F2. Definition of ESB-driven service communication 
protocols 
SC2.3:F3. Creation of dedicated message and resource routing 
services, and definition and configuration of the routing rules 

Promotes the application of the core W3C standards (ws*), 
including: 
SC2.3:F7. WS-Coordination 
SC2.3:F8. WS-Transaction 
SC2.3:F9. WS-Reliable Messaging 
SC2.3:F10. WS-Security 
SC2.3:F11. WS-Policy 
SC2.3:F12. WS-Addressing 
 

 
9 A service contract consists of a general description (e.g. version, 

owner), a functional specification (service operations including inputs 
and outputs), a non-functional specification (e.g. QoS, SLAs), and ser-
vices dependencies map (list of “used” and “used by” services). 

Sub-characteristic SC2.4. Verification and Validation  

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5 (full support)] (M granularity) 
Incorporates formal system verification analysis techniques 
typical to the SO development, including: 
SC2.4:F1. Petri nets-based approaches 
SC2.4:F2. FSM-based approaches 
SC2.4:F3. Process algebra-based approaches 
SC2.4:F4. Alternative verification approaches (i.e. not listed 
above) 

SC2.4:F5. Enforces requirements traceability throughout the 
core phases of the SO development lifecycle  
i.e. WPS (SI) -> WPS (SS) -> WPS (SR),  
where ‘->’ means traceable 
SC2.4:F6. Enforces design consistency throughout the core 
phases of the SO development lifecycle 
i.e. WPS (SI) <-> WPS (SS) <-> WPS (SR) 
where ‘<->’ means internally consistent 

Sub-characteristic SC2.5. Project Management  

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5(full support)] (M granularity) 
SC2.5:F1. Uses existing SOC-specific effort and cost  estimation 
frameworks (e.g. [39]) 
SC2.5:F2. Integrates with the ISO/IEC 25000:2005 [22] quality 
management standard in order to model, define, and manage 
functional and non-functional quality requirements 
SC2.5:F3. Supports early quantification, using SOC-specific 
software metrics [47-48], of the internal quality characteris-
tics (e.g. service cohesion) of the produced WP 
SC2.5:F4. Supports the application of external quality metrics 
from the ISO/IEC 9126:1-4 suite of standards [19-21] 

Provides support for an incremental and iterative develop-
ment process, including: 
SC2.5:F5. Partitioning (or scoping [42]) of WPS produced in 
the SI phase  
SC2.5:F6. Partitioning of WPS produced in the SS phase 
SC2.5:F7. Partitioning of WPS produced in the SR phase  
SC2.5:F8. Specification of concrete development plans for 
individual iterations 
SC2.5:F9. Specification of concrete development plans for 
inter-phase iterations 
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