
A Novel Multi-agent Evolutionary Algorithm for
Assembly Sequence Planning

Congwen Zeng

School of Electronic Engineering, Xidian University
Xi'an, Shaanxi, 710071, China

cwzeng@guet.edu.cn

Tianlong Gu, Liang Chang
Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology

Guilin, Guangxi, 541004, China
changl@guet.edu.cn

Fengyin Li

School of Computer Science and Engineering, Guilin University of Electronic Technology
Guilin, Guangxi, 541004, China

changl@guet.edu.cn

Abstract—Many evolutionary algorithms for assembly
sequence planning (ASP) have been researched. But those
algorithms have lots of blind searching because individuals
have little consideration about geometry and assembly
process information of product in the evolutionary process.
To improve individuals' intelligence and decrease blind
searching, motivated by the self-assembly computing and
multi-agent evolutionary algorithm, a novel multi-agent
evolutionary algorithm for assembly sequence planning
(NMAEA-ASP) is presented. In the algorithm, learning,
competition and mutation are designed for each agent.
Learning, competition and mutation are realized by
assembly and disassembly. Some notions such as assembly-
unit, power about assembly are also introduced.
Experimental results show that NMAEA-ASP can find an
approximate solution faster than other evolutionary
algorithms.

Index Terms—Assembly sequence planning, Evolutionary
algorithm, Assembly, Learning, Mutation

I. INTRODUCTION

Assembly sequence planning is one of the most
important works be done during the assembly. Since it
may be costly to overlook a potential candidate assembly
sequence, it is desirable to select a satisfactory sequence
from the set of all feasible sequences. However, assembly
sequence planning has been proven to be NP-complete in
theory for large scale of assemblies. Su [1] pointed out
that whole product assembly process planning is much
more complicated under assembly constraints comparing
with single-part process planning. The search space of
assembly sequence planning is exponentially in
proportional to the number of parts or components and
the assembly relationships between them. It will consume
a lot of computation time or memory space when the
assembly is complex. Once the number of parts or

components is above a threshold value, assembly
sequence planning can hardly be accomplished
successfully [2]. Therefore, the new efficient methods are
urgently called to resolve the complex problem.

Soft computing techniques applicable or artificial
intelligence (AI) has been researched and applied for
ASP problem in the past few years. In general, Intelligent
algorithms such as artificial neural network, simulated
annealing, and genetic algorithm (GA) can improve the
efficiency of the process that searches for an assembly
sequence. The concept of GA to assembly planning is
introduced in literature [3]. Literature [4] has proposed
algorithms to search for the best assembly sequence
based on simulated annealing [4]. A particle swarm
optimization algorithm is proposed for a simple assembly
line balancing [5]. A new PSO encoding scheme is
presented by defining the assembly sequences and
disassembly sequences in one position matrix of a
particle. The position matrix of a particle defines an
assembly sequence and a disassembly sequence in the
new encoding scheme. In this way, the sequence of
assembly and sequence can be simultaneously planned by
optimizing the position matrix of a particle. Prediction of
operating loads contribution to assembly relation and
product behavior is proposed in literature [6]. Product
running, operating loads will lead to change of assembly
relation of product parts affecting product behavior.
Based on Jacobian-Torsor method, the Jacobian-Torsor
tolerance model, considering contribution of operating
loads, was extended and corrected, the assembly error
(assembly relation change) resulted from operating loads
can be calculated. A two-level genetic structure to
dynamically adjust the parameters of GA is proposed in
the literature [7]. Approaches based on GA to minimize
production costs for ASP with consideration of physical
constraints is proposed [8,9]. An approach to multi-

1518 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1518-1525

criteria assembly sequence planning using genetic
algorithms is presented[10]. Literature [11] proposed a
scatter search approach to the optimum disassembly
sequence problem. Bin Jiao presents a cooperative co-
evolution particle swarm optimization (PSO) for flow shop [12].
Fuqing et al. propose an improved PSO algorithm with
decline disturbance [13]. A novel immune algorithm
simulating the biological immune system was proposed to
solve the Assembly Sequence Planning(ASP) problem.
Implementation methods such as appetency computation,
antibody generation, immunity selection, and memory
cell update were provided.The immune algorithm in
sequence planning problem solving reflected
characteristics such as diversity, immune self-
adjustment,immune memory and distributed parallel of
the immune system. The immune algorithm was superior
to those genetic algorithms in both global search
capability and convergence speed.As a result,the immune
algorithm was a prospective and efficient way to tackle
ASP[14]. Literature [15] proposed a guided genetic
algorithms for solving larger constraint assembly problem.
Guided-GAs are proposed wherein the proper initial
population and the alternation of crossover and mutation
mechanisms are covered to overcome assembly planning
problems that contain large constraints. The optimal
assembly sequence is obtained through the combination
of Guided-GAs and the Connector-based assembly
planning context as previously suggested. Literature [16]
proposed a memetic algorithms with guided local search
to solve assembly sequence planning. Literature [17]
proposed an artificial immune systems for assembly
sequence planning exploration. artificial immune systems
(AIS) were proposed to help solve the assembly sequence
problem. In AIS algorithm, the antibody (Ab) in the
immune system is simulated to encounter one or more
unknown antigens (Ags). Moreover, the clonal selection
concept is employed in the immune system in which a
better antibody will be selected in each generation of
revolution and different antibodies will be cloned to
protect the infection of the original antigen. With this
mechanism, the shortcoming such as the traditional GAs
to converge in local optimal solution will be
overcome.Literature [18] proposed Assembly planning
using a novel immune approach. Literature [19] present
Application of memetic algorithm in assembly sequence
planning. Wei Zhou et al. present a novel BCGA-based
hybrid algorithm (BGHA) for assembly sequence
planning by combining bacterial chemotaxis (BC) with
genetic algorithm (GA) [20]. To improve individuals'
intelligence, A multi-agent evolutionary algorithm for
connector-based ASP (MAEA-ASP) is presented which is
integrated with the multi — agent systems. learning 、

competition and crossover -mutation are designed as the
behaviors of agent which locate lattice-like structure
environment[21]. MAEA-ASP is designed for the connector-
based ASP and also has large blindness search.

In nowadays evolutionary algorithm for ASP,
individual is encoded as a permutation order of parts(such
as parts or connectors), but each individual has many
parts whose position can’t satisfy basic constraint
conditions.

Let’s take fig 1 for example. Traditional evolutionary
algorithms search a solution in the space which includes
all permutation sequences. Obviously, many permutation
sequences including “1, 2, 6” sequence in the space
aren’t solutions. It is also to say that traditional genetic
algorithms will generate a great deal of permutation
sequences which are infeasible solutions in the evolution
process, which results in the inefficiency of solution-
searching process. If there is a limit that the part 1,6 must
be prior to 2, then much blindness search can be avoided.
Adleman described how he used traditional tools of
molecular biology to solve a 7-vertex instance of
hamilton path[22]. If a possible solution is searched based
on self-assembly computation idea, these permutations
including such as “1,2,6” sequence can be avoided
effectively in fig 1. It is also to say it is possible to avoid
semi-blindness of traditional evolutionary operators by
using similar self-assembly computation idea. Hongchun
QU and Youlan WANG also present a self-assembling
approach to simulation of phototropism[23], Pan
Xiaoying and Jiao Licheng present a multi-agent social
evolutionary algorithm for project optimization
scheduling[24]. Motivated by self-assembly computation
and multi — agent systems, to improve Agents'
intelligence and decrease greatly search space of
problems, a novel multi-agent evolutionary algorithm for
assembly sequence planning(NMAEA-ASP).

Fig 1. An example of assembly graph

The remainder of this paper is organized as follows.

Section 2 discusses NMAEA-ASP. Section 3 provides
experimental results compared NMAEA-ASP with other

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1519

© 2013 ACADEMY PUBLISHER

GAs. Section 4 concludes the paper with
recommendations for the algorithm.

.

II. NMAEA-ASP

A. Environment of Agents
According to literature [24], an agent is a physical or

virtual entity. Agent has the following properties: (a) it is
able to live and act in the environment; (b) it is able to
sense its local environment; (c) it is driven by certain
purposes; (d) it has some reactive behaviors. As can be
seen, the meaning of an agent is very comprehensive, and
what an agent represents is different for different
problems. In general, four elements should be defined
when multiagent systems are used to solve problems. The
first is the meaning and the purpose of each agent. The
second is the environment in which all agents live. Since
each agent has only local perceptivity, so the third is the
local environment. The last is the behaviors that each
agent can take to achieve the purpose.

The environment is organized as a latticelike structure,
which is similar to literature in the paper[24].

Latticelike structure definition: All Agents live in a
latticelike environment L. The size of L is
Lsize×Lsize,where Lsize is an integer. Each agent is
fixed on a lattice-point and can only interact with the
neighbors. Suppose that the agent located at (i, j) is
represented as Li,j, i,j=1,2,…,Lsize,then Neighborsi,j are
defined as fig 2.

The Latticelike structure can be described as the one in
fig.2. Where each circle represents an agent, the data
represent the agent’s position in the Latticelike structure,
and two agents can interact with each other if and only if
there is a line among them.

In the agent lattice, agents will compete with others so
that they can gain more chance to produce offsprings to
achieve their purposes. Because each agent can only
sense itself local environment, the behaviors can only
take place between the agent and the neighbors. An agent
interacts with the neighbors so that information is
transferred among them. The information is diffused to
the whole agent lattice in such a manner. As can be seen,
the model of the agent lattice is closer to the real
evolutionary mechanism in nature than the model of the
population in traditional EAs.

B. Agent Definition
Now some notions relating with NMAEA-ASP are

introduced.
Assembly-unit : The least unit of assembly. It can be

described as follow:

Assembly-unit
{

unit_id;
power; // the sequence strength between assembly-

unit and others.
other imformation;

 }

Fig.2 The lattice model of agents enviorment

Unit_id is the identification of Assembly-unit ,

Suppose Assembly-unit _sequence is a1,a2,a3,…ai,…ak,
then power(ai, ai+1) denotes the sequence strength
between Assembly-unit ai and Assembly-unit
ai+1(0<i<k). The power of sequence(i,j) is different form
sequence(j,i). The power of sequence(i,i) is zero.

Agent: An agent is a physical or virtual entity. Agent is
different from that of the traditional EAs because its
intelligences. This paper, It is designed as follow:

Agent
{
 Agent_id,Agent_position,Fitness;
 Assembly-unit _sequence;

UnAssembly-unit _set;
Learning();Competition(); Mutation();

}

Assembly-unit _sequence points to the part of a

possible solution. But UnAssembly-unit _set is the set of
unassemblied Assembly-unit . Agent_position(i, j) shows
the agent location on ith row and jth column in the lattice-
like structure Environment. An agent has three
evolutionary actor: Learning、Competition、Mutation.

Suppose a1 、 a2 、 …ak-1 、 ak is Assembly-unit
_sequence of Agent A 。 power(ai, A) = (power(ai,
ai+1)+power(ai-1, ai))/2 (1<i<k),power(ak, A) = power(ak-1,
ak) and power(a1, A)=power(a1, a2)。Suppose Assembly-

1520 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

unit b is assemblied in it’s Assembly-unit _sequence in
position(i), then power(b,A,i) = (power(ai,b) +
power(ai+1,b))/2 （1<i<k）,but power(b,A,k) = power(b,
ak). Maxpowerposition(Assembly-unit a, indiviudal A)
return the ith position which make power(ai, A) maxium.
If maxium is NULL, then return NULL,
i∈{1,2,3…k,NULL}.

Fitness shows the ability of agents’ survives. Suppose
the Assembly-unit _sequence of an agent is a1a2…an, it
can be computed as follow:

∑
−

=
+=

1

1
1),(

n

i
ii aaPowerfitness

C. Assembly and Disassembly

Assembly: The process that an Assembly-unit is
added into the Assembly-unit _sequence of an agent is
called assembly. Suppose an agent is A, then Assembly
can be described as follow :

Assembly(Assembly-unit a)
{
 i= Maxpowerposition(a, A);
 if (i!=NULL)
 insert a into Assembly-unit _sequence of A

with the ith position;
 Delete the corresponding Assembly-unit a from

UnAssembly-unit _set of A;
}

Disassembly: The process that an Assembly-unit is

taken out of Assembly-unit _sequence of A and the
corresponding Assembly-unit is added into
UnAssembly-unit _set of A is called disassembly.
Suppose an agent is A, then Disassembly can described
as follow:

Disassembly(Assembly-unit a)
{
 Delete the Assembly-unit a from the Assembly-unit

_sequence of A;
Insert a into UnAssembly-unit _set.
}

D. Evolutionary Operators
 Initialization
Firstly, the information of Assembly-unit s and the

assembly power between any two Assembly-unit s are
inputted as origins data. Array agents[n] is created
randomly and n must be the squared of some int number.
The m of agent[m](m∈{0,1……n-1}) is equal to
i*sqrt(n)+j. where i,j is the number of position(i,j) which
is assigned by its lattice position. Assembly-unit
_sequence is settled on null. UnAssembly-unit
_set={0,1……,n-1}. Fitness is settled on 0.

 Learning
In NMAEA-ASP, the learning actor of an agent is

most important operator. Learning actor is consisted of
two parts: self-learning and neighbors-learning. The duty
of self-learning is to add Assembly-unit from

UnAssembly-unit _set into the Assembly-unit _sequence
as many as possible. The duty of neighbors-learning is to
compare itself fitness and that of neighbors. If the fitness
of agent A is minimum, agent A will be replaced with
one of neighbors randomly. Learning actor can be
described as follow:

Learning()
{
 Self-learning:
 find each Assembly-unit from UnAssembly-unit

_set randomly.
 Do assembly(Assembly-unit);
 neighbors-learning:
 if(fitness<= the fitness of any neighbors)
 Replace the information of agent such as Assembly-

unit _sequence、UnAssembly-unit _set、 Fitness
and so on with that of one of neighbors randomly.

}

 Competition

In this operator, the fitness of an agent is compared

with those of neighbors. The agent can survive if the
fitness is maximum; Otherwise the agent would die with
probity Pc, and the child of the one with maximum fitness
among the neighbors will take up the lattice-point.

Suppose that the competitive behavior is performed on
the agent Li,j located at (i, j), and Maxi,j is the agent with
maximum fitness among the neighbors of Li,j,
namely,Maxi,j∈Neighborsi,j and
∀Agent∈Neighborsi,j,then Agent(F)≤Maxi,j(E). If Li,j(E)
≤Maxi,j(E), then the mutation of Maxi,j generates a child
Agent, Childi,j, to replace Li,j with porblity pc, otherwise
Li,j is left untouched. The purpose of the competitive
behavior is to eliminate the agents with low fitness, and
give more chances to the potential agents.

 Mutation

In NMAEA-ASP, mutation is disassembly Assembly-

unit from agent’s Assembly-unit _sequence. Suppose the
Assembly-unit number of Assembly-unit _sequence is m
in an agent A, then mutation can be described as follow:

Mutation ()
{
 For(i=0;i< m;i++)
{

 If(power(Assembly-unit i,A)<avgpower)
{

 P=random()%10;
 If(p<3)

 Disassembly(Assembly-unit i)
}

}
}

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1521

© 2013 ACADEMY PUBLISHER

E. The flow of NMAEA-ASP

Fig 3. Flowchart of NMAEA-ASP

Suppose the Assembly-unit _sequence of agent Q =
(T1, T2, ……Tm), Ti is the ith unit of Q, power (Ti,Ti+1)
denotes the strenghth of border bond of Assembly-unit s.
Then regard the following equation as the fitness(F)
function.

() ∑
−

=
+=

1

1
1),(

m

i
ii TTpowerQF

NMAEA-ASP combined the idea of self-assembly

computation and multi—agent systems. But there are
many differences from traditional evolutionary
algorithms which embody in operators.

The flowchart of NMAEA-ASP is illustrated in fig 3.

III. EXPERIMENTAL RESULTS

The parameters of NMAEA-ASP is setted as follow:
the number of Agents is 9. Pc is set to 0.2. Fas in the

table.2 and fitness in the table.4 are ()QF . The
Assembly-unit _sequence is consisted of
part_sequence 、 direction_sequence 、 tool_sequence 、
type_sequence. The value of power(a, b) can be
calculated by:

Power(a,b)=Wc×Ca,b + Wd×Da,b + Wt×Ta,b (1)
Where power(a,b) represents the bond power between

Assembly-unit a and Assembly-unit b; if a=b, then
power(a,b)=0;

Wc is the weight of the assemblytype;
Wd is the weight of the assemblydirection;
Wt is the weight of the assemblytool;

Ca,b is the assemblytype between the Assembly-unit a
and the Assembly-unit b. When the assemblytype if
Assembly-unit Ca and Cb is the same, Ca,b=1; otherwise,
Ca,b=0;

Da,b is the assemblydirection between the Assembly-
unit a and the Assembly-unit b. When the assemblytype
if Assembly-unit Da and Db is the same, Da,b=1;
otherwise, Da,b=0;

Ta,b is the assemblytool between the Assembly-unit a
and the Assembly-unit b. When the assemblytool if
Assembly-unit Ta and Tb is the same, Ta,b=1; otherwise,
Ta,b=0;

In contrast with the literature[14], the weight of the
engineering data of the Assembly-unit in formula(1) is
all settled on 1. In contrast with the
literature[15][16][17][21], the weight of the engineering
data of the Assembly-unit in formula(1) is all settled on
formula(2).

where n is the number of the item of engineering

information and k is the rank of the item of engineering
information[15][16][17][21].

NMAEA-ASP is written in VC++6.0. The test
environment is that of a Pentium2.4 GMHz PC at 1024
MB RAM. Ten tests are executed.

A. Experiment On Gear pump
Fig 4 shows a gear pump consists of 22 parts, there are

16 parts by decreasing the same bolt and pin. Table I
shows 16 gear pump parts、assembly tool、type of gear
pump parts.

Fig 4. Gear pump

Table II shows A comparison among three EAs (Gear

pump). Obviously NMAEA-ASP can find a better ASP
with less time than other two GAs. Table III shows some
assembly planning sequences with NMAEA-ASP.

1522 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

TABLE I.

ASSEMBLY DATA OF GEAR PUMP

partid name tool type
1 Pump body G1 L1
2 Driven gear G1,G2 L3

3 wad G1,G3,G5 L2

4 Wad capper G1,G6 L2

5 Lock nut G1,G6 L2

6 Driving Gear G1,G2 L3

7 mat G1,G2,G3 L1

8 pin G2,G4 L4

9 Pump lid G1 L1

10 Washer G2,G3 L4

11 Small bolt G6 L4

12 Steel ball G2,G3 L1

13 Localize G2,G3 L1

14 spring G2,G3 L1

15 Small washer G1,G3 L1

16 Big bolt G1,G5 L1

TABLE II.

A COMPARISON AMONG THREE EAS (GEAR PUMP)
Method Average

fitness

Maximum

fitness

Average

Runtime(S)

GAs 23.7 31 126

Immune GAs 63.2 66 53

NMAEA-ASP 64.2 66 2.8

TABLE III.

SOME ASSEMBLY PLANNING SEQUENCES

B. Experiment On Stapler

Figure 5. Stapler: diagram of parts

The stapler consists of 18 parts. According to the

principle of connector settings, 8 connectors can be
specified. Figure 5 illustrates the parts of the electric fan.
Figure 6 shows the precedence graph for the stapler
connectors[15].

Fig 6. Stapler: connector-based precedence graph.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1523

© 2013 ACADEMY PUBLISHER

TABLE IV.
A COMPARISON AMONG FIVE EAS ON STAPLER

Method Average

runtime

Average

fitness

MaTimum

fitness

Guided-GAs 1.572 5.495 5.667

MAs
2.494 5.667 5.667

AIS 2.453 5.667 5.667

MAEA-ASP 0.827 5.667 5.667

NMAEA-ASP 0.363 5.667 5.667

The results of comparison for Guided-GAs、Memetic
algorithms(MAs) 、AIS 、MAEA-ASP and NMAEA-
ASP can be found in Table IV. From the results of
NMAEA-ASP in Table 4, the average computation took
up 0.363s. Obviously, NMAEA-ASP is undoubtedly a
preferable selection for assembly planning decision.

IV. CONCLUSION

The new idea of NMAEA-ASP is motivated by DNA
molecular computation and multi-agent evolutionary
algorithm whose original goal is to deal with
combinatorial optimization problems by decreasing blind
searching and increasing intelligence searching. At the
same time, there are many evolutionary algorithms for
dealing with ASP. We take a try that evolutionary
operators are realized with assembly and disassembly
methods. The experiment results show that algorithm has
a faster speed in finding solutions.

Recently, symbolic ordered binary decision diagram
(OBDD) is presented for assembly sequence planning
[25]. NMAEA-ASP will be developed and tested with a
symbolic OBDD assembly technology in the future study.

ACKNOWLEDGEMENTS.

This work is supported by the National Natural
Science Foundation of China (No. 61100025, 61163041,
61262030), the Natural Science Foundation of Guangxi
Province (No.2012GXNSFBA053169,
GXNSFAA053220) and the Science Foundation of
Guangxi Key Laboratory of Trusted Software (No.
KX201109).

REFERENCES
[1] Su Q A, “hierarchical approach on assembly sequence

planning and optimal sequences analyzing”, Robot
Comput-Integrated Manuf 25(1), pp.224–234, 2009

[2] .Laperriere L, Eimafaghy HAGAPP, “A generative
assembly process planner”, J Manuf Syst 15(4), pp.282–
293, 1996

[3] Bonneville F, Perrard C, Henrioud JM, “A genetic
algorithm to generate and evaluate assembly plans”,
Proceedings of the IEEE Symposium on Emerging
Technology and Factory Automation,pp.231–239,1997.

[4] Milner JM, Graves SC, Whitney F, “Using simulated
annealing to select least-cost assembly sequences”, Proc
IEEE Int Conf Robot Autom 3, pp.499–504,1994.

[5] Qi Lv, “Simple Assembly Line Balancing Using Particle
Swarm Optimization Algorithm”, International Journal of
Digital Content Technology and its Applications, 5(6),
pp.297-304, 2011

[6] Pengzhong Li, Weimin Zhang and Can Chen, “Prediction
of operating loads contribution to assembly relation and
product behavior”, Journal of software, 7(2), pp.296-302,
2012

[7] Chen SF, Liu Y, “An adaptive genetic assembly sequence
planner”, Int J Comput Integer Manuf 14(5), pp. 489–
500,2001.

[8] Romeo MM, Lee HS, Luong KA, “A genetic algorithm for
the optimization of assembly sequences”, Comput Ind Eng
50, pp.503–527,2006.

[9] Guan Q, Lin JH, Zhong YF , “A concurrent hierarchical
evolution approach to assembly process planning”, Int J
Prod Res 40(14), pp.3357–3374,2002.

[10] Young-Keun Choi,Dong Myung Lee and Yeong Bin Cho,
“An approach to multi-criteria assembly sequence planning
using genetic algorithms” 2009.

[11] Beatriz Gonzáleza, Belarmino Adenso-Díaz, “A scatter
search approach to the optimum disassembly sequence
problem”, Computers & Operations Research 33, pp.1776–
1793, 2006.

[12] Bin Jiao et al, “A Cooperative Co-evolution PSO for
Flow Shop Scheduling Problem with Uncertainty”, Journal
of computers, 6(9), pp. 1955-1961, 2011

[13] Fuqing Zhao et al. An improved PSO algorithm with
decline disturbance, Journal of computers,. 6(4), pp. 691-697,
2011.

[14] Ning Li-hua,Gu Tian-long, “Immune algorithm for
assembly sequence planning problem”, Computer
Integrated Manufacturing Systems. 13(1), pp.81-87, 2007.

[15] Tseng, H. E.,“Guided genetic algorithms for solving larger
constraint assembly problem”, International Journal
Production. Research, 44(3), pp.601–625,2006.

[16] Hwai-En Tseng, Wen-Pai Wang and Hsun-Yi Shih, “Using
memetic algorithms with guided local search to solve
assembly sequence planning”, Expert Systems with
Applications, 33(2)：451-467, 2007.

[17] Chien-Cheng Chang, Hwai-EnTseng, Ling-PengMeng,
“Artificial immune systems for assembly sequence
planning exploration”, Engineering Applications of
Artificial Intelligence, 22, pp.1218–1232, 2009.

[18] Cao, P.B., Xiao, R.B.,“Assembly planning using a novel
immune approach”, The International Journal of Advanced
Manufacturing Technology, 31 (7–8), pp.770–782, 2007

[19] Liang Gao, Weirong Qian ,Xinyu Li, Junfeng Wang.
“Application of memetic algorithm in assembly sequence
planning”, Adv Manuf Technol , 49, pp.1175–1184, 2010.

[20] Wei Zhou, Jian-rong Zheng, Jian-jun Yan , Jun-feng Wang.
A novel hybrid algorithm for assembly sequence planning
combining bacterial chemotaxis with genetic algorithm. Int
J Adv Manuf Technol 52, pp.715–724, 2011.

[21] Congwen Zeng, Tianlong Gu, Yanru Zhong, Guoyong Cai.
“A Multi-Agent Evolutionary algorIthm for Connector-
Based Assembly Sequence Planning”, Procedia
Engineering, 15, pp.3689-3693, 2011.

[22] Meng Da - zhi , CAO Hai – ping, “DNA computing and
biological mathematics”, Acta biophysica sinica, 18(2),
pp.163-174, 2002.

[23] Hongchun QU, Youlan WANG, “A Self-assembling
Approach to Simulation of Phototropism”, International

1524 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Journal of Digital Content Technology and its Applications,
5(1), pp.55-62, 2011.

[24] Pan Xiaoying, Jiao Licheng, “A Multi-Agent Social
Evolutionary Algorithm for Project Optimization
Scheduling”, Journal of Computer Research and
Development,45 (6), pp. 998-1003, 2008.

[25] Zhoubo Xu, Tianlong Gu, Rongsheng Dong, “Symbolic
OBDD Assembly Sequence Planning Algorithm Based on
Unordered Partition with 2 Parts of a Positive Integer”,
IFIP Advances in Information and Communication
Technology Volume, 385, pp.226-233, 2012.

Congwen Zeng was born in China, in 1972.
He received his M.S. degree in the
department of computer from China
University of Mining and technology, xuzhou,
China,in 2002. He is currently a
Ph.D.candidate at Xi’dian University of
Xi’an, China.

His research interests include evolutionary
algorithm and symbolic technology. His title

is associate professor.

Tianlong Gu received his Ph.D. degree from Zhejiang
University, China in 1996. From 1998 to 2002, he was a
Research Fellow at the School of Electrical & Computer Eng.,
Curtin University of Technology, Australia and Postdoctoral
Fellow at the School of Engineering, Murdoch University,
Australia.

His research interests include formal methodology and their
industrial applications, Petri nets, formal specification and
verification techniques. His title is professor and Ph.D
supervisor.

Liang Chang, received his Ph.D. in computer science from the
Institute of Computing Technology, Chinese Academy of
Sciences in 2008.

His research interests include knowledge representation and
reasoning, intelligent planning, and formal methods in computer
science. He is currently a professor in the School of Computer
Science and Technology at Guilin University of Electronic
Technology (China).

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1525

© 2013 ACADEMY PUBLISHER

