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Abstract— We propose a semismooth active-set Newton al-
gorithm for solving the nonlinear complementarity prob-
lems with degenerate solutions. This method introduces
the active-set technique to identify the degenerate set. At
each iteration, the search direction is obtained by two
reduced linear systems. Instead of employing gradient steps
as adjustments to guarantee the sufficient reduction of
the merit function, the algorithm employs a Newton-type
direction, which is more efficient than gradient direction, in
the adjustment step. This method has globally convergence.
When near the solution, the degenerate set will be identified
correctly, and only one reduced linear system is solved
at each iteration. Under some mild assumptions, locally
superlinear convergence is obtained as well. Numerical ex-
periments on MATLAB shows the efficiency of the method.

Index Terms— NCP; semismooth method; degenerate solu-
tion; active-set strategy; superlinear convergence; MATLAB

I. INTRODUCTION

Consider the following nonlinear complementarity
problem(denoted by NCP(F)):

F (x) ≥ 0 x ≥ 0 and xTF (x) = 0, (1)

where x ∈ Rn, and F : Rn → Rn is a continuously
differentiable function. The nonlinear complementarity
problem is an important problem and has attracted strong
interests due to its important applications in economics,
engineering, and mechanics, etc (see [1] for a review).

By using the following F-B (Fischer-Burmeister) func-
tion ϕ : R2 → R:

ϕ(a, b) =
√
a2 + b2 − a− b,

the complementarity problem (1) can be reformulated to
the next equivalent nonlinear equations

Φ(x) =

ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 = 0 (2)

Clearly, x∗ ∈ Rn solves the NCP(F) if and only if it is
a solution of the equation (2). The nature merit function
for (2) is Ψ(x) := 1

2∥Φ(x)∥
2.

This work is supported by Foundation for University youth teachers
by Shanghai Municipality(No. shlx014).

For any solution x∗ of NCP(F), denote I := {1, · · · , n}
be its index set. Then I can be divided into three parts:

α = α(x∗) := {i ∈ I | x∗
i > 0},

β = β(x∗) := {i ∈ I | x∗
i = 0 = Fi(x

∗)},
χ = χ(x∗) := {i ∈ I | Fi(x

∗) > 0}.

Definition 1: Suppose x∗ is a solution of (1), then x∗

is called a degenerate solution if β(x∗) is not empty; if
β(x∗) = ∅, then x∗ is called a non-degenerate solution.

The F-B function is continuously differentiable for
any pair (a, b) ̸= (0, 0), and has only semismooth at
the zero point. For this reason, the system (2) is also
semismooth at its degenerate solution and can only be
solved by generalized Jacobian technique or smoothing
method. From both theoretical and practical point of
view, the identification of the degenerate set β of the
solution is very important. If the degenerate indices can be
identified before exactly knowing x∗, then we only have
to solve a reduced form of the equation (2) in a small
neighbor of x∗. The original degenerate NCP(F) will also
be transformed to a non-degenerate problem. (See [2], [3]
for a reference.)

Active-set method is an important technique in nonlin-
ear optimization. In [4], Facchinei, Fischer and Kanzow
presented a new method for the accurate identification
of the active constraints for nonlinear programs with
inequality constraints. The main idea of their technique
is to define an identification function ρ(x, λ) which has
“slower” convergence rate to the KKT set than the pair
(x, λ) does. In [5], Kanzow and Qi proposed an active-set
QP-free Newton method for variational inequality prob-
lems (denoted VIP). They used the technique presented in
[4] to identify the active constraints of the solution of VIP
and incorporate this technique into a global algorithm.

The method in [5] employs gradient steps as safeguards
in those cases when the Newton-type step does not
sufficiently reduce the merit function. However, as is
well known, the gradient step may have low efficiency
of iteration in many cases, especially when it meet with
so-called “zigzag phenomenon”. Moreover, the gradient
step doesn’t have local superlinearly convergence. Hence,
the numerical efficiency of the gradient step may be slow,
which will destroy the whole convergence rate of the
algorithm.

In this paper, we propose a semismooth active-set
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method for degenerate nonlinear complementarity prob-
lems. We apply the active-set technology to identify the
degenerate indices of the solution. Instead of employing
gradient steps as adjustments to guarantee the sufficient
reduction of the merit function, the algorithm employs
a Newton-type direction, which is more efficient than
gradient direction, in the adjustment step. We will show
in Section 3 that the Newtonian adjustment step is a kind
of asymptotically best adjustment.

Our method has global convergence and each accumu-
lation point is at least a stationary point of (2). Under
some regularity assumptions, the estimate set is eventually
equal to the degenerate set of the solution, and the local
superlinear convergence of the algorithm is obtained as
well.

The organization of this paper is as follows. In Section
2, some definitions and preliminary results are given. An
active-set semismooth algorithm is presented in Section
3. In Section 4, we prove the proposed algorithm is well
defined and establish its global convergence. The local
convergence and the analysis of the identification tech-
nique is established in Section 5. Finally, some numerical
results on MATLAB are listed to show the efficiency of
our algorithm.

II. PRELIMINARY

For any x ∈ Rn and the index set J ⊆ {1, · · ·n}, we
denote xJ as the vector with components xi, i ∈ J . Let
mapping G: Rn → Rn be locally Lipschitzian. Assume
x ∈ Rn be any differentiable point of G, denote G′(x)
be the Jacobian of G at x, and ∇G(x) be its transposed
Jacobian.

The function Φ(x) defined by (2) is then locally Lips-
chitzian. The generalized Jacobian ∂Φ(x) of Φ at x (in the
Clarke sense) also exists and has the following property:

∂Φ(x) ⊆ Da(x) +Db(x)F
′(x) (3)

where Da(x) = diag(a1(x), · · · , an(x)), Db(x) =
diag(b1(x), · · · , bn(x)) with their elements be

ai(x) =
xi√

x2
i + F 2

i (x)
−1, bi(x) =

Fi(x)√
x2
i + F 2

i (x)
−1

when (xi, Fi(x)) ̸= (0, 0) and

ai(x) = ξi−1, bi(x) = ηi−1, (ξi, ηi) ∈ R2, ∥(ξi, ηi)∥ ≤ 1

when (xi, Fi(x)) = (0, 0). The next property shows the
semismoothness of Φ.

Proposition 2: ( [6]) Assume that {xk} ⊆ Rn is a
convergent sequence with a limit point x∗ ∈ Rn. Then
the following statements hold.
(i) The function Φ is semismooth, which implies that for
any Vk ∈ ∂Φ(xk),

∥Φ(xk)− Φ(x∗)− Vk(x
k − x∗)∥ = o(∥xk − x∗∥).

(ii) If F ′ is Lipschitz continuous, then the function Φ is
strongly semismooth, which implies that for any Vk ∈
∂Φ(xk),

∥Φ(xk)− Φ(x∗)− Vk(x
k − x∗)∥ = O(∥xk − x∗∥2).

Proposition 3: ( [5]) The merit function Ψ is contin-
uously differentiable with ∇Ψ(x) = HTΦ(x) for an
arbitrary element H ∈ ∂Φ(x).

Definition 4: A matrix M is said to be a P matrix if
for all x ∈ Rn, x ̸= 0, there exists a component xk ̸= 0
such that

xk(Mx)k > 0. (4)
Now we introduce Robinson’s [7] strong regularity

condition of the solution of NCP(F) and its error bound
property, see [7] and [8] for details.

Definition 5: Assume that x̃ is a solution of the
NCP(F), then x̃ is said to be a R-regular solution if
F ′(x̃)αα is nonsingular and the Schur complement of it

F ′(x̃)ββ − F ′(x̃)βαF
′(x̃)−1

ααF
′(x̃)αβ

is a P-matrix.
Proposition 6: Assume that x̃ is a R-regular solution

of the NCP(F), then
(a) There exists c0 > 0 and δ1 > 0 such that for all x
that satisfy ∥x − x̃∥ ≤ δ1, the matrices H ∈ ∂Φ(x) are
nonsingular and

∥H−1∥ ≤ c0 (5)

(b) there exists c1 > 0 and b1 > 0 such that

∥Φ(x)∥ ≥ c1∥x− x̃∥ (6)

for all x which satisfies that ∥x− x̃∥ ≤ b1.

III. DESCRIPTION OF ALGORITHM

In this section, we give the description of our algorithm
for nonlinear complementarity problems. For convenience
of expression, we denote gk := ∇Ψ(xk). We also use the
index set I = {1, · · · , n} for the variable x. We introduce
a continuous forcing function ρ : R → R, which satisfies
two properties: (a) ρ(t) ≥ 0 for all t ∈ R; (b) ρ(t) = 0 if
and only if t = 0.

Now we give the description of our algorithm in details.

Algorithm 3.1

Step 0. Initialization:
Select x0 ∈ Rn, and λ, η, ν, σ ∈ (0, 1), δ > 0, and the

toleration ϵ ≥ 0. Set k := 0.
Step 1. If ∥∇Ψ(xk)∥ ≤ ϵ, then terminates.
Step 2. Set δk = min{δ, (∥Φ(xk)∥)ν}, and

Ik := {i ∈ I
∥(xk

i , Fi(x
k))∥ ≤ δk}. (7)

Step 3. Choose Hk be any element of ∂Φ(xk)
and write Hk = (Hk

·Ik , H
k
·Ik

). Correspondingly, denote
gk = ((gkIk)

T , (gk
Ik
)T )T . For simplicity, we write gk =

(gkIk , g
k
Ik
). Compute dk

Ik
be the solution of the following

reduced system:(
(Hk

·Ik
)THk

·Ik
+ ρ(Ψ(xk))E1

)
dIk

= −gk
Ik

(8)

where E1 denotes the identical matrix with |Ik|- dimen-
sions. Denote the trail step: dkt = (−xk

Ik
, dk

Ik
)T . (The

subscript ‘t’ means ‘trial’.)
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Step 4.(Fast Step) If

Ψ(xk + dkt ) ≤ η2Ψ(xk) (9)

then accept dk = dkt , and set xk+1 = xk+dk. Then, goto
Step 7. If (9) is not satisfied, goto Step 5.

Step 5.(Adjustment Step) Compute dkIk by solving the
following system:(

(Hk
·Ik)

THk
·Ik + ρ(Ψ(xk))E2

)
dIk + (Hk

·Ik)
THk

·Ik
dk
Ik

=− gkIk
(10)

where E2 is the identical matrix with |Ik|- dimensions.
Set dk = (dkIk , d

k
Ik
)T .

Step 6. Search tk as the maximal element in {λs
s =

0, 1, 2, · · · } such that

Ψ(xk + tkd
k) ≤ (1− σt2k)Ψ(xk). (11)

Then set xk+1 = xk + tkd
k.

Step 7. Set k := k + 1, and return to Step 1.
Now we give some explanations about the proposed

algorithm. At each iteration, the estimate set Ik is used
to approximate the degenerate indices of the solution. We
will analyze its property in Section 5.

When the estimate set is constructed, the reduced
system (8) is solved to generate the trial direction. This
system is motivated by the standard generalized Newton
equation

Hkd = −Φ(xk) (12)

and its Levenberg-Marquardt regularized form:

(HT
k Hk + ρ(Ψ(xk))I)d = −∇Ψ(xk). (13)

In Step 4, the algorithm constructs a trial direction dkt
by setting xk+1

Ik
= 0. If dkt gives the merit function Ψ(·)

a satisfying descent, then the Fast Step is accepted. If, on
the other hand, the descent test (9) is not satisfied, then
the Adjustment Step and a line search is carried out to
obtain a descent direction.

In [5], the adjustment step is generated through a
gradient step. That is, set dkIk = −min{gkIk , x

k
Ik
}. As is

mentioned in Section 1, this designation may cause both
theoretical and numerical problems.

In our algorithm, dkIk is adjusted by solving the reduced
linear system (10). Notice that (10) is a Newtonian equa-
tion. Indeed, it is the regularized form of the following
reduced system:

(Hk
·Ik)

THk
·IkdIk + (Hk

·Ik)
THk

·Ik
dk
Ik

=− (Hk
·Ik)

TΦ(xk) = −gkIk
(14)

where dIk is the unknown and dk
Ik

is the solution of (8).
Moreover, note that the standard Newton equation (12)
can be rewritten as follows,

(Hk)
THkd =

(
(Hk

·Ik)
THk

·Ik (Hk
·Ik)

THk
·Ik

(Hk
·Ik

)THk
·Ik (Hk

·Ik
)THk

·Ik

)(
dkIk
dk
Ik

)
=− (Hk)

TΦ(xk) = −gk.
(15)

Hence the reduced linear system (14) is in fact the second
part of (15) or (12). Furthermore, combining (8) with (10),
we obtain that if the adjustment step is carried out, the
search direction dk is actually the solution of following
equation:[(

(Hk
·Ik)

THk
·Ik (Hk

·Ik)
THk

·Ik

0 (Hk
·Ik

)THk
·Ik

)
+ ρ(Ψ(xk))I

]
d

=−∇Ψ(xk)
(16)

which is actually an approximation of (13). Since the
standard Newton method has locally superlinear con-
vergence, this approximation can be used to develop a
new approach to analyze the local convergence of the
algorithm. (16) also illustrates that the total computation
amount on solving two reduced linear systems is not more
than the standard Newton step (12).

We end this section by the following property.
Proposition 7: For any dk

Ik
given, suppose that the

matrix Hk
·Ik is full rank, and dIk satisfies (14), then dIk

is the solution of the following problem:

min
d∈RIk

∥Φ(xk) +Hk
·Ik

dk
Ik

+Hk
·Ikd∥

2. (17)

Proof: Since the matrix Hk
·Ik is full rank, the matrix

(Hk
·Ik)

THk
·Ik is positive definite and the quadratic prob-

lem (17) is strictly convex. Notice that dIk satisfies (14),
which is just the optimal condition of the (17). Thus, dIk
is the solution of the quadratic problem. �

Obviously, if the iterative sequence converges to a solu-
tion of NCP(F), then Ψ(xk) must tends to zero. Therefore,
Proposition 7 implies that dkIk is an asymptotically best
adjustment on dk in sense of the least square norms.

IV. GLOBAL CONVERGENCE

In this section, we analyze the global properties of the
proposed algorithm. Firstly, we will show the algorith-
m is well defined. Secondly, we will prove the global
convergence of the algorithm. Without loss of generality,
we assume that the terminate toleration ϵ = 0, and the
iteration doesn’t terminate in finite steps.

Lemma 8: For any k ∈ N, if dk is computed by the
‘Adjustment Step’, then dk is a descent direction of the
merit function Ψ, i.e,

∇ΨT (xk)dk < 0.

Proof: Since dk
Ik

and dkIk are the solutions of the reduced
equations (8) and (10) respectively, we have

∇ΨT (xk)dk = ((Hk)
TΦ(xk))T dk

= (dkIk)
T (Hk

·Ik)
TΦ(xk) + (dk

Ik
)T (Hk

·Ik
)TΦ(xk)

= −(dkIk)
T [
(
(Hk

·Ik)
THk

·Ik + ρ(Ψ(xk))E2

)
dkIk + (Hk

·Ik)
THk

·Ik
dk
Ik
]

−(dk
Ik
)T [(Hk

·Ik
)THk

·Ik
+ ρ(Ψ(xk))E1]d

k
Ik

The third equality holds because of (8) and (10). For
simplicity, we denote zkIk = Hk

·Ikd
k
Ik

, and zk
Ik

= Hk
·Ik

dk
Ik

.
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Hence,

∇ΨT (xk)dk

= −[(zkIk)
T zkIk + (zkIk)

T zk
Ik

+ (zk
Ik
)T zk

Ik
]

−ρ(Ψ(xk))[∥dk
Ik
∥2 + ∥dkIk∥

2]

= −1

2
(∥zkIk∥

2 + ∥zk
Ik
∥2 + ∥zkIk + zk

Ik
∥2)

−ρ(Ψ(xk))∥dk∥2

< 0 (18)

The last inequality holds since the iteration doesn’t ter-
minate in finite steps. �

From the proof of this lemma, we also get the following
conclusion.

Lemma 9: For any x∗ such that Ψ(x∗) ̸= 0, assume
that H∗ is any element of ∂Φ(x∗). Denote H∗ =
(H·I∗ ,H·I∗

). Correspondingly, denote d∗ = (dI∗ , dI∗
),

where dI∗
and dI∗ are the solution of (8) and (10)

respectively, then ∇ΨT (x∗)d∗ = 0 if and only if d∗ = 0.
Proof: If d∗ = 0, we immediately have ∇ΨT (x∗)d∗ = 0.
Conversely, if ∇ΨT (x∗)d∗ = 0, denote zI∗ = H·I∗dI∗ ,
and zI∗

= H·I∗
dI∗

, then by (18), we have

0 = ∇ΨT (x∗)d∗ = −1

2
(∥zI∗∥2 + ∥zI∗

∥2 + ∥zI∗ + zI∗
∥2)

− ρ(Ψ(x∗))∥d∗∥2

Therefore, we obtain that ρ(Ψ(x∗))∥d∗∥2 = 0. Since
Ψ(x∗) ̸= 0, then d∗ = 0. �

Now we show that Algorithm 3.1 is well defined.
Proposition 10: Algorithm 3.1 is well defined.

Proof: It suffices to prove that, if the ‘Adjustment Step’
is carried out, then the line search (11) in Step 6 of the
algorithm is well defined. By contradiction, suppose that
for any s ≥ 0, s ∈ N, we have

Ψ(xk + λsdk) > (1− σλ2s)Ψ(xk).

This inequality can be rewritten as

Ψ(xk + λsdk)−Ψ(xk)

λs
> −σλsΨ(xk).

Forcing s → +∞, we obtain that

∇ΨT (xk)dk ≥ 0.

However, as is shown in Lemma 8, ∇ΨT (xk)dk < 0.
This is a contradiction. Hence, the line search (11) is well
defined. �

We now come to prove the global convergence of the
algorithm. We shall show that any accumulation point of
the iterative sequence is at least a stationary point of the
system (2).

Theorem 11: Every accumulation point of the iterative
sequence {xk} generated by Algorithm 3.1 is a stationary
point of the equation (2).
Proof: Obviously, {Ψ(xk)} is a positive and strictly
decreasing sequence. Then it must converge to some limit
Ψ∗ ≥ 0. For any accumulation point x∗, it must be
Ψ(x∗) = Ψ∗. If the ‘Fast Step’ is accepted infinitely,

by (9), we get Ψ∗ = 0. Hence, we have Ψ(x∗) = 0. That
is, every accumulation point is a solution of the NCP(F).

If, on the other hand, dk is eventually computed always
by the ‘Adjustment Step’, we have to discuss two cases.
Firstly, in the case when Ψ∗ = 0, we still have the
conclusion that any accumulation point is a solution of
the problem. Secondly, if Ψ∗ > 0, the proof is by
contradiction.

Suppose that x∗ is an accumulation point of the iter-
ative sequence with a subsequence {xk}K converging to
it. Now we assume that ∇Ψ(x∗) ̸= 0. We can choose
a subsequence {xk}K1 , K1 ⊆ K, such that for all
k ∈ K1, Ik equals to a fixed set J ⊆ I . Since ∂Φ is
upper semicontinuous and closed at x∗ (see Proposition
2.6.2 of [9]), we can also find a subsequence {xk}K2 ,
K2 ⊆ K1, such that {Hk}K2 → H∗, of which the limit
H∗ ∈ ∂Φ(x∗).

Combining (8) with (10), we obtain that dk is the
unique solution of the following linear system[(

(Hk
·Ik)

THk
·Ik (Hk

·Ik)
THk

·Ik

0 (Hk
·Ik

)THk
·Ik

)
+ ρ(Ψ(xk))I

]
d = −∇Ψ(xk)

(19)
Taking the limit k → ∞, k ∈ K2, and let d∗ be the unique
solution of the next equation,[(

(H∗
·J )

TH∗
·J (H∗

·J )
TH∗

·J
0 (H∗

·J )
TH∗

·J

)
+ ρ(Ψ∗)I

]
d = −∇Ψ(x∗)

(20)
Therefore, {dk}K2 → d∗. Since ∇Ψ(x∗) ̸= 0, this
immediately implies that d∗ ̸= 0.

On the other hand, by the linear search (11), we obtain
that

lim
k∈K2,k→∞

t2k ≤ lim
k∈K2,k→∞

Ψ(xk)−Ψ(xk+1)

σΨ(xk)
= 0

which implies that {tk}K2 → 0. Consequently, for all
k ∈ K2 large enough, we have

Ψ(xk + λtk−1dk)−Ψ(xk)

λtk−1
> −σλtk−1Ψ(xk).

Forcing k → ∞, k ∈ K2, we get

∇ΨT (x∗)d∗ ≥ 0.

This, together with Lemma 8, implies that ∇ΨT (x∗)d∗ =
0. By (20), this forces that d∗ = 0. However, we have
shown that d∗ ̸= 0. Hence, this is a contradiction. �

V. LOCAL CONVERGENCE

In this section, we establish the locally superlinear con-
vergence of Algorithm 3.1. We begin with the following
lemma.

Lemma 12: Let {xk} be a sequence of generated by
Algorithm 3.1, and assume that x∗ is an R-regular solution
of NCP(F). Then, there exists some scalar c2 such that

∥
(
(Hk

·Ik)
THk

·Ik
)−1∥ ≤ c2, ∥

(
(Hk

·Ik
)THk

·Ik

)−1∥ ≤ c2

∥
(
(Hk)THk

)−1∥ ≤ c2

for all xk ∈ Rn which is sufficiently close to x∗.
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Proof: It follows from Proposition 6(a) that, in a s-
mall neighbor of x∗, the matrices Hk are all nonsingu-
lar. Hence, the matrices (Hk

·Ik)
THk

·Ik , (Hk
·Ik

)THk
·Ik

, and
(Hk)THk are all nonsingular. The remainder of this proof
is the same as Lemma 5 in [5]. �

Lemma 13: Assume that x∗ is an accumulation point
and is an R-regular solution of NCP(F). Furthermore,
suppose that {xk}K is a subsequence converges to x∗ and
the corresponding sequence {dk}K are always computed
by ‘Adjustment Step’, then there exists some c3 > 0 such
that for all k ∈ K large enough

∥dk∥ ≤ c3∥Φ(xk)∥.
Proof: By (8), we have

0 = (dk
Ik
)T [HT

k Φ(x
k)]Ik

+ (dk
Ik
)T [(Hk

·Ik
)THk

·Ik

+ρ(Ψ(xk))E1]d
k
Ik

≥ ∥Hk
·Ik

dk
Ik
∥2 + (dk

Ik
)T (Hk

·Ik
)TΦ(xk)

≥ ∥Hk
·Ik

dk
Ik
∥2 − ∥Hk

·Ik
dk
Ik
∥∥Φ(xk)∥

Therefore, for all xk close to x∗ enough, we have

∥Hk
·Ik

dk
Ik
∥ ≤ ∥Φ(xk)∥.

Together with lemma 12, we have

∥dk
Ik
∥ ≤ ∥

(
(Hk

·Ik)
THk

·Ik
)−1∥∥(Hk

·Ik)
THk

·Ikd
k
Ik
∥

≤ c2∥Hk
·Ik∥∥H

k
·Ikd

k
Ik
∥

≤ c2∥Hk∥∥Φ(xk)∥ (21)

Since the generalized Jacobian has upper semicontinu-
ity, there exists a scalar κ > 0 such that ∥Hk∥ ≤ κ for
all k ∈ K large enough. Let c4 = c2κ, we obtain

∥dk
Ik
∥ ≤ c4∥Φ(xk)∥ (22)

for k ∈ K large enough.
On the other hand, by the upper semicontinuity of ∂Φ,

the sequence {∥(Hk
·Ik)

THk
·Ik

∥}K is bounded. Suppose its
upper bound is κ1 > 0, then we get

∥(Hk
·Ik)

THk
·Ik

dk
Ik
∥ ≤ κ1c4∥Φ(xk)∥, k ∈ K.

Moreover, there exists a constant κ2 > 0 such that

∥gkIk∥ ≤ ∥gk∥ ≤ ∥Hk∥∥Φ(xk)∥ ≤ κ2∥Φ(xk)∥.

Therefore, by (10), we have

∥dkIk∥ ≤(κ1c4 + κ2)∥
(
(Hk

·Ik)
THk

·Ik + ρ(Ψ(xk))E2

)−1 ∥
· ∥Φ(xk)∥, k ∈ K.

Notice that ρ(Ψ(xk)) → 0, k ∈ K, it follows from
Lemma 12 that

∥dkIk∥ ≤ 2c2(κ1c4 + κ2)∥Φ(xk)∥ (23)

for k ∈ K large enough. From (22) and (23), we get

∥dk∥ ≤ ∥dkIk∥+ ∥dk
Ik
∥ ≤ [c4 + 2c2(κ1c4 + κ2)]∥Φ(xk)∥.

Then set c3 := c4+2c2(κ1c4+κ2), the proof is completed.
�

Now, we prove the convergence of entire iterative
sequence {xk}. We first cite the following conclusion,
of which the proof can be found in [10].

Proposition 14: ( [5]) Suppose that w∗ ∈ Rt is an
isolated accumulation point of the sequence {wk} ⊆
Rt. If for any subsequence {wk}J converging to w∗,
there exists an infinite subsequence J̃ ⊆ J such that
{∥wk+1 − wk∥}J̃ → 0, then the entire sequence {wk}
converges to w∗.

Lemma 15: Assume that x∗ is an R-regular solution
of NCP(F) and is an accumulation point of the iterative
sequence {xk} generated by Algorithm 3.1, then the
whole sequence {xk} converges to x∗.
Proof: Suppose that {xk}K is a subsequence converging
to x∗. Obviously, we have

{∥Φ(xk)∥}K → ∥Φ(x∗)∥ = 0 (24)

If there exists an infinite set K1 for which the adjustment
steps are taken. By Lemma 13, we get

{∥dk∥}K1 → 0.

This immediately shows that

{∥xk+1 − xk∥}K1 → 0.

If the adjustment steps are carried out only finite times
on K. Without loss of generality, suppose that the fast
steps are always taken on k ∈ K, and Ik equals to a
fixed set J ⊆ I . By (22), we obtain

{∥dk
J
∥}K → 0.

Since {xk}K converges to x∗, it holds that {xk
J}K → x∗

J .
Therefore, we also obtain that

{∥xk+1 − xk∥}K → 0.

Hence, there always exists a subsequence K on which
xk+1 − xk → 0. It follows from Proposition 14 that the
entire sequence converges to x∗. �

We next establish the relationship between the estimate
set Ik and the degenerate set β, that is, Ik is eventually
equal to β under the R-regular condition.

Lemma 16: ( [3]) Suppose that x∗ is an R-regular so-
lution of NCP(F), and the entire sequence {xk} generated
by Algorithm 3.1 converges to x∗, then Ik = β for all k
large enough.

Assumption 17: The sequence {Hk} satisfies

∥PkH
k
·βd

k
β∥

∥dk∥
→ 0

where Pk is the projector in Rn onto Hk
·β , that is,

Pk = Hk
·β [(H

k
·β)

THk
·β ]

−1(Hk
·β)

T .
To analyze the locally superlinear convergence, we

need the following result.
Proposition 18: ( [11]) Let G : Rn → Rn be locally

Lipschitzian and x∗ ∈ Rn with G(x∗) = 0 such that
all elements in ∂G(x∗) are nonsingular, and assume that
there are two sequence {xk} ⊂ Rn and {dk} ⊂ Rn with

lim
k→∞

xk = x∗ and ∥xk+dk−x∗∥ = o(∥xk−x∗∥)
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Then
∥G(xk + dk)∥ = o(∥G(xk)∥).

Denote K = {k|k ∈ N,the ‘Adjustment Step’ is taken
at the kth step}. We will prove in Theorem 20 that if
Assumption 17 holds, then K must be a finite set.

Lemma 19: Suppose that x∗ is an R-regular solution
of NCP(F), and the index set K is infinite. Denote the
sequence {d̃k}K , where d̃k is generated by solving the
following equation

((Hk)
THk + ρ(Ψ(xk))I)d = −(Hk)

TΦ(xk). (25)

Suppose Assumption 17 holds, then d̃k = dk +
o(∥dk∥), (k ∈ K), where dk is computed by the ‘Ad-
justment Step’ of Algorithm 3.1.
Proof: Since Assumption 17 holds, then

(Hk
·β)

THk
·βd

k
β = o(∥dk∥). (26)

It follows from (19) and (25) that, for k ∈ K large
enough,

((Hk)
THk + ρ(Ψ(xk))I)dk

=

[(
(Hk

·β)
THk

·β (Hk
·β)

THk
·β

(Hk
·β)

THk
·β (Hk

·β)
THk

·β

)
+ ρ(Ψ(xk))I

](
dkβ
dk
β

)

=

[(
(Hk

·β)
THk

·β (Hk
·β)

THk
·β

0 (Hk
·β)

THk
·β

)
+ ρ(Ψ(xk))I

](
dkβ
dk
β

)
+o(∥dk∥)

= −∇Ψ(xk) + o(∥dk∥)
= ((Hk)

THk + ρ(Ψ(xk))I)d̃k + o(∥dk∥).

Since x∗ is an R-regular solution of NCP(F), it follows
from Lemma 12 and {ρ(Ψ(xk))}K → 0 that

dk = d̃k + o(∥dk∥),

which is just what we want to prove. �
Theorem 20: Suppose that Assumption 17 holds and

x∗ is an accumulation point of the sequence {xk}
generated by Algorithm 3.1. If x∗ is an R-regular
solution of NCP(F), then
(i) The whole sequence {xk} converges to x∗.
(ii) For all k large enough, the ‘Fast Step’ of Algorithm
3.1 is always accepted.
(iii) The sequence {xk} converges to x∗ Q-superlinearly.
Furthermore, if F ′ is Lipschitz continuous and
ρ(Ψ(xk)) = O(∥Φ(xk)∥), the rate of convergence
is Q-quadratic.
Proof: The first assertion is just Lemma 15. To prove the
second statement, we first assume by contradiction that K
is an infinite set. From (25), we obtain that for k ∈ K

(HT
k Hk + ρ(Ψ(xk))I)(xk + d̃k − x∗)

= (HT
k Hk + ρ(Ψ(xk))I)(xk − x∗)−HT

k Φ(x
k)

= −HT
k [Φ(x

k)− Φ(x∗)−Hk(x
k − x∗)]

+ρ(Ψ(xk))(xk − x∗) (27)

Consequently, by Proposition 2 and Lemma 12 we obtain

∥xk + d̃k − x∗∥ = o(∥xk − x∗∥), k ∈ K. (28)

Therefore, it follows from Lemma 19 that

∥xk + dk − x∗ + o(∥dk∥)∥ = o(∥xk − x∗∥), k ∈ K.

which implies that

∥xk + dk − x∗∥ = o(∥xk − x∗∥), k ∈ K. (29)

Furthermore, we obtain from (29) that ∥xk
β
+dk

β
−x∗

β
∥ =

o(∥xk−x∗∥), (k ∈ K). Recall that in Step 3 of Algorithm
3.1, we defined the trial step dkt = (−xk

β , d
k
β
)T . It follows

that ∥xk + dkt − x∗∥ = o(∥xk − x∗∥), for k ∈ K. Thus,
by Proposition 18, we can say that

∥Φ(xk + dkt )∥ = o(∥Φ(xk)∥). (30)

Therefore, for all k ∈ K large enough, condition (9) of
Step 4 is always satisfied, which means k /∈ K. This is
a contradiction. Hence, the index set K is finite, and the
second statement holds.

Finally, we prove the locally superlinear convergence of
the algorithm. Since the ‘Fast Step’ is eventually always
accepted, then we have xk

β = 0 and

∥xk + dk − x∗∥ = ∥xk
β
+ dk

β
− x∗

β
∥. (31)

for k ∈ N large enough.
On the other hand, from (8), we have

[(Hk
·β)

THk
·β + ρ(Ψ(xk))E1](x

k
β
+ dk

β
− x∗

β
)

= −[HT
k Φ(x

k)]β + (Hk
·β)

THk
·β(x

k
β
− x∗

β
) + ρ(Ψ(xk))(xk

β
− x∗

β
)

= −(Hk
·β)

T [Φ(xk)− Φ(x∗)−Hk
·β(x

k
β
− x∗

β
)]

+ρ(Ψ(xk))(xk
β
− x∗

β
)

= −(Hk
·β)

T [Φ(xk)− Φ(x∗)−Hk(x
k − x∗)]

+ρ(Ψ(xk))(xk
β
− x∗

β
)

Notice that ρ(Ψ(xk)) → 0, we obtain from Lemma 12
that for k ∈ N large enough,

∥((Hk
·β)

THk
·β + ρ(Ψ(xk))E1)

−1∥ ≤ 2c2.

Therefore, it follows from Proposition 2 that

∥xk
β
+ dk

β
− x∗

β
∥ ≤ 2c2

[
∥Hk

·β∥ · ∥Φ(x
k)− Φ(x∗)−Hk(x

k − x∗)∥

+ρ(Ψ(xk))∥xk − x∗∥
]

= o(∥xk − x∗∥). (32)

Furthermore, if F ′ is Lipschitz continuous and
ρ(Ψ(xk)) = O(∥Φ(xk)∥), from (31), (32) and Propo-
sition 2(ii), it holds that

∥xk + dk − x∗∥ = O(∥xk − x∗∥)2.

Hence, the last statement is proved. �
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VI. NUMERICAL RESULTS

MATLAB is one of the main platforms used to test
numerical methods on NCP(F). In this section, we im-
plemented the program code of the proposed algorithm
in MATLAB 7.5 on a Intel Pentium 4 and report the
numerical results on some complementarity problems to
show the efficiency of the proposed algorithm. We set
the parameters as λ = 0.5, η = 0.8, ν = 0.6, δ = 1,
σ = 0.15, and set the toleration ϵ = 1.0e−6. The forcing
function is set as ρ(t) =

√
t.

The generalized Jacobian H ∈ ∂Φ(x) can be chosen
as follows:
(i) Let ξ = {j|xj = 0 = Fj(x)}.
(ii) Choose any z ∈ Rn such that zj ̸= 0 if j ∈ ξ.
(iii) Let H = (H1,H2, · · · ,Hn)

T where

Hj = (
xj√

x2
j + Fj(x)2

−1)ej+(
Fj(x)√

x2
j + Fj(x)2

−1)∇Fj(x)

if j /∈ ξ, and

Hj =
( zj√

z2j + (∇Fj(x)T z)2
− 1
)
ej

+
( ∇Fj(x)

T z√
z2j + (∇Fj(x)T z)2

− 1
)
∇Fj(x)

if j ∈ ξ.
This technique is from [12], in which the matrix H

constructed above is proved to be an element of ∂Φ(x).
For practical computation, we further redefine the set ξ,i.e,
ξ = {j|

√
x2
j + Fj(x)2 ≤ 10−6}.

Similar with [5], [13], we introduce the nonmonotone
linear search to improve the computation efficiency. That
is, we replace the linear search condition (11) by the next
condition

Ψ(xk + tkd
k) ≤ Mk − σt2kΨ(xk). (33)

where Mk is defined by

Mk = max
l=k−mk,··· ,k

Ψ(xl),

and mk+1 = min{mk + 1, 5}, m0 = 0.
We first describe some computational results of some

degenerate NCPs of small dimensions. The test problems
are as follows:

Problem 1. This is an linear complementarity prob-
lem(LCP). Here n = 4 and define F (·) as

F (x) =


1− x1 + x2 + x3

x1 − 1
x4 − 1

1 + x3 − x4


This problem is from [14] and has a unique degenerate
solution x∗ = (1, 0, 0, 1)T .

Problem 2. This example is Kojima-Shindo problem
from [15]. Let n = 4 and

F (x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

It has two solutions: a degenerate solution x1 =

(
√
6
2 , 0, 0, 0.5)T and a non-degenerate solution x2 =

(1, 0, 3, 0)T .
Problem 3. Here n = 2. This problem is example 6.1

from [16], it has a degenerate solution x1 = (1, 0)T and a
non-degenerate solution x2 = (0,

√
5−1
2 )T . The function

F (·) is defined as follows

F (x) =

[
(x1 − 1)2

x1 + x2 + x2
2 − 1

]
.

Problem 4. Here n = 3 and set F (·) as

F (x) =

 x1 − 2
x2 − x1 − x3 + x3

2 + 3
x2 + x3 + 2x3

3 − 3

 .

This problem has a degenerate solution (2, 0, 1)T .
Problem 5. This example is modified from Mathiesen’s

[17]. It has a family of solutions (ϖ, 0, 0, 0)T , where ϖ ∈
[0, 3]. If ϖ = 0, 1, 3, the solution is degenerate.

F (x) =


−x2 + x3 + x4

x1 − (4.5x3 + 2.7x4)(x2 + 1)
1− x1 − (0.5x2 + 0.3x4)(x3 + 1)

3− x1

 .

Problem 6. In this problem, we set n = 3. The only
solution of this example is x∗ = (1, 3, 0)T , which is
degenerate. The definition of F (·) is as follows.

F (x) =

 x2 − x1 − 2
x2
1 − x3 − 1

3x3
1 − x2 + x2

3

 .

The computational results of these examples are illus-
trated in Table 1, in which Iter means the number of
iterations, NF denotes the number of evaluations of the
function F , the column Fast lists the number of ‘Fast
Step’ taken during the iteration, and ‘Ik = β’ denotes
the iteration from which the degenerate set is correctly
estimated.

The numerical results in Table 1 shows that our pro-
posed algorithm is very effective. As is shown in Iter and
NF, for most initial points, the algorithm converges to
the solution very quickly and the amount of computation
on the function F is very small. On the other hand, the
column Ik = β shows that the active-set method plays
an important role on improving the efficiency of the algo-
rithm. In general, the degenerate indices of the solution
are identified only after several iterations. Moreover, the
column Fast shows that ‘Fast Step’ is accepted for most
iteration steps.

We also test our algorithm for all the NCPs in MCPLIB,
which is a collection of large scale nonlinear mixed com-
plementarity problems (see [18]). For comparison, we also
implemented the numerical experiments on the underlying
active-set semismooth method which employing the gra-
dient step in the “adjustment step”. For simplification, the
algorithm using the gradient step is denoted as Algorithm
II. The results are listed in Table II and III respectively,
in which the meaning of every columns are the same as
in Table 1.
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TABLE I.
NUMERICAL RESULTS FOR ALGORITHM 3.1

Problem Start Point Iter NF Ψ(x) Fast Ik = β

Pro 1 (2,4,1,5) 16 17 1.5e-15 15 3
Pro 1 (5,5,-5,0) 11 11 3.5e-15 11 2
Pro 1 (100,1,100,1) 19 38 2.4e-15 13 7
Pro 1 (10,10,10,10) 15 15 1.4e-15 15 3
Pro 2 (1,2,3,4) 11 16 2.0e-09 6 8
Pro 2 (5,0,0,5) 19 22 8.9e-14 14 12
Pro 2 (-5,3,-1,-5) 11 15 4.7e-18 4 5
Pro 2 (1,8,2,10) 54 58 1.3e-17 16 50
Pro 3 (1.5,-0.5) 4 5 3.3e-33 3 3
Pro 3 (3,3) 6 6 5.8e-20 4 4
Pro 3 (8,2) 5 5 1.2e-27 4 3
Pro 3 (4,6) 5 5 8.5e-17 5 0
Pro 4 (-1,-3,-5) 12 12 5.5e-19 10 0
Pro 4 (0,4,0) 9 10 5.2e-27 6 5
Pro 4 (-100,100,100) 12 12 1.1e-28 9 4
Pro 4 (6,6,6) 11 11 2.0e-16 8 0
Pro 5 (-1,-2,-3,-4) 7 7 6.2e-16 7 6
Pro 5 (5,5,5,5) 8 8 1.1e-28 8 4
Pro 5 (8,6,4,2) 8 10 3.6e-21 6 6
Pro 5 (2,4,6,8) 49 49 7.3e-16 49 3
Pro 6 (-3,6,-5) 26 29 1.3e-14 9 15
Pro 6 (3,2,1) 11 11 1.1e-14 9 7
Pro 6 (2,2,2) 4 4 8.1e-18 4 3
Pro 6 (9,9,9) 30 34 1.1e-14 7 9

As is shown in Table II and III, Algorithm 3.1 can solve
almost all the MCPLIB test problems, and the numerical
efficiency is high. For Algorithm 3.1, there are 3 problems
fails to compute a result, while for Algorithm II, there are
4 problems fails to compute a result. Furthermore, most
of the test problems are solved with fewer iterations and
function evaluations by Algorithm 3.1 than by Algorithm
II. Finally, from the Column Ik = β, Algorithm 3.1 has
better robustness on identifying the degenerate indices.
The numerical result of Table II is consistent with the
theoretical analysis. That is, the Newton step is much
better than the gradient step in the ‘Adjustment Step’.

VII. CONCLUSION

In this paper, we apply the active-set technology to
identify the degenerate indices of the nonlinear comple-
mentarity problems, and incorporate this technique into
a semismooth algorithm for solving NCP(F). In the new
proposed method, we introduce a Newtonian adjustment
direction, instead of a gradient direction, when the trial
search direction can’t guarantee the sufficient reduction of
the merit function. Numerical results illustrates that the
new algorithm is efficient.

We believe that this method can be used to solve other
problems, e.g. the mixed nonlinear complementarity prob-
lems. We will focus on this problem in further research.
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