

An Analytical Framework for Evaluating Service-
Oriented Software Development Methodologies

Mikhail Perepletchikov, Caspar Ryan, and Zahir Tari

School of Computer Science and IT, RMIT University, Melbourne, Australia
Email: {mikhail.perepletchikov, caspar.ryan, zahir.tari}@rmit.edu.au

Abstract—Service-Oriented Computing is becoming a para-
digm of choice for implementing enterprise-level distributed
applications, with a number of methodologies having been
proposed to provide systematic guidance for the develop-
ment of service-oriented solutions. However, presently,
there is a lack of well-defined and pragmatic Service-
Oriented (SO)-specific methodology evaluation approaches,
making it difficult to evaluate and compare exiting method-
ologies in an informed manner. To this end, this paper pro-
poses an analytical framework for evaluating and compar-
ing SO development methodologies using a set of qualitative
features and quantitative ratio-scale metrics. A case-study
was conducted to demonstrate the practical application of
the framework.

Index Terms—Service-Oriented Computing (SOC), Soft-
ware development methodologies, evaluation framework.

I. INTRODUCTION

Service-Oriented Architecture (SOA) [8] or Service-
Oriented Computing (SOC) [44] is a development
paradigm for implementing distributed and enterprise
class systems, which employ software services as
independent and reusable building blocks that
collectively represent a software application. SOC is
founded on the idea of discovery and composition
whereby an executable business process can discover at
runtime the most suitable services and orchestrate them in
order to satisfy a particular domain or business
requirement [34]. This flexibility can lead to new
economic opportunities as software functionality is
increasingly commoditised as Software as a Service
(SaaS) in the Cloud [32].

Developing SOA-based systems, which are typically
heterogeneous, large, and complex, is a challenging and
time-consuming exercise [9]. Add to this the ever-
increasing emphasis on non-functional requirements, as
well as the need to support newer delivery models (such
as SaaS in the Cloud), and Service-Oriented (SO) system
development is only going to become more difficult [1].
To this end, development methodologies can bring formal
and clearly specified processes that can instruct all or part
of the software engineering life cycle. Specifically,
incorporating a well-defined and mature methodology
into the software development process can result in two
important benefits: i) increase of developer productivity;
and ii) product quality improvements [10]. Also,

development methodologies provide support for building
software systems aligned with specific paradigms and
associated logical and technological constraints, which is
especially important for newer and yet to be thoroughly
understood and documented paradigms such as SOC [46].

A number of methodological approaches have been
proposed and applied when developing SO solutions for
different business domains, e.g. [1, 8-9, 43]. However,
existing approaches are relatively new and typically lack
theoretical foundation and empirical evaluation, making
it difficult to establish the strengths and weaknesses of
the incorporated activities, work products, and other
methodological principles. This is further exacerbated by
a lack of SO-specific methodology evaluation
mechanisms. Specifically, the presently available
evaluation methodology approaches, e.g. [7, 13, 26], are
not sufficient to capture the unique requirements and
constraints of SOC [46]. Also, such approaches suffer
from a number of limitations (e.g. lack of objectivity) as
discussed further in Section 2.2.

Therefore, this paper proposes a novel analytical
framework that supports the objective evaluation and
comparison of software development methodologies
using feature analysis [24, 27] and metrics-based
assessment [14, 51]. Specifically, the proposed
framework prescribes a set of desirable features that
allow qualitative examination of various methodology
characteristics (e.g. maturity and usability), and a set of
quantitative ratio-scale metrics for assessing the internal
properties of a methodology such as the structural
dependencies between its tasks and work products.

To support a more structured and focused evaluation
process, the included features and metrics were organised
in terms of a hierarchical quality model that supports
methodology evaluation from three distinct perspectives,
“structured artefact”, “underlying process”, and
“deliverable product” as discussed further in Section III.
Moreover, the framework was designed to be generic (i.e.
it includes quality characteristics applicable to any
software development methodology), and at the same
time customisable insofar as those characteristics that are
paradigm-specific can be adapted and applied to
methodologies covering different development paradigms
as has been done in this paper for the specific case of
SOC. Additionally, the proposed framework is flexible,
since it can be employed as part of different evaluation
strategies, such as quantitative experiments or qualitative

1642 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1642-1659

case studies and surveys [27], each requiring varying
level of assessment expertise and effort, and producing
different levels of evaluation accuracy. Finally, for this
paper, an exploratory case study (see Section VII) was
employed as a proof of concept to demonstrate the
practicality of the framework by using it to evaluate a
subset of a mature and widely-used SO development
methodology, SOMA [1].

This paper is organised as follows: Section II defines a
generic meta-model of a software development
methodology, and reviews existing evaluation approaches
including the discussion of their strengths and
weaknesses. Section III provides an overview of the
proposed framework, followed by the internal details of
three covered evaluation perspectives, structured artefact,
underlying process, and deliverable product, presented in
Sections IV-VI respectively. The practical application of
the framework, via an exploratory case study, is presented
in Section VII; while Section VIII closes with a summary
conclusions and discussion of future work.

II. BACKGROUND

2.1 A Meta-model of a Development Methodology
A meta-model of a software development methodology

was derived in order to provide a theoretical foundation
and consistent formalism for the definition of
methodology evaluation mechanisms in Sections IV-VI.
This meta-model, shown in Fig. 1, combines core
concepts and definitions extracted from existing mature
methodological approaches (such as the Rational Unified
Process (RUP) [29] and Object-Oriented Process,
Environment and Notation (OPEN) [12]) into one generic
model comprising a collection of process classes that
represent significant elements of a development
methodology, the relationships between them, and the
applicable constraints (e.g. a Task must interact with at
least one Work Product).

The proposed meta-model is documented using UML 2
notation and takes an OO approach (i.e. it uses standard
class relationships, such as association and
generalisation). This is in line with the “Software and

Systems Process Engineering Meta-Model 2.0 (SPEM)”
[41] specification that prescribes a comprehensive
process engineering meta-model, defined as a set of
generic UML 2 stereotypes, for modelling and enacting
software development methodologies and their
components. However, in contrast to SPEM, which
includes more than fifty different process classes and has
a relatively complex hierarchical structure, the meta-
model presented in this section is simple and intuitive
covering only the main process classes necessary to
support the proposed analytical framework.

The process classes themselves are categorised into 4
different types (indicated as UML stereotypes in Fig. 1):

(1) Core classes that represent fundamental
measurable components of any development process.

(2) Structural classes that provide logical structure for
the relevant core classes, thereby supporting more
targeted methodology evaluation insofar as the evaluation
procedure can be applied to the individual structures of
interest (e.g. lifecycle phases).

(3) Abstract classes that serve as conceptual
placeholders for a set of related process classes.

(4) Supporting classes that provide assistance to the
core classes.

Specifically, according to the proposed meta-model, a
software development methodology (M) incorporates a
number of lifecycle phases (LP) that represent major
logical partitions of the development process and provide
a natural organisation and timing to the execution of
development activities (A), and the production of work
product sets (WPS).

The work product sets are composed of collections of
related work product (WP) types that represent anything
of value that is produced, modified, or reviewed during
the execution of the development process. The work
product types can support both input and output
interactions with the development tasks (T) that
symbolise low-level functionally cohesive executable
process operations encapsulated into and time boxed by
the corresponding activities.

The tasks are performed by the producers (P) which
can be either human participants or dedicated software
tools that perform automated manipulation of work

Fig. 1. A meta-model of the software development methodology

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1643

© 2013 ACADEMY PUBLISHER

products. Finally, the tasks are supported by optional
techniques (Te(T)) which can be classified as quantitative
(e.g. software metrics or transformation algorithms) or
qualitative (e.g. set of informal design guidelines).

The detailed definitions of all process classes, together
with associated examples, can be found in Appendix A.

2.2 Existing Methodology Evaluation Approaches
A number of approaches (e.g. [7, 13, 26]) have been

proposed for evaluating and comparing software
development methodologies with the aim of:

(1) Providing an understanding of particular strengths
of a methodology.

(2) Assisting methodology enhancement by
identifying shortcomings.

(3) Supporting an informed and structured
comparison of methodologies.

(4) Allowing extraction of valid process fragments
(i.e. WU and WP) from existing methodologies for the
purpose of assembling a new methodology.

According to the DESMET [27] meta-methodology for
evaluating software engineering methods and tools,
methodology evaluation processes can be broadly
classified into two categories, referred to as internal and
external in this paper, and described further below.

Internal evaluation is applied to the methodology itself
in order to establish its validity or conformance to some
accepted norm (e.g. as captured by a set of required
features or ontological representations, see Sections 2.2.1
and 2.2.2). Such evaluation allows examining process,
(structured) artefact, and (deliverable) product aspects of
methodologies. That is, although a methodology
prescribes a process used to build software products, it
can also be considered as a constructed artefact
structured in terms of a collection of inter-dependent
meta-classes (see Section 2.1), and delivered as a
physical product comprised of documentation, supporting
tools, and training; as explained further in Section III.

External evaluation is performed to establish the
impact, or measurable effects, of methodologies when
applied in practice. Such evaluation aims to quantify the
impact of a given methodology on: i) the quality of the
produced work product instances (i.e. Quality (WP[instance]));
and ii) the process efficiency as reflected by the
productivity of the producers (P) in terms of a number of
produced work product instances per unit of time (i.e.
Efficiency (P-> WP[instance])).

There are three main methodology evaluation
approaches that can be employed as part of internal or
external evaluation processes (or both) – feature analysis,
ontological evaluation, and metrics-based assessment.

2.2.1 Feature Analysis
Feature analysis is a widely referenced informal and

qualitative methodology evaluation approach [24, 27, 53].
Using this technique, the evaluators extract a set of
important features from available methodologies and
combine them into an evaluation checklist, which is then
applied to methodologies either within the same
development paradigm or across paradigms [24]. The
evaluation itself is done by examining the structure and

documentation of selected methodologies, and assigning
an ordinal-scale number or category to a given checklist
feature (or evaluation criterion).

The strength of this strategy is that it is easy and fast to
execute if the set of criteria is well defined [27]. Also, this
approach is flexible insofar as it can be used as part of
internal and external evaluation processes. Moreover, due
to its simplicity, the feature analysis technique is
commonly used to evaluate methodologies defined for
newer and/or not well-understood development
paradigms [53]. For example, the Methodology
Evaluation Framework for Component-Based
Development (CBD) [7], which was proposed at the time
when CBD was still in its inception, used feature analysis
to evaluate whether a given methodology can be deemed
CBD-specific. Also, more recently, [18] proposed a set of
evaluation features, distilled from the research literature,
that cover some of the unique characteristics and design
requirements of Service-Oriented software engineering.

A major limitation of feature analysis is its inherent
subjectivity. Firstly, the evaluation checklists are usually
developed based on the subjective opinions of the
evaluators with limited formal justifications provided for
the inclusion of particular features, making it difficult to
assess their completeness and internal consistency [56].
Secondly, the actual evaluation process (i.e. criteria
application) is commonly conducted in an informal
manner, thereby heavily depending on how the evaluators
subjectively score the methodology features against the
checklist criteria [24].

2.2.2 Ontological Evaluation
Ontological evaluation [15, 17, 26] is based on the idea

of evaluating the constructs (e.g. work products (WP) and
work units (WU)) of existing methodologies by matching
them with pre-defined ontological constructs. More
specifically, the ontological evaluation can be applied at
two different levels of abstractions, representation and
design process, as follows:

(1) Representation level [58] – the expressive power
of a given methodology is evaluated for its completeness
and clarity in respect to a predefined ontology [58].
Completeness in the context of ontological evaluation
refers to the ability of a methodology’s grammar (i.e.
language/s used to specify work units and work products)
to describe all the prescribed ontological constructs.
Clarity refers to the degree to which the methodology’s
grammar can be interpreted unambiguously. For example,
[58] proposed a generic representational model (BWW)
capturing fundamental concepts of any information
system using 29 ontological constructs (e.g. system,
subsystem, properties, event, etc.). They also introduced
the concepts of construct overload, redundancy, excess,
and deficit that allow formal reasoning about the strength
of a mapping between specific methodologies and
relevant ontology. Those concepts were then used to
evaluate the ontological expressiveness of IS analysis and
design grammars. In later work, [17] demonstrated the
process of applying this generic ontological model for the
purpose of determining the ability of the selected
integrated process modelling grammar to provide “good

1644 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

representations of the perceptions” of business analysts.
(2) Design process level [15] – the expressive power

of a given methodology is evaluated for its ability to
represent generic design processes, and other applicable
concepts of the Function-Behaviour-Structure (FBS) [15]
framework that accounts for the situatedness of the
design, viewing it as a dynamic activity driven by
interactions between designers and the work products
being designed. Specifically, FBS subdivides the design
process into five distinct sub-processes: formulation,
synthesis, analysis, evaluation, documentation, and three
reformation types that link functions, behaviours and
structures at expected and actual levels.

The main advantage of ontological evaluation is that it
provides stronger theoretical foundation and formal
evaluation semantics compared to feature analysis [15].
However, ontological evaluation requires a formal
representation of a methodology grammar to be available,
which is not always the case given that a majority of
existing methodologies are documented and managed
using natural language descriptions rather than formal
specifications [41]. To this end, producing a valid formal
grammar for a given methodology can be a difficult and
time consuming task. Additionally, assuming that the
methodology grammar is readily available, the tasks of
classifying grammar fragments into the specific
ontological constructs and evaluating the strengths of
their mapping are still subjective.

Finally, the validity of existing ontology models
themselves is questionable. For example, it was
suggested that BWW ontology [58] is over-engineered
and at the same time not capable of capturing the essence
of specific paradigms and modelling objectives [17]. To
this end, there may be a need to extend and tailor existing
ontological models, which can be a time consuming
exercise especially for the newly emerged paradigms [26],
such as SOC, that lack accepted design principles.

2.2.3 Metrics-based Assessment
Metrics can provide a formal and objective mechanism

for both internal (e.g. [14]) and external (e.g. [21, 52])
methodology assessment.

Internal assessment, in this context, involves analysing
the complexity of software development methodologies
(M) and incorporated work products (WP) and tasks (T)
using a set of dedicated ratio-scale metrics. However, at
present, there is a lack of theoretically valid and
empirically evaluated methodology-specific internal
metrics. To our knowledge, the “Framework for the
modelling and evaluation of software processes” (FMESP)
[14] is the only available approach that provides a basic
suite of validated (using the Distance-based framework
[49]) and empirically evaluated metrics for quantifying
the cognitive1 complexity of a given methodology (M).
Specifically, FMESP treats the structure of a
methodology as a bi-directional graph, where vertices

1 Cognitive complexity can be defined in terms of the level of effort
needed to understand a given methodological component (e.g. task (T))
and apply it in practice [51].

symbolise three fundamental process classes, activities
(A), work products (WP), and producers (P); and edges
correspond to the relationships between these entities

(i.e. P->performsT and T<->interactsWP, see Section 2.1).
To measure this structure, FMESP proposed a suite of

twelve metrics, six of which indicated a statistically
significant correlation with the perceived cognitive
complexity of investigated methodologies: i) NPR
(number of producers involved in the methodology
application); ii) NA (number of activities); iii) NWP
(number of work products); iv) NDWPin (number of input
dependencies of the work products with the activities); v)
NDWPout (number of output dependencies of the work
products with the activities); and vi) NDWP ([total]
number of work product and activity dependencies).

In addition to FMESP, Rossi and Brinkkemper [51]
proposed a suite of ratio-scale metrics for quantifying the
total conceptual complexity of the individual work
product (WP) types modelled in terms of three main
meta-types: i) objects (O) (e.g. service interface); ii)
properties (P) (e.g. interface name and interface
operations); and iii) relationships (R) (e.g. “exposes” and
“uses”). Note that although their metrics were defined in
a systematic and formal manner [51], they were not
theoretically validated or empirically evaluated.

As stated previously, the application of any software

development methodology is said to result in two major
external benefits [10]: i) product quality improvements;
and ii) increase of productivity. In previous work, the
product quality was shown to be affected by its structural
design properties [47-48], and as such, a number of
researchers proposed evaluating methodologies in terms
of their impact on the structural properties of the
produced work products (WP). For example, design
metrics have been previously used to compare the
structure (e.g. complexity) of OO class diagrams that
resulted from applying different OO development
methodologies to the same problem domain [52].
Similarly, software metrics (e.g. from ISO/IEC 9126
standard [19]) can be used to measure the productivity of
producers (P) in order to determine the impact of a
particular methodology on the overall process efficiency.

The main advantage of both internal and external

metrics-based assessment is that it supports formal,
objective, and automated methodology evaluation.
However, the number of currently available internal
metrics is limited, and the derivation and validation of
new metrics can be a significant and complex research
undertaking. Also, external metric values can only be
calculated by observing the (real-life) behaviour of
producers (P) applying the methodology in practice,
and/or evaluating the quality of the produced (complete)
work products. This type of evaluation is also more
resource intensive compared to the feature analysis and
ontological techniques [27].

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1645

© 2013 ACADEMY PUBLISHER

2.2.4 Summary and Limitations
The examined evaluation approaches, feature analysis,

ontological evaluation, and metrics based assessment, are
summarised in Table 1. Specifically, this table: i) shows
which specific approaches are covered by the framework
proposed in Sections IV-VI; ii) illustrates overall
applicability of a given approach to different internal and
external evaluation targets, and iii) indicates the
associated degrees of evaluation effort, and the
objectivity and formality of the evaluation procedures
and ensuing outcomes. For example, metrics based
assessment can be deemed as both formal and objective
given that the evaluation procedure is supported by the
means of automated and formally defined ratio-scale
measures. However, such assessment requires a high
degree of effort to derive and validate new internal
metrics, or obtain data necessary to calculate the values
of external metrics. In contrast, although feature analysis
can be employed with minimal effort as part of the initial
evaluation process, this approach is inherently informal
and subjective. Finally, ontological evaluation can
potentially replace or enhance feature analysis with more
formal and targeted evaluation semantics. However, the
process of producing methodology grammars; and then
classifying grammar fragments into ontological
constructs is subjective and resource-consuming.

The evaluation framework proposed in this paper
follows the feature analysis and metrics-based
assessment approaches, which can cover a broad
spectrum of internal and external evaluation targets as
shown in Table 1. Moreover, these approaches can be
considered complementary insofar as the evaluation of a
methodology can be performed: i) informally with
minimal required resources, using the feature analysis
approach; and ii) in a formal and structured, but more
resource-intensive manner as warranted by the
application of metrics. Note however that in future work
the framework could be augmented with ontological
constructs so as to provide a more formal foundation for
the evaluation process.

III. METHODOLOGY EVALUATION FRAMEWORK
- OVERVIEW

The proposed framework incorporates a set of
unambiguous qualitative features defined on a five point
ordinal Likert scale, and a collection of quantifiable
ratio-scale metrics. These features and metrics were
identified based on a comprehensive and critical analysis
of the related literature (see Section II), and then
expanded with a set of characteristics extracted from
existing SO methodological approaches (e.g. [1-2, 8-9,
43]).

To provide a formal foundation for the framework
derivation and inclusion of specific features and metrics,
and to support a more focused evaluation process, the
decision was made to structure the framework according
to existing software measurement [11] and quality [3, 19]
models 2 that treat the concept of quality using a
hierarchical structure where quality is divided into a
number of quality characteristics which are then further
decomposed into measurable sub-characteristics. Such
hierarchical structure can support a more focused
evaluation process, insofar as the evaluators can
concentrate on the specific evaluation aspects based on
the available resources and overall evaluation goals and
requirements. This is also in line with the DESMET [27]
meta-methodology that suggests that the evaluation
mechanisms can be complex concepts in themselves, and
thus should be decomposed into conceptually simpler
items structured in a hierarchical manner. Moreover, it
has been previously suggested that hierarchical models
are easier to analyse and maintain [25].

To this end, the framework is structured in terms of a
hierarchical quality model, shown in Fig. 2, comprising
three quality perspectives (structured artefact, underlying
process, and deliverable product) that encapsulate seven
high-level quality characteristics (C1-C7) subdivided
into twenty-two sub-characteristics (SC1.1-SC7.4) that
can be directly assessed using ordinal features or ratio-

2 Evaluating a methodology using the feature analysis and metric-based
approaches is similar to assessing its quality. This is because in the area
of empirical software engineering any evaluation process is said to
involve measurements of entities and their quality characteristics [11].

TABLE 1.
EXISTING METHODOLOGY EVALUATION APPROACHES - SUMMARY

Evaluation
Approach

Evaluation Target
Evaluation

Process Internal
<Artefact>

Internal
<Process>

Internal
<Product>

External
<Product Quality>

External
<Process Efficiency>

Metrics <C> * + (e.g. [14]) <C> * <C> * <C> + (e.g. [6, 20]) <C> + (e.g. [21])
• High effort
• Formal
• Objective

Feature Anal-
ysis

= <C> * + (e.g. [27]) <C> * + (e.g. [27]) = =
• Low effort
• Informal
• Subjective

Ontological Not Applicable + (e.g. [15], [30]) + (e.g. [17], [58]) Not Applicable Not Applicable
• High effort
• Formal
• Subjective

<C> Covered by the proposed framework; * Introduced in this paper; + Previously available ; = Can be defined in future work;

1646 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

scale metrics:
- The “structured artefact” perspective treats a

methodology as a constructed entity (or artefact)
structured in terms of a collection of process classes and
their relationships as covered by the meta-model of a
software development methodology proposed in Section
2.1. Specifically, this perspective aims to evaluate the
comprehensibility (Characteristic C1) of any generic
software development methodology (M) and incorporated
tasks (T) and work products (WP) by quantifying their
cognitive complexity.

- The “underlying process” perspective, on the other
hand, covers various characteristics of the prescribed
development process and associated methodological
guidance, and is designed to be tailored and adapted for
a particular development paradigm as has been done in
this paper for the specific case of SOC. For example, the
“Completeness” characteristic (C2) incorporates the
“Lifecycle” sub-characteristic (SC2.1), which evaluates
methodologies with respect to their coverage of the core
development lifecycle phases of SOC - Service
Identification, Service Specification, and Service
Realisation [1] (see Appendix B).

- The “deliverable product” perspective treats a
methodology as a physical (deliverable) product available
in the form of three main components - documentation,
supporting software tools, and training. The usability and
availability of those components, as well as the maturity

of the methodology as a whole, are evaluated by the
proposed framework (Characteristics C5-C7).

Finally, the proposed evaluation mechanisms (features
and metrics), grouped into specific quality sub-
characteristics, can be applied at two different levels of
granularity: i) individual task (T) and/or work product
(WP); and ii) methodology (M) as a whole. The low-level
(i.e. T and WP) mechanisms are intended to support
targeted methodology assessment by identifying specific
strengths and shortcomings of provided methodological
components (e.g. T and WP). In contrast, the high-level
(i.e. methodology) mechanisms include aggregated
values for the low-level features/metrics, as well as
broader evaluation mechanisms that cover generic aspects
of methodologies (e.g. maturity, as reflected by sub-
characteristics SC5.1-5.3), and are designed to be a useful
tool for comparing different methodologies in an
objective and comprehensive manner.

IV. METHODOLOGY EVALUATION FRAMEWORK –
“STRUCTURED ARTEFACT” PERSPECTIVE

This section covers the structured artefact quality
perspective and its sole characteristic (Characteristic C1.
Comprehensibility), and associated sub-characteristics
(denoted by the SC1.n marker) and metrics (denoted by
SC1.n-Mn). The proposed sub-characteristics are described
individually below in terms of the rationale behind their

QUALITY

CHARACTERISTIC

LEGEND:
Involves external evaluation

SUB-CHARACTERISTIC
[FEATURE-BASED]

SUB-CHARACTERISTIC
[METRIC-BASED]

Fig. 2. SO methodology evaluation framework – Quality Model: perspectives, characteristics, and sub-characteristics

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1647

© 2013 ACADEMY PUBLISHER

inclusion in the framework, and measurement specifics
covering the scale, granularity (WP, T, or M), and
definitions of the provided metrics. Note that both scale
and granularity will be the same for all the metrics
included in a given sub-characteristic. Also, all included
metrics are of the internal type (refer to Section 2.2).

4.1 Characteristic C1. Comprehensibility
In this framework, comprehensibility is defined as the

cognitive effort of users to understand the internals of the
individual methodological components (i.e. WP and T)
and analyse the overall structure of the prescribed process
(e.g. in terms of the inter-dependencies between all T and
WP). Specifically, the proposed framework evaluates the
comprehensibility by quantifying the cognitive (or
conceptual) complexity at three different levels of
granularity: work product (WP), task (T), and
methodology (M) as a whole (Sub-characteristics SC1.1-
SC1.3 respectively).

 Sub-characteristic SC1.1. Cognitive Complexity -
Work Product

According to Rossi and Brinkkemper [51], the total
conceptual complexity of an individual work product
type3 (WP) is reflected by the number of, and relationship
between, its encapsulated objects, properties, and
relationships (see Section 2.2.3). To this end, the relevant
metrics defined in [51], see below, were integrated in the
proposed evaluation framework as follows.

Measurement Specifics: ratio-scale metrics (WP
granularity)

SC1.1:M1. n(O): number of object types per WP type
SC1.1:M2. n(P): number of property types per WP type
SC1.1:M3. n(R): number of relationship types per WP type
SC1.1:M4. Po: mean number of properties per object type
SC1.1:M5. Pr: mean number of properties per relationship
SC1.1:M6. C’: total conceptual complexity of WP type

(derivative of SC1.1:M1-M3, see [51]).

 Sub-characteristic SC1.2. Cognitive Complexity -
Task

The cognitive complexity of individual tasks (T) can
be reflected by the number and complexity of the
associated input/output work products (WP) and
techniques (Te(T)). Specifically, this paper proposes four
dedicated metrics (see below) for the purpose of task
complexity quantification.

Measurement Specifics: ratio-scale metrics (T
granularity)

SC1.2:M1. BTI: basic task interaction,
BTI = NWPin(T) + NWPout(T),

where NWPin and NWPout are the numbers of input and output
work products manipulated (i.e. interacted with, as per meta-
model from Section 2.1) by a task T. Although BTI can be

3 Evaluating the complexity of a given work product type involves the
(internal) assessment of its underlying meta-model (see Section 7.1).
This is in contrast to the (external) complexity assessment of the work
product instances resulted from applying a methodology in practice.

easily calculated during the initial evaluation (or pre-screening)
of a methodology, it represents a coarse estimation of the task
complexity. In contrast, the following metric (WTI) requires
greater measurement effort, but is more precise insofar as it
considers the conceptual complexity of the involved WP types.

SC1.2:M2. WTI: weighted task interaction,
WTI = ∑C’(wpin) + ∑(C’(wpout)*F1),

 wpin∈WPin(T) wpout∈WPout(T)
where C’(wp) is the cognitive complexity of an input/output

work product wp (see metric SC1.1:M7) multiplied by the
(optional) task uniqueness factor [F1]. This factor is needed
because the sets of input (WPin) and output (WPout) work
product types manipulated by a given task can intersect (i.e.
some, or even all, work product types can have both input and
output roles within the context and scope of a given task). This
can potentially reduce the cognitive effort needed to analyse
intersecting sets of input and output work product types
(compared to analyzing disjoint sets) given that the producer (P)
will be analysing the structure and other relevant characteristics
of intersecting work product types only once. In such cases, the
cognitive complexity of any output work product type WPout that
has a corresponding (i.e. same) input work product type WPin
should be artificially decreased by a task uniqueness factor (F1)
so as to provide more accurate assessment of task complexity.
This is further illustrated in the example provided in Section 7.1.
Note that at this stage the actual value of the uniqueness factor
is set to the arbitrary value of 0.5 (i.e. F1 = 0.5). However, this
value is provisional and should be evaluated empirically in
future work.

SC1.2:M3. N(Te(T)): number of supporting techniques for a
task

SC1.2:M4. WN(Te(T)): weighted number of supporting
techniques for a task,

WN(Te(T)) = N(Teqn(T)) + (N(Teql(T))*F2),
where N(Teqn(T)) is the number of associated quantitative

task techniques; and N(Teql(T)) is the number of associated
qualitative task techniques multiplied by the technique
weighting factor [F2] so as to differentiate between the
quantitative and qualitative nature of the provided techniques.
This is because quantitative techniques are beneficial to the
overall development process since they allow the producers (P)
to perform tasks (T) and evaluate the instances of manipulated
work products (WP) in an objective and uniform manner.
Furthermore, quantitative techniques provide opportunities for
process automation where the applicable work products can be
auto-generated by supporting tools. In contrast, qualitative
techniques can have a negative effect on the cognitive
complexity of tasks, and can also result in a production of
internally inconsistent work products given that the application
of the tasks will be less predictable (i.e. it requires discretional
judgment) [10]. To this end, qualitative techniques should be
weighted higher than quantitative ones so to provide more
accurate measure of task complexity, with the weight factor is
presently set to the arbitrary value of 2 (i.e. F2 = 2). Similarly
to factor F1, in SC1.2:M2, this value is provisional and should
be evaluated in future work.

 Sub-characteristic SC1.3. Cognitive Complexity -
Methodology

The complexity of a methodology is evaluated via
three complementary measurement approaches:

- Using validated and empirically evaluated metrics
proposed in FMESP [14] (see Section 2.2.3), which are
designed to quantify the structural properties of software
development methodologies based on the total number of

1648 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

producers (P), work product types (WP), and tasks (T), as
well as the inter-dependency between all T and WP [14].
Metrics SC1.3:M1-M6 below are taken from FMESP.

- Deriving the combined and mean cognitive
complexity of all incorporated work products types and
tasks as quantified by [51] (see Sub-characteristic SC1.1)
and the newly proposed metrics (Sub-characteristic
SC1.2) respectively. See metrics SC1.3:M7-M10 below.

- Quantifying the usage of of included quantitative
(Teqn) and qualitative (Teql) techniques using a set of
newly-proposed metrics SC1.3:M11-M14 below.

Measurement Specifics: ratio-scale metrics (M
granularity)

SC1.3:M1. NP: number of producers [14]

SC1.3:M2. NWP: number of work product types [14]

SC1.3:M3. NT: number of tasks (adapted4 from [14])

SC1.3:M4. NDWPTin: number of input dependencies of all
WP with all T (adapted from [14])

SC1.3:M5. NDWPTout: number of output dependencies of
all WP with all T (adapted from [14])

SC1.3:M6. NDWPT: number of dependencies between all
WP and all T (adapted from [14])

NDWPT = NDWPTin + NDWPTout

SC1.3:M7. C’ (M): total WP complexity of a methodology
[51],

C’(M) = ∑ C’(wp),
 wp∈WP

 where C’(wp) is the conceptual complexity of a given work
product type wp (see metric SC1.1:M8).
SC1.3:M8. MWPC: mean WP complexity of a methodology,

MWPC = C’(M)/NWP, (see metrics SC1.3:M7 and
SC1.3:M2).

SC1.3:M9. TTI: total T interaction of a methodology,
TTI = ∑ WTI(t),

 t∈T
where WTI(t) is the weighted task (t) interaction (see metric
SC1.2:M2).
SC1.3:M10. MTI: mean T interaction of a methodology,

MTI = TTI/NT, (see metrics SC1.3:M9 and SC1:3:M3).

SC1.3:M11. NTe: total number of (quantitative and
qualitative) techniques

SC1.3:M12. WNTe: weighted number of techniques
WNTe = ∑ WN(Te(t)),

 t∈T

where WN(Te(t)) is the weighted number of task (t)
techniques (see metric SC1.2:M4).
SC1.3:M13. TTR: technique to task ratio,

TTR = NTe/NT, (see metrics SC1.3:M11 and SC1.3:M3).

SC1.3:M14. TQD: technique quantification degree,
TQD = NTeqn / NTe,

where N(Teqn) is the total number of quantitative techniques.
Possible Values: [0 (total lack of quantitative techniques) to 1

4 FMESP utilised activities (A) as a target work unit type; however,
using finer-grained tasks (T) could result in more precise measurement
outcomes, and as such, the original metrics were updated accordingly.

(full technique quantification)]. Note that the ratio of qualitative
techniques will be inversely proportional to TQD.

V.METHODOLOGY EVALUATION FRAMEWORK -
“UNDERLYING PROCESS” PERSPECTIVE

This section covers the process-related aspects of a
software development methodology. As was the case with
Section IV, the logically related sub-characteristics (again
denoted by the SCn marker in the following sub-sections)
are grouped together and presented in terms of three high-
level quality characteristics (denoted by Cn),
Completeness (C2), Efficiency (C3), and Effectiveness
(C4). The Completeness characteristic is designed to be
tailored and customised for a particular development
paradigm as has been done in this section for a specific
case of SOC. Also, the Efficiency and Effectiveness
characteristics are evaluated using external metrics.

5.1 Characteristic C2. Completeness
In this framework, completeness of a methodology is

defined as the extent to which its underlying process is
capable of providing paradigm-specific support for: i) the
core development lifecycle phases (sub-characteristic
SC2.1); ii) paradigm-specific modelling (SC2.2).; iii)
relevant support technologies (or solution architectures)
and standards (SC2.3); iv) verification and validation
mechanisms (SC2.4); and v) project management
activities (SC2.5). Note that the purpose of this
characteristic is to outline an explicit approach to process
evaluation and show examples of relevant features, rather
than provide an exhaustive set of all possible features.
Moreover, for brevity, only the features pertinent to Sub-
Characteristics SC2.1 and SC2.2 are shown in this section,
with the remaining features (covering Sub-Characteristics
SC2.2-2.4) provided in Appendix C.

 Sub-characteristic SC2.1. Lifecycle

According to the ISO/IEC 12207:2008 Systems and
Software Engineering - Software life cycle processes
standard [23], a core software development process can
be subdivided into a number of lifecycle phases,
including Software Requirements Analysis (SRA),
Software Architectural Design (SAD), and Software
Detailed Design (SDD). To this end, this sub-
characteristic is designed to evaluate development
methodologies with respect to their paradigm-specific
support of the SRA, SAD and SDD phases. In the case of
SOC, the following mapping can be established and
applied to guide the evaluation of the lifecycle support (in
terms of the included tasks (T)) in the context of SOC:
(1) SRA <-> Service Identification (SI) [1] (or SO Discovery [8]);
(2) SAD <-> Service Specification (SS) [1] (or SO Analysis [8]);
(3) SDD <-> Service Realisation (SR) [1] (or SO Design [8]).
NOTE: The ISO/IEC 12207:2008 standard also includes a
Software Coding and Testing phase (SCT) as one of the core
development phases. This phase and associated activities (e.g.
coding, and preparing and executing test cases) are not covered
in the proposed framework. Firstly, the coding activities are
highly dependent on the specific technology in use, and as such,
the existing SO methodologies do not cover them in detail.
Secondly, the ISO/IEC 12207:2008 standard recommends

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1649

© 2013 ACADEMY PUBLISHER

independent verification and validation processes; therefore,
methodological support for testing activities should be provided
independently from the core development methodology.

Measurement Specifics: ordinal-scale feature [1(no
support) – 5 (full support)] (T granularity)

SC2.1:F1. Provides support for a core lifecycle task (Tx)
NOTE: This feature should be applied (individually) to each

and every core development task (Tx) included in the Service
Identification (SI), Service Specification (SS), and Service
Realisation (SR) phases (see Appendix B for an example list of
common tasks extracted from existing literature).

 Sub-characteristic SC2.2. Paradigm-Specific
Modelling

One of the main objectives of any software
methodology is to provide comprehensive support for the
fundamental design principles of a given development
paradigm.

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (M granularity)

SC2.2:F1. Provides explicit coverage of different types of SO
systems (e.g. SOS, PARSOS, PURSOS [46])

SC2.2:F2. Provides explicit coverage of different types of SO
relationships (e.g. intra-service, indirect extra-service, and
direct extra-service [46])

Provides explicit coverage of different types of services
according to their:

SC2.2:F3. Purpose (e.g. process, task, entity, utility)
SC2.2:F4. Compositional aspect (e.g. composite and atomic)
SC2.2:F5. Functional scope/granularity (e.g. fine- and

coarse- grained)

SC2.2:F6. Enforces the service metamorphosis (or a
“metamorphosis embodiment”) [2] in which service concept
is consistently propagated throughout development phases
and activities, and transformed from: conceptual service ->
analysis service -> design service -> solution service

SC2.2:F7. Promotes loose-coupling between services (e.g.
provides explicit quantitative or/and qualitative techniques
(Te) for avoiding direct-extra service relationships [48]

SC2.2:F8. Incorporates techniques for evaluating and
managing service granularity [2]

Provides methodological support for the core tasks needed to
define, publish, and maintain service contracts, including:

SC2.3:F9. Definition of service contracts using formats
prescribed by the registry in use (i.e. project and
infrastructure dependent)

SC2.3:F10. Publication and maintenance of service
contracts in external registries (e.g. UDDI) [59]

SC2.3:F11. Publication and maintenance of service
contracts in internal registries (e.g. WSO2 Governance
Registry http://wso2.com/products/governance-registry/)

Provides methodological support for the major service
discovery and integration tasks, including:

SC2.2:F12. [At the provider level] Documenting service
interfaces using semantic languages (e.g. SWSL [8])

SC2.2:F13. [At the consumer level] Static evaluation,
selection, and integration of external SaaS offerings [2]

SC2.2:F14. [At the consumer level] Dynamic discovery,
selection, and integration of external SaaS offerings [45]

 Sub-characteristic SC2.3. Support Technologies
and Standards

Supporting contemporary paradigm-specific
technologies and standards can potentially increase the
practical applicability of a software development
methodology [10]. In the case of SOC, such technologies
and standards can include, but are not limited to, ESB
architecture [5], internal and external service registries
[59], and various ws* standards [8]. Refer to Appendix C
for the list of corresponding features.

 Sub-characteristic SC2.4. Verification and
Validation

Evaluating architectural correctness (or verifiability) of
the system using formal verification analysis techniques5
can minimise future reliability issues [10]. Also,
according to the ISO/IEC 12207:2008 Systems and
Software Engineering - Software life cycle processes
standard [23], a development process should encourage
architectural consistency (or validity) via the means of
requirements traceability and design consistency [12].

- Refer to Appendix C for the list of corresponding
features.

 Sub-characteristic SC2.5. Project Management

Providing paradigm-specific support for quality
management, and effort and cost estimation activities can
encourage the production of quality software products in
line with the available resources and timelines [35]. Also,
formal project planning tasks can support an incremental
and iterative development process, which is
recommended by the existing software engineering
standards and methodologies [10, 12, 23, 29], and is of
particular significance to SOA-based projects due to its
support for: i) continuous integration and
verification/validation of the evolving services ecosystem;
ii) early delivery of capability subsets (i.e. collection of
services); and iii) early detection and mitigation of
defects. Refer to Appendix C for the list of corresponding
features.

 Sub-characteristic SC2.6. Total Completeness

This sub-characteristic quantifies overall process
completeness of a methodology according to sub-
characteristics SC2.1-SC2.5.

Measurement Specifics: ratio scale metrics (M
granularity)

SC2.6:M1. LSC: lifecycle coverage,
LSC = NST / NIT,

where NST and NIT are the numbers of supported and
included (i.e. as per Appendix B) lifecycle tasks (T) respectively.
An expected task is deemed to be supported according to the
values assigned to the corresponding feature SC2.1:F1, see Note

5 The verification analysis is done by providing a formal proof on an

abstract mathematical model, the correspondence between the model
and the nature of the system being otherwise known by construction [4].

1650 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

below. Possible Values: [0 (total lack of lifecycle coverage) to 1
(totally covered)].

NOTE: The decision was made to quantify the lifecycle
coverage, as well as the other coverage related metrics shown in
this and the next sections, by calculating the percentage of the
“agree” (the value 4) and “strongly agree” (the value 5) feature
responses, instead of calculating the arithmetic mean of all the
responses. This was done in order to satisfy one of the key
principles of measurement theory and scale types [57] in which
ordinal scale data (e.g. Likert item used in SC2.1:F1) can only be
tested for equality and order (via formal relations ‘=’, ‘≠’, ‘<’,
and ‘>’), but should not be used to produce mean values across
the available data range.

SC2.6:M2. PSC: paradigm-specific support coverage,
PSC = NSF / NIF,

where NSF is the number of supported features as reflected
by the evaluation scores of 4 (“agree”) or 5 (“strongly agree”);
and NIF is the total number of features included in sub-
characteristic SC2.2 (e.g., currently, NIF=14).

SC2.6:M3. STC: support technologies coverage,
STC = NSF / NIF,

where NSF and NIF are the numbers of supported and
included features of sub-characteristic SC2.3.

SC2.6:M4. VVC: verification and validation coverage,
VVC = NSF / NIF,

where NSF and NIF are the numbers of supported and
included features of sub-characteristic SC2.4.

SC2.6:M5. PMC: project management coverage,
PMC = NSF / NIF,

where NSF and NIF are the numbers of supported and
included features of sub-characteristic SC2.5.

5.2 Characteristic C3. Efficiency
In this framework, efficiency of a methodology is

defined as the extent to which the productivity of the
producers (P) is increased. Improving the process
efficiency is considered to be one of the core objectives
of any software development methodology [23].

 Sub-characteristic SC3.1. Developer productivity

Measurement Specifics: external ratio-scale metric (T
granularity)

SC3.1:M1. PE: producer efficiency,
PE= ∑ (Time (t) / WPiout(t)),

 t∈T(sp)
where Time (t) is a total time in minutes spent on performing

each task t needed to produce a complete software product sp;
and WPiout (t) is a total number of individual work product
instances produced by t. The lower value of PE indicates higher
efficiency. Note that it is important to ensure that the PE is
measured for comparably sized (i.e. in terms of functional and
non-functional requirements) systems when analysing and
comparing values obtained for different methodologies. Also,
the quality and complexity of the produced work products
should be taken into consideration.

5.3 Characteristic C4. Effectiveness
In this framework, effectiveness of a methodology is

defined as the extent to which its underlying process
supports the production of quality software products that
meet user requirements and other pre-defined functional
and non-functional constraints. Similar to process
efficiency, improving the development effectiveness is
considered to be one of the core objectives of any

software development methodology [23].

 Sub-characteristic SC4.1. Work Product Quality

The (external) quality characteristics (i.e. non-
functional properties) of a software product (e.g.
reliability and maintainability) are shown to be affected
by its structural properties (e.g. size, coupling, and
cohesion) [16], and as such, it is beneficial to assess the
quality of work product instances at both external and
internal (i.e. structural) levels.

Measurement Specifics: external ratio-scale metrics
(WP granularity)

SC4.1:M1. EQ: external quality of a produced product,
EQ = ∑ (ExQualityFactor(wp)),

 wp∈WPiout
where ExQualityFactor(wp) is a measurement of a given

quality characteristic of a produced work product instance
wp∈WPiout as measured by existing ISO/IEC:9126 metrics. The
evaluator should select target quality characteristic (e.g.
efficiency, portability, and reliability) based on the evaluation
goals and requirements.

SC4.1:M2. IQ: internal (structural) quality of a produced
product,

IQ = ∑ (InQualityFactor(wp)),
 wp∈WPiout
where InQualityFactor(wp) is a measurement of a

given structural property of a produced work product
instance wp∈WPiout as measured by existing SOC-
specific software metrics (e.g. [47-48]). Note that the
evaluator should select target structural properties (e.g.
coupling, cohesion, complexity, and size) based on the
evaluation goals and requirements.

VI. METHODOLOGY EVALUATION FRAMEWORK –
“DELIVERABLE PRODUCT” PERSPECTIVE

This section presents quality characteristics, sub-
characteristics, and associated features and metrics
designed to evaluate inherent product characteristics of a
methodology, such as its maturity (Characteristic C5),
usability (C6), and availability (C7). Note that all
proposed product-related features/metrics are of the
internal type.

6.1 Characteristic C5. Maturity
In this framework, maturity of a methodology is

defined as the extent to which its underlying model has
been fully developed (or matured) insofar as its
underlying model (i.e. tasks (T) and work product types
(WP)): i) is standardised (Sub-characteristic SC5.1); ii) is
stable (i.e. does not change frequently) (SC5.2); and iii) is
indicated to be mature by the miscellaneous maturity
metrics (SC5.3). The maturity is an important
characteristic of any methodology given that frequent
changes to the methodology’s underlying model can
attract high costs associated with producer re-training
and tool updates [10].

 Sub-characteristic SC5.1. Standardisation

While not immediately mature, standardised tasks (T)

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1651

© 2013 ACADEMY PUBLISHER

and work products (WP) can potentially reflect the
maturity of a methodology, and can also result in general
quality improvements [33].

Measurement Specifics: ratio-scale metric (M
granularity)

SC5.1:M1. SD: standardisation degree,
SD = (NST/NT + NSWP/NWP) / 2,

where NST and NSWP are the numbers of standardised (e.g.
by relevant standardisation bodies such as the IEEE, ISO/IEC,
OASIS, and OMG) tasks Tst ⊆ T and work product types WPst ⊆
WP respectively; and NT and NWP are defined as part of Sub-
characteristic SC1.3. Possible Values: [0 (total lack of
standardisation) to 1 (total standardisation)].

 Sub-characteristic SC5.2. Stability

Stability evaluates the degree of change in between
methodology releases where a stable methodology is said
to exhibit a low degree and frequency of release change.

Measurement Specifics: ratio-scale metrics (M
granularity)

SC5.2:M1. LRCD: latest release change degree,
LRCD = (NCT/NT + NCWP/NWP) / 2,

where NCT and NCWP are the numbers of changed tasks Tch
⊆ T and work product types WPch ⊆ WP respectively; and NT
and NWP are defined as part of Sub-characteristic SC1.3.
Possible Values: [0 (total lack of change in a given release) to 1
(total change (i.e. a complete replacement))].

SC5.2:M2. MCD: mean change degree,
 NRV

MCD = ∑ LRCDi /NRV,
 i=1
where RCD is defined in SC5.2:M1; and NRV is the total

number of all released versions of the methodology (see
SC5.3:M2). Possible Values: [0 (total lack of change in between
releases i.e. high stability) to 1 (total change in between each
release i.e. low stability)].

 Sub-characteristic SC5.3. Miscellaneous Maturity

This sub-characteristic covers miscellaneous properties
of maturity not captured by the previous sub-
characteristics.

Measurement Specifics: ratio-scale metrics (M
granularity)

SC5.3:M1. NYSR: number of years since the first public
release of the methodology

SC5.3:M2. NRV: number of released versions of the
methodology

6.2 Characteristic C6. Usability
In this framework, usability is defined as the extent to

which the methodology can be learned and applied by the
users. Specifically, the proposed framework aims to
quantify the usability, from perspective of producers, of
three main (physical) deliverables of any software
development methodology - documentation, supporting
software tools, and training (Sub-characteristics SC6.1-
SC6.3 respectively).

 Sub-characteristic SC6.1. Documentation

An appropriate (e.g. consistent, comprehensive, and

comprehensible) documentation can promote systematic
application of a methodology by a broad spectrum of
potential producers (P) [28]. The documentation itself can
be classified into formal and informal types. Formal
documentation includes formal grammars, transformation
algorithms, process algebra definitions, graphical
notation, etc. Informal documentation can take a form of
natural language descriptions, illustrations (e.g. screen
captures, diagrams, figures/tables), and practical
examples or case studies.

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (T and WP
granularity)

- Provides appropriate documentation for a task (T)/work
product type (WP)

SC6.1:F1. The documentation is consistent
SC6.1:F2. The documentation is comprehensive
SC6.1:F3. The documentation is comprehensible
SC6.1:F4. The documentation is technology-neutral
SC6.1:F5. The documentation is appropriately illustrated
SC6.1:F6. The documentation provides realistic examples
SC6.1:F7. Formal documentation affords6 its purpose
NOTE: The above features should be applied individually to

each and every T and WP included in the methodology, and can
be readily decomposed and redefined for specific formal and
informal documentation types on an as needed basis (e.g.
SC6.1:F1 can be redefined as <Graphical notation is
consistent> etc.).

 Sub-characteristic SC6.2. Tool Support

Integrated tool support (e.g. IDEs, CASE and project
management and quality assurance tools) can increase
productivity of the producers (P) (e.g. by supporting
automated WP transformations and updates) and
encourage task (T) and work product (WP) consistency.
To this end, tool support is considered to be an integral
part of any software development methodology [27].

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (T granularity)

- Provides appropriate software tool support for a task (T)
SC6.2:F1. The tool support is consistent
SC6.2:F2. The tool support is comprehensive
SC6.2:F3. The tool support is comprehensible
SC6.2:F4. The tool support includes realistic examples
SC6.2:F5. Tool support affords6 its purpose
SC6.2:F6. Tool support is usable according to chosen

usability assessment techniques. Note: the choice of a
particular technique should be dependent on the evaluator’s
current expertise, existing organisational practices, and
available evaluation resources. As an example, the following
[37] usability heuristics can be applied:

- User retention
- User control and freedom
- Consistency and standards
- Error prevention

6 A (perceived) affordance is the design aspect of an object that

suggests how it might be used i.e. a visual representation of a “properly”
designed object should provide an immediate clue to its function [38].

1652 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

- Recognition rather than recall
- Flexibility and efficiency of use
- Aesthetic and minimalist design
- Help users diagnose, and recover from errors
- Help and documentation

 Sub-characteristic SC6.3. Training

Dedicated training can improve the methodology’s
learning process, thereby increasing its usability [55].

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (T granularity)

SC6.3:F1. On-site training is provided, by the methodology
provider or relevant third parties, for a task (T)

SC6.3:F2 Public workshops are conducted for a task (T)
SC6.3:F3. Self-guided training is available for a task (T)
SC6.3:F4. Formal certification is provided for a task (T)
NOTE: The above features should be applied individually to

each and every T included in the methodology, and can be
refined to evaluate three important aspects of the above training
modes - consistency, comprehensiveness, and comprehensibility
(as was the case with Sub-characteristics SC6.1 and SC6.2).

 Sub-characteristic SC6.4. Total Usability

This sub-characteristic reflects overall (i.e.
documentation, tool support, and training) usability
coverage of a methodology according to Sub-
characteristics SC6.1-SC6.3.

Measurement Specifics: ratio scale metrics (M
granularity)

SC6.4:M1. DUC: documentation usability coverage
DUC = (Count(NDT)/NT + Count(NDWP)/NWP) / NSF / 2,

where NT and NWP are defined as part of Sub-characteristic
SC1.3; NSF is the total number of evaluation features of SC6.1
(currently NSF=7); and Count (NDT) and Count (NDWP) are
the counts of all positive responses indicating appropriate
documentation, for a given T or WP respectively, as reflected by
the values 4 or 5 assigned to the corresponding (sub) features
SC6.1:F1-F7. Possible Values: [0 (total lack of documentation) to
1 (totally documented)].

SC6.4:M2. TSUC: tool support usability coverage
TSUC = Count (NST) / NT / NSF,

where NT is defined as part of Sub-characteristic SC1.3; NSF
is the total number of evaluation features of SC6.2 (currently
NSF=6); and Count (NST) is the count of all positive responses
indicating appropriate tool support as reflected by the values 4
or 5 assigned to features SC6.2:F1-F6. Possible Values: [0 (total
lack of appropriate tool support) to 1 (totally supported) by
appropriate tools].

SC6.4:M3. TUC: training usability coverage
TUC = Count (NTT) / NT / NSF,

where NT is defined as part of Sub-characteristic SC1.3; NSF
is the total number of evaluation features of SC6.3 (currently
NSF=4); and Count (NTT) is the count of all positive responses
indicating appropriate training as reflected by the values 4 or 5
assigned to features SC6.3:F1-F4. Possible Values: [0 (total lack
of appropriate training) to 1 (totally supported by training)].

6.3 Characteristic C7. Availability
In this framework, availability is defined as the extent

to which the methodology can be openly and/or freely
accessed. Similarly to the usability characteristic, the
availability of a methodology is quantified based on the

availability of its documentation, tool support, and
training (Sub-characteristics SC7.1-SC7.3 respectively).
Assuming all other quality characteristics (i.e.
Characteristics C1-C6) equal, higher availability is
desirable [36].

 Sub-characteristic SC7.1. Documentation

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (M granularity)

SC7.1-F1: The methodology’s documentation is available in
the open or public domain7 (e.g. creativecommons.org)

SC7.1-F2: The documentation upgrades are provided free of
charge

 Sub-characteristic SC7.2. Tool Support

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (M granularity)

SC7.2-F1: The methodology’s tool support is available in
the public domain (e.g. under GNU initiative)

SC7.2-F2: The tool support upgrades are provided free of
charge

 Sub-characteristic SC7.3. Training

Measurement Specifics: ordinal-scale features
[1(strongly disagree) – 5(strongly agree)] (M granularity)

SC7.3-F1: On-site training is provided free of charge
SC7.3-F2: Public workshops are offered free of charge
SC7.3-F3: Self-guided training resources are available in the

public domain (e.g. creativecommons.org)
SC7.3-F4: Formal certification is provided free of charge

 Sub-characteristic SC7.4. Total Availability

This sub-characteristic reflects overall (i.e.
documentation, tool support, and training) availability
coverage of a methodology according to Sub-
characteristics SC7.1-SC7.3. Note that for brevity the
actual metric calculation formulas and details have been
omitted since they follow the same pattern as the
previous coverage metrics (e.g. SC6.4:M1-M3).

Measurement Specifics: ratio scale metrics (M
granularity)

SC7.4-M1: DAC: documentation availability coverage
SC7.4-M2: TSAC: tool support availability coverage
SC7.4-M3: TAC: training availability coverage

VII. PRACTICAL APPLICATION

An exploratory case study was conducted to
demonstrate practical applicability [27] of the proposed
framework, and outline directions for future work. The
case study involved the evaluation of a sub-set of the
Service-oriented Modelling and Architecture (SOMA) [1]
methodology using a sub-set of the proposed ordinal-
scale features and ratio-scale metrics. SOMA is an end-
to-end software development methodology for analysing,

7 Open licensing model is common in ICT with a number of

initiatives providing free and open access to software products and other
works (e.g. http://www.gnu.org/ and http://creativecommons.org).

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1653

© 2013 ACADEMY PUBLISHER

designing and building SOA-based solutions, which was
initially proposed in 2004, and has since undergone three
major revisions. SOMA has comprehensive
documentation and tool support, and was chosen since it
was readily available (via IBM Academic Initiative), and
the present authors had practical experience with its
application (see [47-48]).

The goal of this case study is to demonstrate the
application of selected parts of the proposed framework
(i.e. provide a meaningful exemplar), rather than conduct
a comprehensive evaluation of either SOMA or
framework as a whole. Specifically, this section
demonstrates the process of evaluating Sub-characteristic
SC1.2 (Cognitive Complexity - Task) using two ratio-
scale complexity metrics (in Section 7.1), and also
provides a brief example of feature analysis (in Section
7.2), using eleven proposed features, as applied to Sub-
characteristic SC2.2 (Paradigm-Specific Modelling).

7.1 Metrics based assessment
The SOMA task, “identification of service capabilities

from business processes”, is part of the Service
Identification phase and was selected for the purpose of
demonstrating the quantification procedure of the
cognitive complexity of a task, including the application
of relevant weight factors. This particular task was
chosen because it is of manageable size and provides
coverage of all structural constructs needed to calculate
the task complexity values. Specifically the following
constructs are covered:

<Input> work product types (WPin):
- BPMN process model
- Service dependencies diagram (from SoaML8)
<Output> work product types (WPout):

- Service dependencies diagram
<Quantitative> techniques (TEqn):
- Decompose a given business process into 3 levels of

decomposition, process, sub-process, leaf-level sub-process
<Qualitative> techniques (TEql):
- Eliminate highly abstract processes

8 SoaML is an open source specification project from the Object

Management Group, describing a UML profile and meta-model for the
modelling and design of SO systems (www.omg.org/spec/SoaML).

- Eliminate fine-grained tasks

Metrics Calculation:
SC1.2:M2. WTI: weighted task interaction,
WTI = ∑C’(wpin) + ∑(C’(wpout)*F1),
 wpin∈WPin(T) wpout∈WPout(T)
The first step in calculating the value of WTI involves

determining the conceptual complexity of all manipulated
input (C’(wpin)) and output (C’(wpout)) work product types,
with this particular task having two input WP types
(BPMN and ServiceDependenciesDiagram) and one output
WP type (ServiceDependenciesDiagram):

- The conceptual complexity of the BPMN work product
type has been previously evaluated in [50], with the value
of C’(BPMN) = 93.6;

- To calculate the conceptual complexity of the
ServiceDependenciesDiagram work product type, the meta-
model of which is depicted graphically in Fig. 3, all
possible objects (O), properties (P), and relationships (R)
were identified as follows:
O= {capability, service interface}
P= {capability name, capability operation, operation qualifier,
service interface name}
R= {use, expose}

According to the above, the work product complexity
values for the ServiceDependenciesDiagram can then be
calculated as:

SC1.1:M1. n(OServiceDependenciesDiagram) = 2
SC1.1:M2. n(PServiceDependenciesDiagram) = 4
SC1.1:M3. n(RServiceDependenciesDiagram) = 2
SC1.1:M4. Po (ServiceDependenciesDiagram) = 2
SC1.1:M5. Pr (ServiceDependenciesDiagram) = 2
SC1.1:M6. C’(ServiceDependenciesDiagram)=√(n(O)^2+n(P)^2+n(R)^2)

= 4.9
It can be observed, that the total conceptual complexity

of a service dependencies diagram (C’ = 4.9) is much
lower than the complexity of BPMN (C’ = 93.6). This was
expected given that a service dependencies diagram
covers a limited number of objects, properties, and
relationships compared to BPMN. This is also in line
with the previous complexity calculations for simpler
work product types evaluated by other researchers [54]
(e.g. UML class (C’ = 26.4) and UML component (C’ =
15.65) diagrams).

The (total) input and output work product complexity
can then be calculated as:
∑C’(wpin) = C’(BPMN)+C’(ServiceDependenciesDiagram) = 93.6 + 4.9 = 98.4

and
∑C’(wpout)*F1 = C’(ServiceDependenciesDiagram)*0.5 = 2.45

Note that the (optional) weight factor <F1=0.5> was
applied since a ServiceDependenciesDiagram is used as
both an input and output work product type.

Finally, the total weighted task interaction (WTI) for
the SOMA task, “identification of service capabilities
from business processes” is: WTI = 98.4 + 2.45 = 100.85

Note that since the aim of this study is to demonstrate
the application of selected parts of the framework (rather
than conduct a complete evaluation of SOMA), we do not
draw any comparative or relative conclusions regarding
the magnitude of this complexity value.

Fig. 3 SoaML service dependencies diagram – meta-model

1654 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

SC1.2:M4. WN(Te(T)) – weighted number of supporting

techniques for a task,
WN(Te(T)) = N(Teqn(T)) + (N(Teql(T))*F2),
The SOMA task, “identification of service capabilities

from business processes” is supported by one quantitative
(Teqn) and two qualitative (Teql) techniques. To this end,
the value of WN(Te(T)) can be calculated as:
(1) N(Teqn) = 1
(2) N(Teq1)*F2 = 2*2 = 4

Note that the weighting factor <F2=2> was applied to
the qualitative techniques as was explained in Section IV.

(3) Finally, the weighted number of supporting
techniques (WN(Te(T))) for the SOMA’s
“identification of service capabilities from business
rocesses” task is: WN(Te(T)) = 1+4 = 5

Again, as with WTI, no conclusions about the relative
magnitude of this value can be drawn.

7.2 Feature analysis
 Providing a complete feature analysis for all the

proposed feature-based sub-characteristics is beyond the
scope of this paper. Instead, this section demonstrates the
application of feature analysis to the arbitrary chosen sub-
characteristic “Paradigm-specific Modelling” and its
corresponding features (SC2.2:F1-F11). The evaluation
results, ranked by the first author and shown in Table 2,
suggest that overall SOMA appears to provide strong
support for the fundamental concepts of SOC (as
reflected by features SC2.2:F1-F11). However, SOMA
lacks methodological support for the service discovery
tasks (e.g. integration of semantic languages, and static
and dynamic service discovery, selection, and integration)
as reflected by the low ranks assigned to features
SC2.2:F12-F14 (highlighted in bold). This in turn
suggests the area of possible methodological
enhancements that can be applied to SOMA.

VIII. CONCLUSION AND FURTHER RESEARCH

This paper presented a comprehensive and novel
analytical framework for evaluating SO development
methodologies using a set of qualitative features and
combination of existing and newly-derived quantitative
ratio-scale metrics structured in terms of a hierarchical
quality model covering three unique perspectives of any
generic software development methodology: i) the
“structured artefact” perspective that treats a
methodology as a constructed entity structured in terms
of a collection of process classes and their relationships;
ii) the “underlying process” perspective designed to be
tailored and adapted for a particular development
paradigm as has been done in this paper for the specific

TABLE 2.
EXISTING METHODOLOGY EVALUATION APPROACHES – SUMMARY

case of SOC; and iii) the “deliverable product”
perspective, which treats a methodology as a physical
(deliverable) product available in the form of
documentation, supporting software tools, and
training.An explorative case-study was presented in
Section VII to demonstrate the practical applicability of
the framework by applying a sub-set of the proposed
metrics and features to a sub-set of a chosen SO
development methodology, SOMA [1]. Specifically, the
metric-based assessment illustrated the process of task
complexity quantification, which can be replicated when
measuring other methodological tasks and work products
included in SOMA and other SO-specific methodological
approaches (e.g. [2, 8, 43]). Also, it was shown that
SOMA lacks methodological support for the service
discovery tasks, thereby suggesting an area of possible
methodological enhancements. In the future, it is
envisioned that significant stakeholders will apply the
proposed framework to perform an exhaustive evaluation
and comparison of existing and/or newly-derived
methodologies. For example, process engineers in
commercial environments can apply the framework in
order to gain an understanding of particular strengths and
weaknesses of a methodology so as to perform an
informed methodology enhancement. Also, the
methodology users will be able to compare competing
offerings, and select the best method according to specific
project requirements and constraints.

Additionally, in future work, some of the currently
proposed features could be replaced with ratio-scale
metrics in order to provide a more objective evaluation
mechanism. Also, the possibility of extending the
framework with ontological constructs (see Section 2.2.2),
so as to provide a more formal alternative to feature
analysis, could be explored. For example, an ontology of
SO development constructs could be derived and
integrated into the proposed framework together with the
concepts from the Function-Behavior-Structure (FBS)
approach [30].

SUB-CHARACTERISTIC ID FEATURE ID RANK VALUE
1 2 3 4 5

SC2.2. Paradigm-
Specific Modelling

SC2.2:F1
SC2.2:F2
SC2.2:F3
SC2.2:F4
SC2.2:F5
SC2.2:F6
SC2.2:F7
SC2.2:F8
SC2.2:F9
SC2.2:F10
SC2.2:F11
SC2.2:F12
SC2.2:F13
SC2.2:F14

4
3
4
5
5
4
3
4
4
3
3
1
2
1

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1655

© 2013 ACADEMY PUBLISHER

APPENDIX A. A META-MODEL OF A SOFTWARE
DEVELOPMENT METHODOLOGY - DEFINITIONS

DEFINITION 1: Development Methodology (M)
A model of the software development process that
consists of a set of selected, tailored, and integrated
lifecycle phases, work products, work units, and
associated methodology producers.
DEFINITION 2. Work Unit (WU)
An abstract methodology component that models an
executable process operation.

D2.1. Activity (A) – a high-level structural work unit
that encapsulates a cohesive set of tasks (T), and also
defines their workflow sequencing. Note that a given task
can be performed as part of different activities (resulting
in many-to-many relationship between the activities and
tasks). Example: Modelling business services.

D2.2. Task (T) – a core methodology component
representing a low-level functionally cohesive operation
performed by one or more producers for the purpose of
manipulating (i.e. producing, modifying, or reviewing)
one or more related work products (WP). Example:
Identification of candidate business service operations.

D2.3. Technique (Te(T)) – is an abstract core work unit
that models the way of performing a task (T). The
techniques can be classified into quantitative or
qualitative types. Examples: Service cohesion metrics
(quantitative); Informal guidelines for analysing the
cohesiveness of service operations (qualitative).
DEFINITION 3. Producer (P)
A core methodology component that models (i.e. defines
a set of required expertise (E)) an entity that performs one
or more tasks (T). The producers can take a primary or
additional role when performing a given task/s. Also, a
producer can be either a human participant or a dedicated
software tool that performs automated manipulation of
work products. Example: Software Architect.
DEFINITION 4. Work Product (WP)
A core methodology component that represents anything
of value that is produced, modified, or reviewed during
the performance of one or more tasks (T). The work
products can be categorised as either mandatory or
optional in the context of a particular task/s. Also, the
work products can support both input and output
interactions with a task (T). Example: SRS document.
NOTE: a collection of work products (WPi) is said to be
associated with a task (Ti) only if WPi is manipulated
concurrently by Ti.
DEFINITION 5. Work Product Set (WPS)
A structural component that encapsulates a cohesive set
of work products (WP) related by a lifecycle phase (LP).
Example: Business process models and services.
DEFINITION 6. Lifecycle Phase (LP)
A structural component representing major logical
partition of the development process. Lifecycle phases
provide a natural organisation and timing to the
performance of activities (A). Phases can be interleaved,
overlapped, and iterated. Example: Software
Requirements Analysis.

APPENDIX B. SERVICE-ORIENTED DEVELOPMENT
LIFECYCLE - EXAMPLE TASKS

An example list of core SO development tasks (T),
extracted and amalgamated from existing major SO
methodological approaches (e.g. [1-2, 8, 43]), is shown
below. Note that the description of the individual tasks is
beyond the scope of this paper.

Service Identification Phase

 SI.T1: Goal-Service Modelling [1]
 - Identification of high-level business goals, and their re-

finement into sub-goals that must be met in order to fulfil
the parent goal [1]

 - Identification of Key Performance Indicators (KPI) and
metrics for sub-goals [1]
 SI.T2: Business Process Modelling [45]
- Design of short-lived (sync) and long-lived (async) transac-

tion activities [40]
- Design of concurrent/parallel transaction activities [40]
- Definition of business process orchestration and choreogra-

phy specifications [45]
 SI.T3: Existing Asset Analysis [1]
 SI.T4: Domain Decomposition [1]
- Identification of service capabilities from business process

models [1]
 SI.T5: Candidate Service identification [1] from:
o business goals and sub-goals [1]
o business rules [1]
o business processes [45]
o domain models [1]
o functional models [8]
o existing assets [1]

Service Specification Phase

 SS.T1: Integration of non-functional requirements into service
ecosystem [1]

 SS.T2: Identification and integration of security patterns [2]
 SS.T3: Specification of service orchestration layer [8]
 SS.T4: Specification of business (or task) service layer [8]
 SS.T5: Specification of application service layer [8]
 SS.T6: Refinement of application service layer into entity and
utility layers [8]

 SS.T7: Service Litmus Test [1] (i.e. applying a set of design
criteria to determine which candidate services should be ex-
posed externally)

 SS.T8: Application of Service Analysis operations [2]:
o Service aggregation: combining fine-grained services into

a larger coarse-grained service [2]
o Service decomposition: partitioning coarse-grained ser-

vices into a collection of smaller fine-
grained services [2]

o Service unification: merging services with comparable at-
tributes and business commonalities in order to avoid
functional overlap/redundancy [2]

o Service subtraction: reducing the scope of composite and
atomic services (i.e. eliminating unnecessary functionality)
[2]

 SS.T9: Specification of service components (i.e. service im-
plementation elements) [1]

1656 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

Service Realisation Phase

 SR.T1: Identification and documentation of service realisation
decisions (e.g. in-house development, transformation, sub-
scription, outsourcing) [1]

 SR.T2: Technical feasibility exploration [1]
 SR.T3: Service contract design including non-functional speci-
fication of service contracts9 (i.e. SLAs, QoS) [31]

 SR.T4: Design of component-level interactions with the run-
time middleware infrastructure (e.g. ESB) [1]

 SR.T5: Composite (i.e. orchestrated task) service layer design
[2, 8]

 SR.T6: Design of task service layer internals (i.e. design of
service implementation components and their run-time rela-
tionships and collaborations) [8]

 SR.T7: Design of entity service layer internals [8]
 SR.T8: Design of utility service layer internals [8]
 SR.T9: Definition of interfaces between service components
and other operational (i.e. legacy) system layers [1]

APPENDIX C. PROCESS COMPLETENESS – EXAMPLE
FEATURES FOR SUB-CHARACTERISTICS SC2.3-SC2.5

This appendix provides a list of features pertinent to Sub-
characteristics SC2.3-SC2.5 (and for brevity omitted
from the main body of the paper). Note that the included
features are not exhaustive and could be extended and
refined on an as needed basis. For example, the list of
features provided for Sub-characteristic SC2.5 (“Project
Management”) could be augmented with additional
features covering important management activities of
project governance, reporting, and risk management.

Sub-characteristic SC2.3. Support Technologies and
Standards

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5(full support)] (M granularity)
Provides support for the basic tasks needed to integrate the
developed service ecosystem into ESB, including:
SC2.3:F1. Registration of provided services in the ESB reposi-
tory
SC2.3:F2. Definition of ESB-driven service communication
protocols
SC2.3:F3. Creation of dedicated message and resource routing
services, and definition and configuration of the routing rules

Promotes the application of the core W3C standards (ws*),
including:
SC2.3:F7. WS-Coordination
SC2.3:F8. WS-Transaction
SC2.3:F9. WS-Reliable Messaging
SC2.3:F10. WS-Security
SC2.3:F11. WS-Policy
SC2.3:F12. WS-Addressing

9 A service contract consists of a general description (e.g. version,

owner), a functional specification (service operations including inputs
and outputs), a non-functional specification (e.g. QoS, SLAs), and ser-
vices dependencies map (list of “used” and “used by” services).

Sub-characteristic SC2.4. Verification and Validation

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5 (full support)] (M granularity)
Incorporates formal system verification analysis techniques
typical to the SO development, including:
SC2.4:F1. Petri nets-based approaches
SC2.4:F2. FSM-based approaches
SC2.4:F3. Process algebra-based approaches
SC2.4:F4. Alternative verification approaches (i.e. not listed
above)

SC2.4:F5. Enforces requirements traceability throughout the
core phases of the SO development lifecycle
i.e. WPS (SI) -> WPS (SS) -> WPS (SR),
where ‘->’ means traceable
SC2.4:F6. Enforces design consistency throughout the core
phases of the SO development lifecycle
i.e. WPS (SI) <-> WPS (SS) <-> WPS (SR)
where ‘<->’ means internally consistent

Sub-characteristic SC2.5. Project Management

Measurement Specifics: ordinal-scale features [1(no sup-
port) – 5(full support)] (M granularity)
SC2.5:F1. Uses existing SOC-specific effort and cost estimation
frameworks (e.g. [39])
SC2.5:F2. Integrates with the ISO/IEC 25000:2005 [22] quality
management standard in order to model, define, and manage
functional and non-functional quality requirements
SC2.5:F3. Supports early quantification, using SOC-specific
software metrics [47-48], of the internal quality characteris-
tics (e.g. service cohesion) of the produced WP
SC2.5:F4. Supports the application of external quality metrics
from the ISO/IEC 9126:1-4 suite of standards [19-21]

Provides support for an incremental and iterative develop-
ment process, including:
SC2.5:F5. Partitioning (or scoping [42]) of WPS produced in
the SI phase
SC2.5:F6. Partitioning of WPS produced in the SS phase
SC2.5:F7. Partitioning of WPS produced in the SR phase
SC2.5:F8. Specification of concrete development plans for
individual iterations
SC2.5:F9. Specification of concrete development plans for
inter-phase iterations

ACKNOWLEDGMENT

This work is funded by the ARC (Australian Research
Council), under Discovery scheme no. DP0988345.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1657

© 2013 ACADEMY PUBLISHER

REFERENCES

[1] A. Arsanjani, et al., "SOMA: A method for developing
service-oriented solutions," IBM Systems Journal, vol. 47
(3), pp. 377-396, 2008.

[2] M. Bell, Service-Oriented Modeling: Service Analysis,
Design, and Architecture. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2008.

[3] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative
evaluation of software quality," in 2nd International
Conference on Software Engineering, San Francisco,
USA, 1976, pp. 592-605.

[4] R. Chapman, "Correctness by construction: a manifesto
for high integrity software," presented at the 10th
Australian workshop on Safety critical systems and
software - Volume 55, Sydney, Australia, 2006.

[5] D. Chappell, Enterprise Service Bus: O'Reilly, 2004.
[6] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,

"Managerial Use of Metrics for Object-Oriented Software:
An Exploratory Analysis," IEEE Transactions on
Software Engineering, vol. 24 (8), pp. 629-639, 1998.

[7] A. Dahanayake, H. Sol, and Z. Stojanovic, "Methodology
Evaluation Framework for Component-Based System
Development," Journal of Database Management, vol. 14
(1), pp. 1-26, 2003.

[8] T. Erl, SOA: Principles of Service Design. Indiana, USA:
Prentice Hall PTR, 2007.

[9] T. Erl, SOA Design Patterns. Indiana, USA: Prentice Hall
PTR, 2009.

[10] R. E. Fairley, Managing and Leading Software Projects.
Hoboken, NJ, USA: Wiley-IEEE Computer Society Press,
2009.

[11] N. Fenton, Software Metrics: A Rigorous Approach.
London, UK: Chapman & Hall, 1991.

[12] D. Firesmith and B. Henderson-Sellers, The OPEN
Process Framework. Boston, MA: Addison-Wesley, 2002.

[13] K. Fung and G. C. Low, "Methodology evaluation
framework for dynamic evolution in composition-based
distributed applications," Journal of Systems and Software,
vol. 82 (12), pp. 1950-1965, 2009.

[14] F. Garcia, et al., "FMESP: Framework for the modeling
and evaluation of software processes," Journal of Systems
Architecture, vol. 52 (11), pp. 627-639, 2006.

[15] J. Gero and U. Kannengiesser, "A function–behavior–
structure ontology of processes," Artificial Intelligence for
Engineering Design, Analysis, and Manufacturing, vol.
21 (4), pp. 379-391, 2007.

[16] A. Gillies, Software Quality. London: Chapman & Hall,
1992.

[17] P. Green and M. Rosemann, "Integrated Process
Modeling: An Ontological Evaluation," Information
Systems, vol. 25 (2), pp. 73-87, 2000.

[18] Q. Gu and P. Lago, "Guiding the selection of service-
oriented software engineering methodologies," Service
Oriented Computing and Applications (SOCA), vol. 5 (4),
pp. 203-223, 2011.

[19] ISO/IEC, "ISO/IEC TR 9126-1:2001 Software
Engineering: Product quality - Quality model,"
International Organization for Standardization /
International Electrotechnical Commission, Geneva2001.

[20] ISO/IEC, "ISO/IEC TR 9126-3:2003 Software
Engineering: Product quality - Internal metrics,"
International Organization for Standardization /
International Electrotechnical Commission, Geneva2003.

[21] ISO/IEC, "ISO/IEC TR 9126-2:2003 Software
Engineering: Product quality - External metrics,"
International Organization for Standardization /
International Electrotechnical Commission, Geneva2003.

[22] ISO/IEC, "ISO/IEC 25000:2005 Software Engineering:
Software product Quality Requirements and Evaluation
(SQuaRE) -- Guide to SQuaRE," International
Organization for Standardization / International
Electrotechnical Commission, Geneva2005.

[23] ISO/IEC, "ISO/IEC 12207:2008 Systems and Software
Engineering - Software life cycle processes," International
Organization for Standardization / International
Electrotechnical Commission, Geneva2008.

[24] N. Jayaratna, Understanding and Evaluating
Methodologies: Nimsad, a Systematic Framework: The
Mcgraw-Hill Information Systems, 1994.

[25] K. Jensen and L. Kristensen, Coloured Petri Nets:
Modelling and Validation of Concurrent Systems:
Springer, 2009.

[26] U. Kannengiesser and L. Zhu, "An ontologically-based
evaluation of software design methods," The Knowledge
Engineering Review, vol. 24 (1), pp. 41-58, 2009.

[27] B. Kitchenham, S. Linkman, and D. Law, "DESMET: A
Methodology for Evaluating Software Engineering
Methods and Tools," Computing and Control Engineering
Journal, vol. 8 (3), pp. 120-126, 1997.

[28] P. Kroll and P. Kruchten, The Rational Unified Process
made easy. Reading, USA: Addison-Wesley, 2003.

[29] P. Kruchten, The Rational Unified Process: an
introduction, 3 ed. Boston, MA: Addison-Wesley, 2003.

[30] P. Kruchten, "Casting Software Design in the Function-
Behavior-Structure Framework," IEEE Software, vol. 22
(2), pp. 52-58, 2005.

[31] M. Lehmann, "Deploying large-scale interoperable Web
Services infrastructures," Web Services Journal, vol. 5 (1),
pp. 10-15, 2005.

[32] F. Liu, et al., "SaaS Integration for Software Cloud,"
presented at the IEEE 3rd International Conference on
Cloud Computing (CLOUD 2010), FL, USA, 2010.

[33] J. h. Liu, et al., "The impact of software process
standardization on software flexibility and project
management performance: Control theory perspective,"
Information and Software Technology, vol. 50 (9-10), pp.
889-896, 2008.

[34] M. Mancioppi, et al., "Towards a Quality Model for
Choreography," in Service-Oriented Computing.
ICSOC/ServiceWave 2009 Workshops. LNCS. vol.
6275/2010, A. Dan, et al., Eds., ed: Springer Berlin /
Heidelberg, 2010, pp. 435-444.

[35] T. McBride, "The mechanisms of project management of
software development," Journal of Systems and Software,
vol. 81 (12), pp. 2386-2395, 2008.

[36] P. Mohagheghi, "Evaluating Software Development
methodologies based on their practices and promises," in
New Trends in Software Methodologies, Tools and
Techniques, H. Fujita and I. Zualkernan, Eds., ed: IOS
Press, 2008.

[37] J. Nielsen, Usability Engineering. San Diego: Academic
Press, 1994.

[38] D. Norman, The Design of Everyday Things: Doubleday
Business, 1990.

[39] L. O’Brien, "A Framework for Scope, Cost and Effort
Estimation for Service Oriented Architecture (SOA)
Projects," in Australian Software Engineering Conference
(ASWEC), Gold Coast, Australia, 2009.

[40] OASIS, "Web Services Business Process Execution
Language Version 2.0 - Standard," Organization for the
Advancement of Structured Information Standards
(OASIS)2007.

1658 JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

[41] OMG, "The Software and Systems Process Engineering
Meta-Model 2.0 (SPEM 2.0)," Object Management Group
(OMG)2008.

[42] L. Padgham and M. Perepletchikov, "Prioritisation
mechanisms to support incremental development of agent
systems," International Journal of Agent-Oriented
Software Engineering (IJAOSE), vol. 1 (3/4), pp. 477-497,
2007.

[43] M. Papazoglou and W.-J. van den Heuvel, "Service-
Oriented Design and Development Methodology,"
International Journal of Web Engineering and
Technology (IJWET), vol. 2 (31), pp. 412-442, 2006.

[44] M. Papazoglou, et al., "Service-Oriented Computing:
State of the Art and Research Challenges," IEEE
Computer, vol. 40 (11), pp. 38-45, 2007.

[45] M. Papazoglou and W.-J. van den Heuvel, "Business
process development life cycle methodology,"
Communications of the ACM, vol. 50 (10), pp. 79-85,
2007. http://doi.acm.org/10.1145/1290958.1290966.

[46] M. Perepletchikov, et al., "Formalising Service-Oriented
Design," Journal of Software (JSW), vol. 3 (2), pp. 1-14,
2008.

[47] M. Perepletchikov, C. Ryan, and Z. Tari, "The Impact of
Service Cohesion on the Analysability of Service-
Oriented Software," IEEE Transactions on Services
Computing, vol. 3 (2), pp. 89-103, 2010.

[48] M. Perepletchikov and C. Ryan, "A Controlled
Experiment for Evaluating the Impact of Coupling on the
Maintainability of Service-Oriented Software," IEEE
Transactions on Software Engineering, vol. 37 (4), pp.
449-465, 2011.

[49] G. Poels and G. Dedene, "Distance-based software
measurement: necessary and sufficient properties for
software measures," Information and Software
Technology, vol. 42 (1), pp. 35-46, 2000.

[50] J. Recker, et al., "Measuring Method Complexity: UML
versus BPMN," in Proceedings of the 15th Americas
Conference on Information Systems, San Francisco, CA,
USA, 2009.

[51] M. Rossi and S. Brinkkemper, "Complexity Metrics for
Systems Development Methods and Techniques,"
Information Systems, vol. 21 (2), pp. 209-227, 1996.

[52] R. Sharble and S. Cohen, "The object-oriented brewery: a
comparison of two object-oriented development
methods," ACM SIGSOFT Softw. Eng. Notes, vol. 18 (2),
pp. 60-73, 1993.

[53] K. Siau and R. Matti, "Evaluation of Information
Modeling Methods -- A Review," in The Thirty-First
Annual Hawaii International Conference on System
Sciences, 1998.

[54] K. Siau and Q. Cao, "Unified Modeling Language: A
Complexity Analysis," Journal of Database Management
(JDM), vol. 12(1) (1), pp. 26-34, 2001.
doi:10.4018/jdm.2001010103.

[55] H. Sol, "Information systems development: a problem-
solving approach," in Challenges and strategies for
research in systems development, ed: John Wiley & Sons,
Inc., 1992, pp. 151-161.

[56] X. Song and L. Osterweil, "Toward Objective, Systematic
Design-Method Comparisons," IEEE Software, vol. 9 (3),
pp. 43-53, 1992. http://dx.doi.org/10.1109/52.136166.

[57] S. Stevens, "On the Theory of Scales of Measurement,"
Science, vol. 103 (2684), pp. 677–680, 1946.

[58] Y. Wand and R. Weber, "An Ontological Model of an
Information System," IEEE Transactions on Software
Engineering, vol. 16 (11), pp. 1282-1292, 1990.
10.1109/32.60316.

[59] O. Zimmermann, M. Tomlinson, and S. Peuser,
Perspectives on Web Services: Applying SOAP, WSDL,
and UDDI to Real-World Projects: Springer Professional
Computing, 2003.

Dr Mikhail Perepletchikov received
B.App.Sc. (Computer Science) Honours
1st Class degree from RMIT University,
Melbourne, Australia in 2004 and com-
pleted his PhD (Computer Science) at
the same institution in 2009. His PhD
thesis addressed software quality in the
context of SOA. He is currently a Re-
search Fellow and Sessional Lecturer in
the School of Computer Science and

Information Technology, RMIT University. He is a member of
the IEEE, the IEEE Computer Science Society, and the Austral-
ian Computer Society (ACS).

Dr Caspar Ryan completed a
B.App.Sci. Comp. Sci. (Hons) in 1996
and received his PhD in Computer
Science, from RMIT University
Melbourne Australia in 2002. His PhD
thesis title was A Methodology for the
Empirical Study of Object-Oriented
designers in which he presented a novel
approach for studying software
engineers in practice. He is currently a

Senior Lecturer in the School of CS & IT at the same institution.
His current software engineering research involves metrics and
software development methodology for SOA as a joint CI on an
Australian Research Council Discovery grant.

Prof Zahir Tari is a full professor at
RMIT University and Director of the
DSN (Distributed Systems &
Networking) discipline at the School of
Computer Science & IT, RMIT
(Australia). He graduated with an
honours degree in Operational Research
at USTHB (Universite Houari
Boumediene) in Algiers (Algeria, 1984),
Master degree in Operational Research

at University of Grenoble (France, 1985), and a PhD degree in
Computer Science at University of Grenoble (France, 1989).
His recent primary research interests are in system's
performance (such as load balancing under various traffic
conditions) and security (such as access control and information
flow control). More details about Professor Tari and his team
can be found at http://www.cs.rmit.edu.au/dsn.

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1659

© 2013 ACADEMY PUBLISHER

