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Abstract—Applications that use sparse representation are 
many and include compression, regularization in inverse 
problems, feature extraction, and more. Recent activity in 
this field has concentrated mainly on the study of pursuit 
algorithms that decompose signals with respect to a given 
dictionary. The K-SVD algorithm is an iterative method 
that alternates between sparse coding of the examples based 
on the current dictionary and a process of updating the 
dictionary atoms to better fit the data. However, the existing 
K-SVD algorithm is employed to a single feature space 
meaning that the pursuit algorithms are assigned to the 
given subspace definitely. The work proposed in this paper 
provides a novel adaptive way to adapting dictionaries in 
order to achieve the dual subspace sparse signal 
representations, the update of the dictionary is combined 
with a rank symmetrical relationship of the proposed dual 
subspace by incorporated a new mechanism of matrix 
transform, which is called dual K-SVD. Experimental 
results conducted on the ORL and Yale face databases 
demonstrate the effectiveness of the proposed method. 

Index Terms—subspace learning; sparse representation; K-
SVD; rank symmetry 

I. INTRODUCTION 

In recent years, subspace-based approaches have been 
widely studied as a viable solution to the challenging 
problem of face recognition across lighting conditions, 
facial poses and facial expressions, etc. Most traditional 
algorithms, such as traditional principal component 
analysis (PCA) [1-3] and linear discriminant analysis 
(LDA) [4-9] put an image object as a 1-D vector. 
However, for high-dimensional problem such as face 
identification, the traditional LDA still suffers from the 
small sample size (SSS) problem or “undersampled” 
problem which arises whenever the number of samples is 
smaller than the dimensionality of the samples [10]. In 
the past, many LDA approaches have been developed to 
deal with this problem. Briefly, there are four major 
extensions: pseudoinverse LDA (PLDA) [11], regularized 
LDA (R-LDA) [12-14], LDA/GSVD [15-16] and two-
stage LDA [17-18]. Among these LDA methods, a very 
popular technique usually called PCA plus LDA that 
belongs to the two-stage LDA is most frequently used. In 
this method, the PCA is first used for dimensionality 
reduction before the application of LDA, as it was done 
for the example in Fisherfaces [19] or in EFM [20]. 
Actually, it has been proved that the null space of wS  
contains the most discriminant information when an SSS 

problem occurs. Based on this fact, Chen et al. [21] 
presented the null space LDA (NLDA) method, which 
only extracts the discriminatory information present in 
the null space of the wS . Yu [22] proposed a direct-LDA 
(D-LDA) method, which takes the range space of the 
between-class scatter matrix as the intermediate subspace. 
Yang [17] proposed a complete LDA (C-LDA) 
framework, which searches the discriminant vectors both 
in the range space and in the null space of wS . The 
random subspace [23-24] is an efficient technique to 
overcome the SSS problem, in which the dimensionality 
of the training data is reduced by random sampling on the 
facial features. On the basis of random subspace, Zhang 
[25] proposed a dual principal random discriminant 
analysis (RDA) algorithm, which combines the 
advantages of Fisherface and D-LDA. As discussed 
above, it is observed that those classical subspace-based 
decomposition techniques were just carried out on the 
only one principal subspace from the within-class or 
between-class scatter matrix, which leads to a loss of 
some significant disciminant information in the high 
dimensional facial space since some potential subspaces 
are complementary in terms of the discriminative power. 
Recently, Song [26] presented a novel fuzzy supervised 
learning method with dynamical parameter estimation for 
discriminant analysis. By this means, it dynamical 
achieves the distribution information of each sample of 
images that represented with fuzzy membership degree.  

Moreover, sparse signal representations using over-
complete dictionaries are used in a variety of fields such 
as pattern recognition, image and video coding [27-28]. 
Over-completeness of a set means that it has more 
members than the dimensionality of the members. Given 
an over-complete set of basis signals, called the 
dictionary, the goal is to express input signals as sparse 
linear combinations of the dictionary members. The 
advantage of over-completeness of a dictionary is its 
robustness in case of noisy or degraded signals. Also, it 
introduces greater variety of shapes in the dictionary, thus 
leading to sparser representations of a variety of input 
signals. Extraction of the sparsest representation is a hard 
problem that has been extensively investigated in the past 
few years. The K-SVD algorithm is an iterative method 
that alternates between sparse coding of the examples 
based on the current dictionary and a process of updating 
the dictionary atoms to better fit the data. However, the 
existing K-SVD algorithm [29-30] is employed to a 
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single feature space meaning that the pursuit algorithms 
are assigned to the given subspace definitely.  

In this paper, the objective of our study is to establish a 
dual adaptive K-SVD algorithm, which is based on a rank 
symmetrical relationship to solve supervised 
dimensionality reduction problem by unfolding the 
feature vectors along different projection directions. The 
work proposed in this paper provides a novel adaptive 
way to adapting dictionaries in order to achieve the dual 
subspace sparse signal representations, the update of the 
dictionary is combined with a rank symmetrical 
relationship of the proposed dual subspace by 
incorporated a new mechanism of matrix transform, which 
is called dual K-SVD (DK-SVD). Therefore, the DK-SVD 
approach has the potential to outperform the traditional 
feature extraction algorithms, especially in the cases of 
small sample sizes. Experimental results conducted on 
two face image databases demonstrate the effectiveness 
of the proposed method. 

II. THEORETICAL ANALYSIS ON A NEW DUAL SUBSPACES 
LEARNING MODEL 

Most previous approaches to subspace learning, such 
as Fisherface, D-LDA and C-LDA, are performed on the 
only one principal subspace from the within-class or 
between-class scatter matrix. In this work, we study how 
to conduct discriminant analysis in high dimensonal 
space by unfolding the feature vectors along different 
projection directions. Also, we explore the characteristics 
of the dual discriminant analysis based algorithm in 
theoretical aspect. 

A. A New Dual  Subspaces Learning Model 
Theorem 1: Suppose , ( )n nA M F∈  is a matrix with 
m n×  dimension in the field of F , and its rank is r . 
Then a matrix product can be defined as 0AB =  if and 
only if , ( )n nB M F∈  and its rank is n r− .   
Proof: Since , ( )n nA M F∈  and its rank is r , by the 
theory of matrix analysis, a matrix transformation can be 
attained by two invertible matrices P  and Q  as follows, 

( )

( ) ( ) ( )

0
0 0

r n rr
r

n r r n r n r

E
PAQ I× −

− × − × −

⎤⎡
= ⎥⎢

⎥⎣ ⎦
 

where, , ( )n nP M F∈ , , ( )n nQ M F∈ , rE  is identity matrix, 

rI  is equivalent standard form of matrix A . 

Let ( )1 *

( ) ( ) ( )

00
0

r n rr r
n r

n r r n r n r

Q B B
E

× −×−
−

− × − × −

⎤⎡
= ⎥⎢

⎥⎣ ⎦
 

Obviously, *( )n rrank B n r− = −  
Thus, * 1 0n rPAQB PAQQ B PAB−

− = = =  
Since P , Q  are invertible matrices, a conclusion can be 
reached 

0AB =  and *( ) ( )n rrank B rank B n r−= = −  
Hence, *

n rB QB −=  is a concise representation of a dual 
subspace with a rank symmetrical relationship to A , 

which is complementary to the original feature space of 
A . □ 

As analyzed above, by Theorem 1, we may further 
deduce the dual subspace learning with respect to the 
Fisher discriminant analysis. 

B. Discussions 
As described previously, most existing approaches to 

subspace learning are performed on the only one 
principal subspace from the within-class or between-class 
scatter matrix. Specifically, Fisherface is implemented in 
the principal subspace of wS , D-LDA is carried out in the 
principal subspace of bS , C-LDA is conducted by 

splitting the wS  into its null space and its orthogonal 
complement. Subsequently, Zhang [25] proposed a RDA 
algorithm which combines the advantages of Fisherface 
and D-LDA. In this method, Fisherface and D-LDA are 
respectively applied to the two principal subspaces of wS  
and bS  for simultaneous discriminant analysis. However, 
due to the defects of Fisherface and D-LDA, some 
potential and valuable discriminatory information is also 
lost in the space of wS  and bS . Also, the computational 
complexities of Fisherface [19], R-LDA [12-14], D-LDA 
[22], C-LDA [17] and the proposed dual discriminant 
analysis are listed in the Table 1.  

 
TABLE I.  

THE COMPUTATIONAL COMPLEXITIES OF FISHERFACE, D-LDA, C-LDA, 
R-DA AND PROPOSED METHOD 

Method Fisherfac
e 

D-
LDA 

C-
LDA R-DA Proposed 

method 

Complexity 3( )O M  
3( )O C

 

3(2 )O M

 
2( )O M d 3(2 )O M

 
Obviously, the computation requirement of Fisherface 

increase cubically with the increase of the training sample 
size M , while the complexity of R-LDA depends on the 
sample size M  and data dimensionality d , therefore, for 
high-dimensional data where d  is larger than M . 
Moreover, the computation requirement of D-LDA does 
with the increase of the number of classes C  and the 
computation scales of C-LDA and the proposed dual 
discriminant analysis depend on the number of reduced 
subspaces. As analyzed above, although the proposed 
algorithm can be more effective than other ones for 
classification, it needs more CPU time for whole process 
because it costs computation using more feature vectors. 

III. THE K-SVD ALGORITHM 

A different update rule for the dictionary can be 
proposed, in which the atoms (i.e., columns) in dictionary 
are handled sequentially. This leads to the K-SVD 
algorithm, as developed by Aharon et al [29-30]. Keeping 
all the columns fixed apart from the j0-th one,

0j
a , this 

column can be updated along with the coefficients that 
multiply it in X . We isolate the dependency on 

0j
a  by 

rewriting minimization as 
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0 0

0

22
2

1

m
T T T

j j j j j jF
j j jF F

Y AX Y a x Y a x a x
= ≠

⎛ ⎞
− = − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

      (1) 
In this description, T

jx stands for the j-th row of X . The 

update step targets both 
0j

a  

and 
0

T
jx , and refers to the term in parentheses, 

0

0

T
j j j

j j
E Y a x

≠

= − ∑                                 (2) 

as a known pre-computed error matrix. 
The optimal 

0j
a and 

0

T
jx minimizing Equation (1) are 

the rank-1 approximation of 
0j

E , and can be obtained via 

an SVD, but this typically would yield a dense vector 
0

T
jx , 

implying that we increase the number of non-zeros in the 
representations in X .  

In order to minimize this term while keeping the 
cardinalities of all the representations fixed, a subset of 
the columns of 

0j
E should be taken – those that 

correspond to the signals from the example-set that are 
using the j0-th atom, namely those columns where the 
entries in the row 

0

T
jx  are non-zero. This way, we allow 

only the existing non-zero coefficients in 
0

T
jx  to vary, and 

the cardinalities are preserved. Therefore, we define a 
restriction operator,

0j
P , that multiplies 

0j
E from the right 

to remove the non-relevant columns. The matrix 
0j

P  has 

M rows (the number of overall examples), and 
0j

M  

columns (the number of examples using the j0-th atom). 

We define ( )0 0 0

TR T
j j jx x P=  as the restriction on the row 

0

T
jx , choosing the non-zero entries only. 

For the sub-matrix, 
0j

E , 
0j

P , a rank-1 approximation 

via SVD can be applied, updating both the atom 
0j

a  and 
the corresponding coefficients in the sparse 
representations,

0

R
jx . This simultaneous update may lead 

to a substantial speedup in the convergence of the training 
algorithm. The K-SVD algorithm is described in detail as 
follows. 

K-SVD Task: Train a dictionary A  to sparsely 
represent the data{ } 1

M
i i

y
=

，by approximating the solution 
to the optimization problem. 

Step1. Initialization: Initialize 0k = , and initialize 
dictionary: Build 0

m nA R ×= , either by using random 
entries, or using m  randomly chosen examples; 

Step2. Normalization: Normalize the columns of 0A . 
Main Iteration: Increment k  by 1, and apply 

Step3. Sparse Coding Stage: Use a pursuit algorithm to 
approximate the solution of 

2
1 2

arg mini i kx
x y A x−= −  subject to 00

x k≤  

obtaining sparse representations ix for 1 i M≤ ≤ . These 
form the matrix kX . 

Step4. K-SVD Dictionary-Update Stage: Use the 
following procedure to update the columns of the 
dictionary and obtain kA : Repeat for 0 1,2, ,j m=  

Define the group of examples that use the atom 
0j

a , 

[ ]{ }0 01 , , 0j ki i M X j iΩ = ≤ ≤ ≠  

Compute the residual matrix 

0

0

T
j j j

j j
E Y a x

≠

= − ∑ , 

where jx are the j’th rows in the matrix kX . 
Restrict 

0j
E by choosing only the columns 

corresponding to
0j

Ω , and obtain 
0

R
jE . 

Apply SVD decomposition
0

R T
jE U V= Δ . Update the 

dictionary atom 
0 1ja u= , and the representations by 

[ ]
0 11,1R
jx v= Δ ⋅ . 

Step5. Stopping Rule: If the change in 
2

k K F
Y A X− is 

small enough, stop. Otherwise, apply another iteration. 
Output: The desired result is kA . 

IV. DUAL ADAPTIVE K-SVD ALGORITHM 

In this section, the detailed algorithm of dual adaptive 
K-SVD is described as follows:  

Step1. Use PCA to transform the input space Rn  into 
an m-dimensional space Rm , where =rank(R)m . Pattern 
x in R n is transformed to be PCA-based feature vector y 
in Rm . 

Step2. In PCA transformed space Rm , work out the 
wS ’s orthogonal eigenvectors 1 2, , , mθ θ θ , and the 

first h  ones are corresponding to positive eigenvalues. 
Let ( )1 1 2, , , hP θ θ θ=  and 1 1

ˆ T
bbS P S P= , 

1 1
ˆ T

ttS P S P= , work out orthonormal eigenvectors 

1 2, , , hμ μ μ ( 1h C≤ − ) of ˆ
bS  and ˆ

tS  corresponding to 
the first h  largest eigenvalues. Then, the optimal 
discriminant vectors derived from the range space of wS  
are ( )1 1,2, ,j jP j hα μ= = . 

Step3. Since , ( )w n nS M F∈  and its rank is r , where, 

{ }min ,r n N C= − , n  is the dimension of samples, N  is 
the total number of training samples, and C  is the 
number of classes. By Theorem 1, we may obtain a dual 
matrix 

*

, ( )w n nS M F∈ , where, the rank of 
*
wS  is n r− . 

Work out the 
*
wS ’s orthogonal eigenvectors 

1 2, , , n rε ε ε − , suppose the first t  ones corresponding 
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to the positive eigenvalues. Let ( )2 1 2, , , tP ε ε ε=  and 

2 2
T

b bS P S P= , 2 2
T

t tS P S P= , work out the orthogonal 

eigenvectors 1 2, , , tν ν ν ( 1t C≤ − )  of  bS  and tS  
corresponding to the first t  largest eigenvalues. Then, 
the optimal discriminant vectors derived from the dual 
space of 

*
wS  are ( )2 1,2, ,j jP j tβ ν= = . 

Step4. Work out the between-class scatter matrix bS ’s 
orthogonal eigenvectors 1 2, , , nϑ ϑ ϑ , suppose the 
first l  ones are corresponding to positive eigenvalues. 
Let ( )1 1 2, , , lQ ϑ ϑ ϑ=  and 1 1

ˆ T
wwS Q S Q= , 

1 1
ˆ T

ttS Q S Q= , work out orthonormal eigenvectors 

1 2, , , lω ω ω ( 1l C≤ − ) of ˆ
wS  and ˆ

tS  corresponding to 
the first l  largest eigenvalues. Then, the optimal 
discriminant vectors derived from the range space of bS  
are ( )1 1,2, ,j jQ j lξ ω= = . 

Step5. Since , ( )b n nS M F∈  and its rank is d , we may 

also obtain another dual matrix 
*

, ( )b n nS M F∈ , where, the 

rank of 
*
bS  is n d− . Work out the 

*
bS ’s orthogonal 

eigenvectors 1 2, , , n dσ σ σ − , suppose the first z  ones 
corresponding to the positive eigenvalues. Let 

( )2 1 2, , , zQ σ σ σ=  and 2 2
T

w wS Q S Q= , 

2 2
T

t tS Q S Q= , work out the orthogonal eigenvectors 

1 2, , , zκ κ κ ( 1z C≤ − )  of  wS  and tS  corresponding to 
the first z  largest eigenvalues. Then, the optimal 
discriminant vectors derived from the dual space of 

*
bS  

are ( )2 1,2, ,j jQ j zδ κ= = . 

Step6. Let ( )1 1, ,j jP j hα μ= = , ( )2 1, ,j jP j tβ ν= = , 

( )1 1, ,j jQ j lξ ω= =  and ( )2 1, ,j jQ j zδ κ= = act as 
projection axes to form the feature extractor 

( ), , ,j j l zϕ α β ξ δ= . 
Step7. Apply K-SVD algorithm to update the 

dictionary atom of feature extractor ϕ , and the 
corresponding coefficients in the dual sparse 
representations can be obtained. 

V. EXPERIMENTAL RESULTS 

The proposed method is used for face recognition and 
tested on the ORL [31] and Yale [32] face image database. 
To evaluate the proposed method properly, we also 
include experimental result for the D-LDA [22], C-LDA 
[17], LPP [33], NPE [34]. For its simplicity, the k nearest 
neighbor (k-NN) [35] classifier with Euclidean distance is 
employed for the classification. The parameter of k-NN is 
fixed as 3k = . 

A. On ORL Database 
The ORL contains a set of faces taken between April 

1992 and April 1994 at the Olivetti Research Laboratory 

in Cambridge. It contains 40 distinct persons with 10 
images per subject. The images were taken at different 
time instances, with varying lighting conditions, facial 
expressions, and facial details. All persons are in the up-
right, frontal position, with tolerance for some side 
movement. In this experiment, each image is normalized 
and presented by a 23 28×  pixel array whose gray levels 
ranged between 0 and 255. Some sample images from the 
ORL database are shown in Figure 1. 

 
Figure 1. Some sample images from the ORL face image database 

We randomly choose ( 3, 4,5)θ θ =  images per 
individual for training, and the rest images are used for 
testing. To make full use of the available data and to 
evaluate the generalization power of algorithms more 
accurately, ten experiments were performed. The final 
result was the average recognition rate over the ten 
random training sets.  

Table1 shows the average recognition accuracies of 
D-LDA, C-LDA, LPP, NPE and the proposed method 
under a varying number of the training samples per 
individual on the ORL face image database. As shown in 
Table 2, it is therefore reasonable to believe that the 
proposed method is the most effective one no matter what 
kind of kernel function is employed. 

TABLE II.  

COMPARISON OF RECOGNITION RATES ON THE ORL DATABASE IN 
THE KERNEL SPACE 

Methods Number of training samples 
3 4 5 

D-LDA  88.19 90.46 92.81 

C-LDA 88.78 91.72 94.23 

LPP 89.21 92.02 94.46 

NPE 88.69 91.62 94.11 

Proposed method 90.58 93.21 95.19 

B. On Yale  Database 
The Yale face image database contains 165 grayscale 

images of 15 individuals. There are 11 images per subject, 
one per different facial expression or configuration. We 
manually crop the facial portion of each face image. The 
each cropped face is resized to 40 50×  pixels. Some 
sample images from the Yale database are shown in 
Figure 2. 

 
Figure 2. Some sample images from the Yale face image database 

We randomly choose the former 5 images per 
individual for training, and the rest images are used for 
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testing. Similarly, ten experiments were performed to 
obtain the average recognition rate. Table 2 presents the 
recognition accuracies of D-LDA, C-LDA, LPP, NPE and 
the proposed method. For all methods, the corresponding 
dimensionality of the reduced subspace is also given in 
Table 3. 

TABLE III. 

THE RECOGNITION RATES (%) AND CORRESPONDING 
DIMENSIONALITY ON THE YALE DATABASE 

Methods D-LDA  C-LDA LPP NPE 
Propose

d 
method

Accurac
y 97.78 98.42 98.09 97.91 98.97 

CPU 
Time (s) 3.09 5.53 4.28 4.47 5.80 

 

Again, the recognition accuracy of each method listed 
in Table 3 indicates that the proposed method is still the 
most effective one among the other traditional approaches. 
However, it is worth stressing that the proposed method 
needs more CPU time for whole process (i.e. dual space 
for K-SVD) because it costs more computation for 
classification. 

VI. CONCLUSIONS 

In this paper, we presented a novel dual K-SVD 
algorithm based on a rank symmetrical relationship to 
accomplish the mission of feature extraction and 
recognition. In particular, it is worth stressing that the 
method which is developed in the feature extraction 
approach revealed more robust characteristics as far as 
the relationship between the potential subspaces of scatter 
matrices and the novel mechanism of rank symmetrical 
relationship is concerned. The reason why the presented 
method yields a better performance can be attributed to 
the fact that the proposed DK-SVD can efficiently 
manage the sparse representations of different face 
subspaces being degraded by poor illumination 
component. 
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