1556

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

An Audit Model for ISO 9001 Traceability
Requirements in Agile-XP Environments

Malik Qasaimeh
King Hussein Faculty of Computing Sciences
Princess Sumaya University for Technology
Al-Jubaiha, Amman 11941, P.O. Box 1438, Jordan
Email: m.qasaimeh@psut.edu.jo

Alain Abran
Ecole de Technologie Supérieure
University of Québec, 1100 Notre-Dame Ouest,
Montréal, Québec H3W 1T8, Canada
Email: alain.abran@etsmtl.ca

Abstract— Software organizations that develop their
software products using the agile software processes such as
Extreme Programming (XP) face a number of challenges in
their effort to demonstrate that their process activities
conform to ISO 9001 requirements, a major one being
product traceability: software organizations must provide
evidence of 1SO 9001 conformity, and they need to develop
their own procedures, tools, and methodologies to do so.
This paper proposes an auditing model for 1SO 9001
traceability requirements that is applicable in agile (XP)
environments. The design of our model is based on
evaluation theory, and includes the use of several auditing
“yardsticks” derived from the principles of engineering
design, the SWEBOK Guide, and the CMMI-DEV
guidelines for requirement management and traceability for
each vyardstick. Finally, five approaches for agile-XP
traceability approaches are audited based on the proposed
audit model.

Index Terms— Agile Software Certification, Extreme
Programming, Software Process Improvement, 1SO 9001

|. INTRODUCTION

The origins of 1SO 9001 can be traced back to the
manufacturing sector; however this quality standard is
now being applied to many other types of organizations,
even health care. At the same time, the development of
software has become an important endeavor in 1SO
member countries, and so the ISO has developed and
released a set of software engineering guidelines to serve
as a roadmap to enable software development
organizations to become ISO 9001certified. These
guidelines are contained in the 1SO 90003 publication,
and those organizations that need to be 1ISO 9001 certified
can use it when audited to show evidence that they have
implemented the 1SO 9001 requirements. The 1SO 9001
certification requirements are not technology related but
are business requirements: there is ample evidence that
many small organizations have achieved I1SO 9001
certification and reap business benefits from such
certification [1-3].

©2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.7.1556-1567

This paper addresses this specific business issue of
requirements for ISO 9001 in contexts where the software
teams develop software products in an agile mode: more
specifically, this paper looks at what agile teams must put
in place to meet this business need.

The literature reports as well that some authors have
initiated research work to address this business need. For
instance, Vitoria in [4] has studied the 1SO 9001 and
TickIT standard and analyzed how it has been used in
two case studies with agile projects. Vitoria reports for
these two projects that 33% of 1SO 9001 requirements
could not be applied in an agile-XP project, 24% could be
partially applied, 20% could be applied in full, while 23%
were not relevant to the scope of the projects.

Vriens [5] has discussed CMM, ISO 9001 and their
relationships to agile-XP and Scrum: he observes that
most of the ISO 9001 requirements are independent of
development methods used. This author reports on his
experience of getting certified for both CMM Level 2 and
1ISO 9001:2000 on a time scale of 2 years by using agile
methodologies.

Wright [6] describes a successful certification evidence
for an agile-XP organization. This author describes how
the organization managed the large team through the
practice of agile-XP and highlights the tools used to
support the project team to handle the ISO 9001
requirements: this author’s focus is only on some selected
ISO 9001 requirements and he highlights their
corresponding XP support activities.

Extreme programming (agile-XP) has been selected in
the research reported here for improvement as a candidate
agile process. This selection was based on the literature
indicating a higher adoption of agile-XP over other agile
software processes. The higher adoption of agile-XP over
other agile software processes can be supported by the
literature with different case studies from both academia
and industry, such as [7, 8].

The traceability of the user requirements during the
development process is among the important auditing

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

challenges reported in the agile literature [9-11]. Software
traceability is defined in ISO 12207:2008 as “the degree
to which a relationship can be established between two or
more products of the development process, especially
products having a predecessor-successor or master-
subordinate relationship to one another.” Ramesh in [12]
defines requirement traceability as “a characteristic of a
system in which the requirements are clearly linked to
their sources and to the artifacts created during the system
development life cycle based on these requirements.” In
agile development, verifying that the requirements have
been implemented, designed, and tested in the final
product depends mainly on lightweight artifacts, such as
test cases and user accepted tests, without documented
evidence on how these requirements have been traced
through the project life cycle. This creates challenges for
software auditors, in terms of ensuring that the processes
are in conformity with a specific standard, such as I1SO
9001. For example, according to [13] a manager cannot
track progress in agile projects in the same way as in
plan-driven projects, where a manager simply asks
whether or not the necessary documents have been
produced.

Software development-related documents constitute
valuable audit evidence for Information Systems (IS)
auditors. However, this is not the only type of evidence
that can be obtained by the auditors: the IT Standards,
Guidelines, and Tools, and the Techniques for Audit and
Assurance and Control Professionals [14] point out that
other audit evidence types are also important, such as
observed processes and the existence of physical items,
activity and control logs, and system flowcharts. In
addition, analysis of the information through comparisons,
simulations, calculations, and reasoning can also be used
as audit evidence.

Developers in agile environment can adopt agile
modeling (AM) for the modeling and documentation for
the software development processes: agile modeling (AM)
is a collection of practices, guided by values and
principles for application in a day to day basis. AM
include practices such as: active stakeholder participation,
group work to create suitable models, verification,
iterative modeling, parallel model creation, application of
standards and documentation improvement. Agile
modeling has some common values with existing agile
processes, such as XP and SCRUM, like communication
with team members, simplicity, and feedback. Agile
modeling puts an emphasis on humility, briefly defined as
the openness for different ideas and perspectives. Ambler
in [15] mentions that " What makes AM a catalyst for
improvement aren’t the modeling techniques
themselves—such as use case models, class models, data
models, or user interface models—but how to apply
them". However, agile modeling does not come with
detailed procedures on how to create a software
documentation process; rather, agile modeling is closer to
an overall high level understanding of the whole system.
This will of course provides the software development
team with facilities to create modeling artifacts to their
agile process but will provide less evidences for IS

©2013 ACADEMY PUBLISHER

1557

auditors to identify the auditing evidences necessary to
assess the conformity of the agile process to a specific
standard such as 1SO 9001.

An analysis of several auditing standard and guideline
documents, such as ISACA and the International
Standard of Auditing [16] reveals that the term evaluation
has been considered as an integral part of the auditing
process. Although no clear definition of the term has been
found in either document, it has been noted that both refer
to static or dynamic analysis, review, and/or observation
of the organization’s business processes, internal control
methods, and software processes as evaluation activities.
According to [17], other synonyms for can be found in
the literature, such as analysis, appraisal, audit, review,
and examination (because evaluation is an activity that
causes anxiety in most people). This indicates that
evaluation and audit are closely related terms: the
connection between the evaluation theory and the
objectives of the paper will be discussed in the
methodology section.

This paper proposes a design of an auditing model for
agile software processes (e.g. XP) based on evaluation
theory, which can provide IS auditors with a
methodological approach to the auditing process. The
motivation for this work is to help auditors obtain
evidence in conformity with 1SO 9001. The proposed
model is aimed at providing evidence of process
traceability based on the observation of techniques and
mechanisms intended to implement the traceability
requirements. Our model is designed from an engineering
perspective: it is based on evaluation theory and on the
investigation of the principles of engineering design [18-
20]. Several best practice software engineering models
such as CMMI-DEV and SWEBOK will be used to
design the traceability auditing yardsticks.

This paper is organized as follows. Section 2 presents
an overview of auditing practices in software
organizations. Section 3 presents an analysis of
traceability requirements in 1SO 9001 and their potential
advantages in software organizations. Section 4 presents
the methodology and reviews the evaluation theory.
Section 5 presents the formulation of the auditing criteria
and the yardsticks. Section 6 presents a case study for
each of five agile-XP traceability approaches, and
discusses the auditing evidence collected for software
process traceability. Finally, section 7 presents the
conclusion of the paper.

Il. OVERVIEW OF AUDITING PRACTICES

Auditing is a systematic and independent examination
for determining whether or not an organization’s
activities (i.e. business processes) are in conformity with
the requirements of a specific standard or set of rules, and
whether or not those activities have been effectively
implemented and are suitable for achieving their
predefined objectives [21]. The activities may be carried
out at various levels, such as: organization, system,
process, project, or product. This paper focuses on ISO
9001 auditing activities conducted at the software process
level.

1558

The above generic definition of auditing embodies
several important points:

e It is a systematic examination, which means that it is
carried out in a methodical manner. It is also a
planned activity performed systemically on the
organization’s activities.

e It is an independent process, in that auditors collect
and evaluate evidence, and the results, based on their
findings, are unaffected by the client or the
organization. The role of an auditor in this case is
similar to that of a judge who collects and evaluates
evidence based on the law.

e It is conducted to evaluate whether or not an
organization’s internal controls are performing as they
are supposed to. The primary objective of the auditing
process is to establish whether or not these internal
controls have been implemented effectively.

e Auditors examine, analyze, and judge the internal
controls to determine whether or not they are suitable
for achieving their predefined objectives.

Auditors begin by extracting from 1SO 9001 the
specific information that will be considered later as the
basis for the auditing process. This basis corresponds to
the set of recognized best practices that the organization
should implement in order to comply with 1SO 9001
requirements. The evidence is a set of facts that
objectively confirms how those best practices have been
implemented and to what extent they have achieved their
objective. The results of comparing the audit basis to the
evidence are called observations. Those observations
should be subjected to several analysis cycles before they
are summarized into what are called findings — see Figure
1.

Regulations, standards, policies etc Documentation, intervews, controls

1 /\
Audit Basis :@pm ¢

Evidence

Analyze Observations

Findings

ﬁmaID Conclusion

Figure 1: Generic auditing model [12].

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

The difference between an observation and a finding is
that an observation consists of raw data which need
exhaustive examination and analysis before they are
useful to stakeholders, governments, or senior
management. A finding is the result of investigating
observations: it is the most important piece of
information, and constitutes the final result of the
auditing process. Finally, an audit conclusion is prepared
and reported to all interested parties.

The term audit came into general use after World War
11, when the military issued a standard and specifications
for developing complex products and systems. The term
auditing was introduced to refer to a set of inspection
activities conducted in large manufacturing companies (in
the electronics industry, for example) and in high risk
manufacturing sectors (in the nuclear, food, and
pharmaceutical industries, for example) [22].

In 1970, the United States Government Accountability
Office (GAO) indicated that auditing in federal agencies
needed to be conducted in a more comprehensive manner.
Moreover, the GAO was adwocating entirely different
auditing practices, addressing companies and
organizations from various perspectives. For example,
according to the GAO, auditing practices should not be
limited to the review or examination of financial
statements by accountants, and should include
investigation of:

e The organization’s level of compliance with laws
and regulations;

e The efficiency of all the activities conducted within
the organization;

e The effectiveness of the activities in achieving their
objectives.

In 1980, special standards and new laws were created
to ensure more frequent and better auditing practices to
cover all organizational sectors and their related activities.
Later, in 1990, the amount of federal government
auditing increased, and new laws and regulations were
mandated to focus on additional issues, including
performance, management, compliance, and the
effectiveness of the auditing activities themselves. As a
result, federal government audit practices have become a
key element in meeting the government’s responsibilities
and providing a degree of confidence that is understood
by all parties.

Recently, auditors have begun to scrutinize business
process controls to determine the level of adherence of
organizations to industrial standards and federal laws.
The premise is that, although a financial statement audit
is important, it provides incomplete information, since
software systems can also affect the organization’s
business processes. IT auditing should therefore be
initiated that covers all aspects of IT practices, with a
view to examining the organization in terms of its
adherence to industrial standards and federal laws [23].

IT auditing should not be confused with financial
auditing, even though there may be some overlaps in the
work of the two groups of auditors. IT auditing provides
an examination of computers, databases, and software
systems. It is a professional discipline involving several

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

different techniques for independently reviewing IT
processes (e.g. software processes), as well as IT
applications (e.g. financial records databases).

I11. ANALYSIS OF TRACEABILITY REQUIREMENTS IN ISO
9001

ISO 9001 is a quality management standard that
identifies a set of requirements designed to ensure
consistency and proficiency in terms of the activities,
techniques, and methods used in the organization. As a
result, it provides a set of requirements for the process of
gathering customer needs and for creating a product that
achieves customer satisfaction.

In non software organizations, such as pressure vessel
manufacturers, for example, it is common for a particular
material to be monitored throughout all the
manufacturing stages, and for the changes it undergoes to
be recorded. In this way, the final component can be
traced back to the original material. For 1SO 9001, the
material must be uniquely identified and the changes
recorded to show evidence of traceability1l.

For software systems, traceability of the software
process is a major requirement that has been described in
ISO 9001 and in ISO 90003 in clause 7.5. Even though
ISO 90003 does not elaborate on the techniques for
achieving the traceability of a software process, nor does
it recommend a specific method for doing so, the 1ISO
90003 guidelines for the application of 1ISO 9001 for
software state that traceability is usually implemented
through configuration management: “Throughout the
product life cycle, there should be a process to trace the
components of a software item or product, and this
process may vary in scope, according to contract or
marketplace requirements, from being able to place a
certain change request in a specific release, to recording
the destination and usage of each variant of the product.”

The reasons for implementing traceability analysis are
not discussed in either ISO 9001 or in the guidelines
document. However, we know that the advantages of
doing so for a quality management system are the
following:

A. Support for Change Management

Software projects are subject to dynamic changes at
the technical level, such as changing software project
requirements or replacing development tools, or at the
managerial level, such as changing the development
schedule or making changes because of budget
constraints. According to [15], for larger and more
complex software projects, change management practices
are challenging without a traceability mechanism in place,
because, at some point, the increasing number of people
involved in the project and its growing size will
significantly aggravate the communication difficulties
between project management and developers.

The process of change management should be
formalized, so that every change request follows a
sequence of activities, starting with the initiation of a
request for a change (assignment of a number to the
change process and acceptance of the change by the team

©2013 ACADEMY PUBLISHER

1559

manager) and ending with the implementation and testing
of the change request. Kowalczykiewicz in [24]
maintains that the change management process should be
supported with tracking techniques, so that every change
request can be tracked throughout the project life cycle.
From a development team point of view, the traceability
mechanism will allow the team to keep the development
baseline updated., because every requested change will be
handled individually, and all the related artifacts that have
been affected by the change request will be updated at the
same time; for example, for instance, when a change has
been made to improve a module N, then developers
should ensure that all the related artifacts that have a
relationship with module N are modified if appropriate,
including a modification to the associated test cases and
to the requirements related to module N.

From the 1SO 9001 point view, support of traceability
at the project level implies support of software
maintainability, because project and maintenance teams
will easily understand the relationships and dependencies
between the project components and artifacts, and they
will have the opportunity to more effectively modify the
software system based on updated customer requirements.

B. Cost Management

Software traceability techniques can support the
software development team in their efforts for change
impact analysis [25]. In this context the developers need
first to analyze and translate the change request into
software terms and then to identify the potential links
between requirements, specifications, design elements,
and tests. These links can be analyzed to determine the
scope of an initiating change. The objectives of change
impact analysis are [19]:

e Determination of the scope of the change, in

order to plan and implement work.

e Development of accurate estimates of the

resources needed to perform the work.

e Analysis of the costs/benefits of the requested

change.

e Communication to others of the complexity of
the change.

A quality management system requires project
managers to perform an impact analysis when a change is
requested by the customer. The impact analysis statement
will help the development team estimate the budget
needed to implement the change request before beginning
the change process. The statement will be analyzed by
both the project manager and the customer. According to
[19], the software change request is impacted by many
factors, such as:

e Application type;

o Novelty of the software;

e Software maintenance staff availability;

o life span of the software;

o Hardware characteristics;

e Quality of the software design, construction, the
documentation, and testing.

1560

The SWEBOK Guide [19] also point out that the
software development team should have knowledge of
the structure and content of the software system before
they begin implementing the requested change. They gain
this knowledge by identifying all the systems and
software products affected by a software change request,
and estimating the resources needed to accomplish the
change. This initial knowledge will be enhanced by the
availability of traceability mechanisms that will enable
developers and software managers to better estimate the
cost of changing the content of the system. It will also
make it easier to determine the risk associated with
implementing the change.

E. Process Improvements

Organizations are complex systems with processes that
run concurrently and interact. Improving those processes
requires discipline on the part of organizations and a
defined reference model to systematically consider their
process and project management strategies, as shown in
Table I.

The focus of ISO 9001:2008 is on process quality
improvement, and a set of requirements and guidelines
(in 1SO 90003) is defined to help organizations set up
their improvement program goals in alignment with their
business objectives. Table 1 set out the improvement
areas in 1SO 9001 at both the process and project levels,

and their corresponding CMMI key process areas (KPAS).

TABLE I
1SO 9001 OBLIGATIONS AND CMMI KPAS CORRESPONDING TO
PROCESS AND PROJECT IMPROVEMENT AREAS

1SO 9001 and 1SO 90003 obligations at the process and
project levels

. Organizational process planning

Defined team responsibilities, authority, and
communication procedures

Project resource management

Product realization planning

Production and service provision

Process control and monitoring

Project measurement and data analysis for
improvement purposes

CMMI Process CMMI Project management
management KPAs KPAs

. Organizational . Project Planning
Process Focus e Project Monitoring

. Organizational and Control
Process . Supplier Agreement
Definition Management

e Organizational . Integrated Project
Training Management

. Organizational . Risk Management
Process e Integrated Teaming
Performance e Integrated Supplier

. Organizational Management
Innovation and e Quantitative Project
Deployment Management

In terms of the relationships between software process
improvement and traceability techniques, the SWEBOK
Guide [19] points out that the tools and techniques
intended to manage the tracking of software

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

documentation and that of software releases can also
contribute to improving software process. Briefly stated,
traceability for process improvement can:

o Positively impact the communication procedures
shared by the process improvement team members,
and improve the availability of the software
project status throughout all the development
phases.

e Facilitate tracking of the sources and causes of
defects arising during the software process life
cycle, and help address them in a timely manner.

e Help to quickly determine the requirements
affected by potential changes to the source code
and to any associated test cases.

IV. METHODOLOGY

In this section, we present our design for an audit
model for software process traceability, focusing on ISO
9001 and the agile software processes. The methodology
for this design is based on the work of [26]: An
Evaluation Theory Perspective of the Architecture
Tradeoff Analysis Method — ATAM. The use of
evaluation theory in the domain of software engineering
has been investigated by [27] and [28], with a view to
helping software engineering researchers develop their
evaluation criteria, procedures, and conclusions. We have
used those concepts in this paper for developing our
auditing model for 1SO 9001 traceability requirements.

A. Evaluation Fundamentals

To design an evaluation procedure, the researcher
should consider the components proposed in [26] and
presented in Figure 2. We use these components to design
an audit model to evaluate 1SO 9001 traceability and to
select a case study that demonstrates the applicability of
our audit model — see Figure 2.

The components of an evaluation procedure are
highly interrelated with the target, and the delimitation of
the target is the first evaluation component that could
impact the selection of the evaluation method. Lopez in
[16] has classified the evaluation methods into objective-
oriented evaluation, management-oriented evaluation,
consumer-oriented evaluation, expertise-oriented
evaluation, adversary-oriented evaluation, and
participant-oriented evaluation.

The design of our audit model considers the steps of
an evaluation procedure as described by [26]:

e Target: the object under evaluation;

e Criteria: the characteristics of the target that are
to be evaluated;

e Yardstick: the ideal target against which the real
target is to be compared,;

e Data gathering techniques: the techniques
needed to assess each criterion under analysis;

e Synthesis techniques: the techniques used to
organize and synthesize the information
obtained with the assessment techniques, the
results of which are compared to the yardstick.

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

» Criteria
Target
Yardstick
. Data gathering
Evaluation tchaique
process
,, Svnthesis technique

Figure 2: Components of an evaluation procedure [16]

Evaluation process: A series of activities and tasks by
means of which an evaluation is performed.

For our purposes, the design of an audit model can be
considered as a type of hybrid approach that combines the
principles of management-oriented evaluation and
adversary-oriented evaluation [26], because it is aimed at
providing useful information to aid in decision making
and at providing a balanced examination of all sides of
controversial issues.

Once the target is known and delimited, its characteristics
must be identified for evaluation purposes [26,28]. All
the characteristics and their ideal values, which indicate
the nature of the target under ideal conditions, make up
what is known as the yardstick or standard.

Data about the real target should be obtained using
particular data gathering techniques, and assigning a
value (data, information set, numerical, etc.) to each
criterion. The data, once collected, are organized into an
appropriate structure and compared against the yardstick
by applying synthesis techniques. This comparison yields
the results of the evaluation. Finally, all the above
components above are linked through the evaluation
process [26].

Figure 3 presents the main process for designing an audit
model for 1SO 9001 traceability requirements based on
the evaluation described in [26].

V. DESIGN OF THE AUDITING MODEL

A. Scope Delimitation

For agile software processes (e.g. agile-XP),
implementing a traceability technique can help software
developers and project managers in tracking the status of
the software project and responding efficiently to change
requests. The objective of this paper is to design an
auditing model for traceability requirements using
evaluation theory. ISO 9001 is the main target standard

©2013 ACADEMY PUBLISHER

1561

for deriving the auditing model. The process for
designing this auditing model takes as its inputs the
guidelines of CMMI and the SWEBOK, as well as
Vincenti’s engineering design concepts for identifying
audit criteria.

The aim of the traceability auditing model is to help ISO
9001 software auditors to audit the agile software
processes for traceability requirements. It can also be
useful for auditing traditional software processes.

B. Design of the Audit Criteria and Yardsticks

As stated by [26], criteria can be elicited either using
an obligatory standard that implicitly contains the criteria
to be applied in the evaluation, or, if no such standard has
been defined, the auditors should refer to any relevant
study of targets, relevant standards, or ideals that might
be relevant to the target in question. In our work here, the
obligatory standard is ISO 9001.

The development of an audit model for agile process
traceability could not be achieved without support from
other relevant software engineering standards, such as
CMMI and the engineering design concepts in [18]. The
structure of the proposed auditing model is presented in
Figure 4.

150 9001 and
Extreme
Programming
o

I

Target Delimitation ----» Scope Delimitation
Vincenti's

Engineering

Designof Audit Criteria
and Yardstick

Case Delimitation

CMMI and
SWEBOK
Design for
Traceability

@

Output

Figure 3: Design methodology for the audit model

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

1562

[epow SuUnIpny

P A 4 4 4 [L 4
: _ ' | | i |
o i m i
: “ m ! m | | m
/ “ ! “ ! ! " " \
m | : m m m m
/; . ' o anspael i < i | \
J ! ' piNSpae ! |)
Sy | | sl Jumpny | “ -
= | m | zaornspaek 1#1onspaek
/ | “ ' Sunipny Funipny
. _ SidPnspaeA "
6 1omspaed Lipomspaed Funipny :
dunipny dunipny cyonspael
/ dupipny
popaw {iprquace poipau popam popawm

I Jo uonEIHUIP]

Aipquasen aip jo Suriojmuopy

Luprquoden a jo udisa(g

Lrprquasen ap jo aiheaa xo)

Management

criteria

N

ineering

Eng

criteria \

Figure 4: The structure of the proposed auditing model.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

v' Engineering criteria

The list of the audit criteria presented next is based on
the concepts of theoretical tools and the operational
principles of engineering in [18,20,28].

¢ Design of the traceability method for agile

The main objective of an agile software traceability
method is to provide the software developers and project
managers with a tool that supports their development
tasks. Vincenti’s classifications of theoretical engineering
tools have enabled us to see what kinds of engineering
tools have been used in the design of traceability methods.
In [18], these tools are used by engineers to help them
with the design process. They include intellectual
concepts for thinking about designs, as well as
mathematical methods, theories, and formulas, which can
be simple or complex, for performing design calculations.
The following are the audit yardsticks for these criteria:
Yardstick #1

Intellectual concepts, which represent the design ideas
people have in mind, are expressed in natural language.
These concepts are subject to the qualitative reasoning of
engineers, before quantitative analysis and design
calculations are performed.

Yardstick #2

Mathematical models, which are useful for
quantitative analysis and design, can be either simple or
complex. This scientific knowledge must be reformulated
to make it applicable to providing engineering knowledge
about the design.

e Coverage of the traceability method

The set of operational principles underlying an
engineering design is classified as a fundamental design
concept in [18]. These principles define the essential
fundamental concept of a device (in this context, a
traceability method) and provide a high-level description
of the design objectives, either of the whole design or of
each design component. Thus, designers provide either a
complete engineering design for the problem in the
domain, or a design component that partially addresses
the problem in the domain based on the objectives of the
operational principles.

The following are the audit yardsticks for this
criterion:

Yardstick #3

Full operational principles: The engineering design of
a traceability method considers different life cycle
iterations, such as requirement specifications, architecture,
detailed design, source code, and testing phases.
Yardstick #4:

Partial operational principles: The engineering design
of the traceability method focuses on the relationships
between entities developed in the same iteration of the
process life cycle; for example, the artifacts produced
during the requirements elicitation process (e.g. the user
stories in agile-XP).

v' Management Criteria

©2013 ACADEMY PUBLISHER

1563

In both CMMI and the SWEBOK Guide, traceability
management activities are described as a part of the
configuration management process area. The SWEBOK
Guide describes configuration management as a software
engineering knowledge area focused on systematically
controlling changes to the configuration, and on
maintaining the integrity and traceability of the
configuration throughout the system life cycle. The
viewpoint of a configuration management system in the
SWEBOK Guide is not limited to a software product, but
rather covers the functional and/or physical
characteristics of hardware, firmware, or software.

CMMI describes configuration management as a
supporting process at maturity level 2, which focuses on
identification, control, status reporting, and auditing for
the traceability items. These items are intended to
describe any artifact produced during the software life
cycle, such as requirements specifications, architectural
design, source code, test cases, and so on.

The audit criteria presented below are based on the
concepts of configuration management described in the
SWEBOK Guide and CMMI.

o Identification of the traceability method

In the SWEBOK Guide, identification of a software
traceability item is considered a fundamental step in the
construction of a software system that can be controlled
and traced during the software process life cycle. At the
same time, both the SWEBOK Guide and CMMI stress
the importance of assigning unique identifiers to
traceability items and developing a strategy for labeling
software items and describing their relationships.

The following are the audit yardsticks for this criterion:
Yardstick #5:

Traceability item identification: The traceability
method should consider the related traceability
identification activities, which include mechanisms for
identifying and labeling the traceability items and/or
establishing identification schemes that automatically
assign unique identifiers to each traceability item.
Yardstick #6:

Traceability item relationships: The proposed
schemas for the identification of the relationships and
dependencies between the traceability items are
considered within a specific development phase or within
the entire software life cycle.

Yardstick #7:

Traceability role identification: The traceability
method assigns privileges to the software project
stakeholders to access or modify the software items in the
project baseline or to monitor the status of the software
project according to their role in the project. The aim is to
comply with the best practices for building a traceability
management system in CMMI, and identifying the owner
responsible for each traceability item is one of those
practices.

e Monitoring of the traceability method

Status monitoring and updating of the software
project is a requirement for designing a software life
cycle traceability mechanism. As discussed in section 3,
it helps software developers and project managers

1564

determine the status of the software project and gauge the
impact of changes to the cost, resources, and duration of
the project.

The following are the audit yardsticks for this criterion:
Yardstick #8:

Traceability documentation: The information produced
during the software life cycle to support the traceability
method is reported. The documentation in this case is
different from that produced during the software process
life cycle, such as software requirements or test cases.
The traceability method produces the required
documentation, which covers the entire software life
cycle and provides project stakeholders with useful
information regarding project status. This information can
take the form of ad hoc queries to answer specific
questions, or the periodic production of design reports.
Examples of such documentation are traceability logs, the
history of traceability items, and the relationship of
traceability items, and so on.

Yardstick #9:

Documentation access: Traceability documentation
and items should be stored in repositories in such a way
that software stakeholders are able to access and retrieve
them at any stage of the development process. The
storage and retrieval mechanisms are evaluated, and the
right of access that has been granted based on the role of
the traceability stakeholders to assess them is monitored.

VI. CASE STUDY

A. Context and Scope

To study the applicability of the auditing model
proposed, we have selected five case studies which are
compatible with the scope defined in section 5.1. The
selection of these case studies is based on the following
steps and criteria — see Table II:

e A search was conducted of IEEE Xplore and
ScienceDirect-Elsevier for any paper proposing a
methodology, technique, or framework to enhance the
traceability of an agile software process.

e The following terms were used in browsing the
content of IEEE Xplore, ScienceDirect-Elsevier:

Agile AND traceability

XP AND traceability

Agile AND configuration management
XP AND configuration management

ANENENEN

e A title and abstract analysis was performed to select
the papers that discuss XP traceability. Note that some
authors discuss the principles of XP, but refer to them
as agile principles (i.e. they do not specify which agile
process they are improving, and selected XP as a
candidate process without referring to it by name).

e All the papers that discuss agile traceability in general,
without proposing a methodology, technique, or
framework for managing traceability, were discarded.

e As some authors discuss the same proposed
traceability approach in a number of different research

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

articles, only their most recently published article was
selected.

XP was proposed by Kent Beck in 1999, and very
few papers discuss agile software process traceability or
XP traceability prior to 2003. As a result, the papers we
identify were published between 2003 and 2011.

TABLE Il
SELECTED CASE STUDIES FOR THE AGILE (XP) TRACEABILITY AUDIT

A Study to Support Agle | To propose 2 model called the
Angebna | MethodsMore Effectively | traceabibty meta model (Tm) | March, 2011
Espinoza, huan | Thoough Traceability | to supportthe traceability of XP
Gubajosa by developingthree features of
the Trnl\f which are user-
definable traceabibty bnks,
roles, and kmkage rules. The
proposed modelis amed at
improving and exhancing XP
maintamabity processes.
AnAgle Approachto | Topropose a tool called Echo,
Christopher | Capturing Requirements and | to captre user stores, andany | October, 2003
Lee, Lug Traceabity infomal mformation generated
Guadagm, duringthe development phases,
iaoping fia and restructure that mnfommation
to better support XP traceabibty
and changs management.
Traceabulity Pattems: An | Topropose a conceptual model
Approachto Requirement. | that capturesatraceabilty | November, 2008
Component Traceabiityin | pattemn XP. The approach
AbiGhazaan | Agle Software focuses on providing
Development traceabilty troughmapping the
wser storis to the source cods
componznts after definmg
cetain design constramts, such
a5 the location, naming, and
content constraims.
Supportng Program | To propose Zelda, whichis an
Sukanya | ComprehensionmAgle | Echpse phugzintool designedto | August, 2009
Ratangtayanon, | with Links to User Stones | - work with XP to support the
Susan Elfott traceabilty of source codes
Sim Rosalva generated using agle software
Gallardo- processes by helping developers
Valencia create ks from user stopes to
source cods, and test cases
Extreme Poduct Line | Toppropose an approach for
YarGhanam | Engheering Managng | managng XPrarablityand | Augut, 2009
FrankMawer | Vanabilty & Traceabibty | traceabibty usmg executable
via Executable specifications.
Specifications

B. Discussion of the Evidence Gathered

The international standard of auditing [16] defines
audit evidence as "all the information used by the auditor
in arriving at conclusions on which the audit opinion is
based.” The audit evidence is described by the ISA as
"proofs, facts and information about something to
convince the auditors that something is true, fair or false.
It gives auditors reasonable assurance and not absolute
assurance about something." This standard was designed
for auditing financial systems and financial records, and

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

examples of auditing evidence are counting records,

internal and external documents, and physical

observations.

For information systems, auditors usually look for
evidence of the existence of internal controls. The COBIT
(Control Objectives for Information and related
Technology) [19] defines internal IT controls as specific
activities performed by persons or systems designed to
ensure that business objectives are met. As indicated by
COBIT, internal IT controls can be implemented at
different levels (organization, process, and product) to
support business objectives, such as process activity
integrity, reliability, and compliance.

In our paper here, we look at the set of mechanisms,
techniques, approaches, and documentation implemented
to support the traceability method pertaining to internal
agile software process control. We have audited the case
studies described in Table II, based on our proposed
auditing model, to determine whether or not they can
provide evidence of the implementation of the audit
yardsticks — see Table Ill. For all the case studies in this
paper, the evidence was gathered using the information
system audit procedure described by the Information
Systems Audit and Control Association (ISACA), as
follows:

* Observation of traceability processes and the existence

of the components of the traceability method.

» Documentary audit evidence, such as results of the

traceability method execution, and records of the method

performance.

* Representations of the method, such as written analyses,

and descriptions of the traceability method and

traceability method flowcharts.

The following comments can be made based on the

evidence gathered:

e The traceability method in Case A implements a
meta model for agile process traceability based on
the 1S0O-24744:2007 meta model, which was
designed based on the UML architecture and
notation. Case B was also designed based on the
UML architecture and notation. Both cases therefore
provide evidence of intellectual concept design rather
than mathematical model design, and similarly for
Cases C, D, and E.

e Case B shows partial evidence of operational
principles, as the traceability approach only covers
the requirements phase, and similarly for Case C,
since it shows support for traceability for the
requirements, design, and coding phases. No
evidence was found that the traceability approach is
supported in the planning, testing, validation, and
verification phases.

e For Case B, there is partial support for the
documentation access audit yardstick, since a
mechanism was implemented in this case for
accessing and retrieving the traceability items
produced during the requirements phase, but there is

©2013 ACADEMY PUBLISHER

1565

no evidence of right of access mechanisms. The
same is true for Case D.

No evidence was found for traceability role
identification in Case B, and the project stakeholders
have the same right to access, modify, and retrieve
the traceability items. The same is true for Case D.
Little evidence was found of support for the audit
model in Case E. The approach presented in Case E
was implemented to support traceability between the
coding and testing phases in XP.

For Case E, no evidence was found for traceability
item relationship identification or traceability role
identification. Nor was evidence found of traceability
documentation, such as traceability logs, the history
of traceability items, and the relationships among
traceability items, and so on. No evidence was found
supporting documentation access or access rights

either.
TABLE I1I:
EXISTENCE OF EVIDENCE IN THE SELECTED CASE STUDIES

Evidence | Evidence Evidence | Evidence exists | Evidence exists
exists exists exists

Evidence | Evidencedoes | Evidence does | Evidence does | Evidence does
doesnot not exist not exist not exist not exist
exist

Evidence | Evidence does | Evidence does | Evidence exists | Evidence does
Exists not exist not exist not exist

Evidence | Evidence Evidence | Evidencedoes | Evidence exists
doesnot exists exists not exist
exist

Evidence | Evidence Evidence | Evidence exists | Evidence exists
xists exists Exists

Evidence | Evidence Evidence | Evidence exists | Evidence does
exists exists exists not exist

Evidence | Evidencedoes | Evidence does | Evidence does | Evidence does
exists not exist not exist not exist not exist

Evidence | Evidence Evidence | Evidence exists | Evidence does
exists exists exists not exist

Evidence | Evidence |Evidencedoes| Evidence | Evidence does
exists pattially notexist | paiallyexists | not exist
exists

1566

VII. CONCLUSION AND FUTURE WORK

Auditing is an important process in a software
organization which needs 1SO 9001 certification. This
means that the organization must demonstrate with
documented evidence that their processes have been
executed in conformity with 1SO 9001 [20, 21]. However,
software organizations that adopt lightweight
documentation processes such as XP find it a challenge to
demonstrate that they meet 1SO 9001 requirements by
providing such documentation.

This paper proposes an auditing model for 1SO 9001
traceability requirements for agile software processes, in
particular for XP. This model can help software
organizations in their effort to achieve 1SO 9001
certification and help software auditors to extract auditing
evidence that demonstrates the ability of a software
organization to implement the 1SO 9001 traceability
requirements. The design methodology for the proposed
auditing model is based on evaluation theory. The model
consists of two major categories of auditing criteria:
engineering criteria and management criteria. Each
auditing criterion consists of several auditing yardsticks,
which focus on the evidence that can be extracted to
demonstrate process conformity to the 1SO 9001
traceability requirements. Five different case studies have
been audited based on the proposed model to investigate
whether or not they conform to the 1ISO 9001 traceability
requirements. The evidence gathered shows at least
partial support for the requirements in each case study,
however no case study has demonstrated full support for
the auditing yardsticks.

This paper has focused solely on designing an auditing
model for the traceability requirements of ISO 9001.
Future work is required to extend this model to include
other ISO 9001 requirements, such as the control of
design and development changes, as well as measurement
analysis and improvement. This would allow the auditing
model to cover all the mandatory 1SO 9001 requirements
for both software organizations and software auditors.

REFERENCES

[1] Griesemer, J. (1999). “A Field Study of the Impact of 1SO
9001 on Software Development in the United States”, PhD
thesis, Pace University, United State of America.

[2] Fuller, G. K. (2006). “Antecedents and Consequences of
Certification of Software Engineering Processes”, PhD
Thesis, University of British Columbia, Canada.

[3] Ferreira, A., G. Santos , G. Santos, R.Cerqueira, M.
Montoni, A. Barreto, A. Oliveira, S. Barreto, A. Rocha.
(2007). “Applying ISO 9001:2000, MPS, BR and CMMI
to Achieve Software Process Maturity: BL informatica’s
pathway”. 29th Int. Conference on Software Engineering,
Minneapolis, USA, pp. 642-651.

[4] Vitoria, D. (2004). “Aligning XP with ISO 9001:2000-
TickIT guide 5.0”, Master Thesis Software Engineering”,
Blekinge Institute of Technology, Sweden.

[5] Vriens, C.H. (2003). “Certifying for CMM level 2 and
1ISO9001 with XP@Scrum”, Conference on Agile
Development, IEEE Computer Society, Washington DC,
USA, pp. 120-124.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

[6] Wright, G. (2003). “Achieving ISO 9001 Certification for
an XP Company", Lecture Notes in Computer Science,
Extreme programming and Agile Methods, agile universe,
Springer Berlin / Heidelberg, New Orleans, pp. 43-50.

[7] Vijayasarathy, L. and Turk D. (2008). “Agile Software
Development: A Survey of Early Adopters”. Journal of
Information Technology Management, 19(2), pp. 1-8.

[8] Schindler, C. (2008). “Agile Software Development
Methods and Practices in Austrian it Industry Results of an
Empirical ~ Study”, International Conferences on
Computational Intelligence for Modeling, Control and
Automation, Vienna, Austria, pp. 321-326.

[9] Espinoza A. and Garbajosa J., “Study to Support Agile
Methods More Effectively through Traceability”,
Computer Science Innovations in Systems and Software
Engineering, VVol. 7, No. 1, 2011, pp. 53-69.

[10] Ghazarian A., “Traceability Patterns: An Approach to
Requirement Component Traceability in Agile Software
Development”, 8th WSEAS International Conference on
Applied Computer Science, Venice, Italy, 2008, pp. 236-
241,

[11] Lee C., Guadagno L., Jia X., "An Agile Approach to
Capturing Requirements Traceability”, 2nd International
Workshop on Traceability in Emerging Forms of Software
Engineering , Canada, October, 2003, pp 104-110.

[12] Ramesh B., Jarke M., “Towards Reference Models for
Requirements Traceability”, IEEE Transactions on
Software Engineering, Vol. 27, No. 1, 2011, pp. 58-93.

[13] Cohn M. and Ford D. "Introducing an Agile Process to an
Organization", IEEE Computer, 36(6), 2003, pp.74-78.

[14] Systems Audit and Control Association (ISACA),
“Standards, Guidelines and Procedures for information
system auditing”, 2010, http://www.isaca.org/Knowledge
Center/Standards/Documents/ALL-1T-Standards-
Guidelines- and-Tools.pdf.

[15] Scott Ambler, "Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process”, John
Wiley & Sons, 1st edition, pp. 1-400.

[16] International Federation of Accountants, “International
Standard on Auditing 500", 20009.
http://lwww.ifac.org/sites/default/files/downloads/a022-
2010-iaash-handbook-isa-500.pdf

[17] Scriven M., "Evaluation in the New Millennium: The
Transdisciplinary Vision”, in S. |. Evaluating Social
Programs and Problems: Visions for the new millennium
Donaldson & M. Scriven (Eds.). Mahwah, NJ: Lawrence
Erlbaum Associates. 2003 pp.19-42.

[18] Vincenti W. G., “What Engineers Know and How They
Know It”, The John Hopkins University Press, Baltimore,
London, 1990.

[19] Abran A., Bourque P., Dupuis R., Moore J., Tripp L.,
“Guide to the Software Engineering Body of Knowledge”,
IEEE Computer Society Press, 2004, pp. 1-228.

[20] Meridji. K, "Analysis of Software Engineering Principles
From an Engineering Perspective”, Ph.D. dissertation,
Ecole de technologie supérieure, Montréal (Canada), 2010.

[21] Paul C., "Process Driven Comprehensive auditing: a New
Way to Conduct 1SO 9001:2008 Internal Audits", ASQ
Quality Press, 2nd edition, June 24, 2009.

[22] Chorafas N., "IT auditing and Sarbanes-Oxley Compliance:
Key Strategies for Business Improvement”, Auerbach
Publications, 1st edition, October 29, 2008.

[23] Chambers A., and Rand G, "Operational Auditing:
Auditing Business and IT Processes”, Wiley, 2nd Edition,
2010.

[24] Kowalczykiewicz K., and Weiss D., “Traceability: Taming
Uncontrolled Change in Software Development”, 4th

JOURNAL OF SOFTWARE, VOL. 8§, NO. 7, JULY 2013

National Software Engineering Conference, Tarnowo
Podgorne, Poland, 2002.

[25] Kilpinen, M.S. (2008) ‘The Emergence of Change at the
Interface of Systems Engineering and Software Design: An
Investigation of Impact Analysis', PhD-thesis, Cambridge
University Engineering Department.

[26] Lopez M., “An Evaluation Theory Perspective of the
Architecture Tradeoff Analysis Method (ATAM)”,
CMU/SEI-20Q0-TR-012, Pittsburgh, PA, CMU/SEI, 2000.

[27] Lopez M., "Application of an Evaluation Framework for
Analyzing the Architecture Tradeoff Analysis Method",
Journal of Systems and Software, VVol.68, No.3, 2003, pp.
233-241.

[28] Zarour M., "Methods to evaluate lightweight software
process assessment methods based on evaluation theory
and engineering design principles”, Ph.D. dissertation,
Ecole de technologie supérieure, Montréal (Canada), 2010.

[29] IT Governance Institute, Cobit 4.1, Information Systems
Audit and Control Association (ISACA),
ISBN:1933284722 9781933284729,2007.
“http://dl.acm.org/citation.cfm?id=1534415".

[30] Qasaimeh M., and Abran A., “Investigation of the
Capability of XP to Support the Requirements of 1ISO 9001
Software Process Certification”, Eighth ACIS International
Conference on Software Engineering Research
Management and Applications, Montreal, Canada, 2010,
pp. 239-247.

[31] Qasaimeh M., and Abran A., "Extending Extreme
Programming User Stories to Meet 1ISO 9001 Formality
Requirements”, Journal of Software Engineering and
Applications, Vol.4, No.11, 2011, pp.626-638.

Malik Qasaimeh is an assistant
professor of software engineering in
Princess Sumaya University for
Technology-Jordan. He received his
PhD degree in software engineering
form University of Quebec (Canada,
2012). He has a Master’s degree in
Information Systems Security from
Concordia University (Canada, 2007),
and a Bachelor’s degree in Computer
Science from Jordan University of Science & Technology,
(Jordan, 2003). He has published several papers in a reputed
journals and international conferences. His research interests
include agile software processes certification and compliance,
software process and product improvement, software
engineering 1SO standards and software engineering principles.

Alain Abran is a Professor and the
Director of the Software Engineering
Research Laboratory at (ETS) university
of Quebec (Montréal, Canada). He
Holds a Ph.D. in Electrical and
Computer Engineering (1994) from the
Ecole Polytechnique de Montréal
(Canada) and Master’s degrees in
Management Sciences (1974) and
Electrical Engineering (1975) from the University of Ottawa.
He has over 15 years of experience in teaching in a university
environment, and more than 20 years of industry experience in

©2013 ACADEMY PUBLISHER

1567

information systems development and software engineering. His
research interests include software productivity and estimation
models, software engineering foundations, software quality,
software functional size measurement, software risk
management, and software maintenance management. He has
published over 300 peer-reviewed publications and he is the
author of the book “Software Metrics and Software Metrology”
and a co-author of the book “Software Maintenance
Management” (Wiley Interscience, Ed., & IEEE-CS Press). Dr.
Abran is co-editor of the Guide to the Software Engineering
Body of Knowledge — SWEBOK, and he is the chairman of the
Common Software Measurement International Consortium
(COSMIC).

