
Optimize Twig Query Pattern Based on XML
Schema

Hui Li

Beijing University of Technology, Beijing, China
Email: xiaodadaxiao2000@163.com

HuSheng Liao and Hang Su

Beijing University of Technology, Beijing, China
Email: {liaohs, suhang}@bjut.edu.cn

Abstract—Aiming at the core operation for XML data que-
ries—Tree Pattern Queries, we propose an effective method
for minimizing XML query based on XML Schema. The
method can make use of the structure constraints infor-
mation provided by XML Schema to optimize the tree query
pattern containing the logic nodes AND and OR. Such tree
pattern preferably satisfies requirements of XQuery queries
describing and optimizing to support the high-performance
implementation of XQuery.

Index Terms—XML, XQuery, XML Tree Pattern Queries,
XML Schema

I. INTRODUCTION

Query pattern composed of several structural joins of-
ten appears in the query request described by XML query
languages such as XPath and XQuery. This kind of tree
pattern queries is called Twig Query, also called Tree
Pattern Query (TPQ), which is considered as the core
operation for XML data queries, while the extensible
markup language XML has become indispensable in
many areas[1]. However, TPQ often contains redundant
sub-queries, which will bring additional expenses of the
query processing. People have developed a variety of
methods of minimizing TPQ. With the development of
XML processing technology, more features in XQuery
queries are included in TPQ semantics by adding logical
nodes and weak bindings. Nevertheless, the existing
XML query minimization techniques have not yet to
support the new features. Therefore, the paper makes a
study of minimization of expanded TPQ based on XML
Schema. The main contributions of the paper are as fol-
lows:
(1) Aiming at the TPQ with logical nodes and weak
bindings, we propose an effective method of minimizing
TPQ based on XML Schema. The method can remove the
unnecessary query nodes and logical nodes according to
the Required Parent-Child Constrains (RPC) and Re-
quired Ancestor-Descendant Constraints (RAD) between

the XML nodes extracted from given XML Schema.
(2) We develop and realize PRC and RAD extraction
algorithm from XML schema without recursive defined
element type.
(3) We design and implement a TPQ minimization al-
gorithm with O(n) time and space. The effectiveness of
the algorithm is demonstrated by testing.

In the following sections, Section 2 introduces the re-
lated works and Session 3 describes the motivation of the
work. Session 4 and Session 5 describes the algorithm of
extracting RPC and RAD from XML Schema and algo-
rithm of minimizing Twig queries respectively. Session 6
gives the experiment and the analysis of the result and
Session 7 gives the conclusion.

II. RELATED WORK

There is a variety of methods of optimizing query of
XML data , such as references [2] and [3]. Reference [3]
makes a systematic and comprehensive study of minimi-
zation of XML query. The methods of minimizing TPQ
can be divided into two categories, one for the query pat-
terns which have redundancy themselves, another for
Twig query patterns which are redundant under the con-
straints extracted from the given XML schema.
Amer-Yahia[4] presented an O(n4) algorithm for mini-
mizing TPQ in the absence of constraints and presented
an O(n6) algorithm for minimizing TPQ in the presence
of RPC and RAD. Ramanan[5] presented O(n2) algorithm
of minimizing TPQ in the absence of constraints, O(n4)
algorithm in the presence of RPC, RAD and subtype, and
O(n2) algorithms in the presence of RPC and RAD.

In order to enrich query semantics of TPQ, reference [6]
presents the concept of GTP, extending TPQ with the
weak binding. Reference [7] presents the concept of ATP
(Annotated Pattern Tree), adding predicate information
on the basis of GTP. References [8], [9] and [10] add
logical nodes and wildcard node test to TPQ respectively.
However, the minimization methods above do not support
the minimization of the TPQ which contains logical
nodes and weak bindings. We propose a method of mini-
mizing TPQ to support the optimization of extended
GTPs that contain weak bindings, logical nodes AND and
OR.

Manuscript received January 31, 2013; revised February 22, 2013;
accepted February 28, 2013.

Copyright credit, project number: 4122011 and 61202074. Corre-
sponding author: Hui Li.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1479

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1479-1486

III. MOTIVATION

The standard TPQ contains structural joins of Par-
ent-Child relations (PC) and Ancestor-Descendant rela-
tions (AD) only, and this kind of query pattern exists in
XPath expressions and FLOWR expressions of the
XQuery. However, there may be correlations among mul-
tiple TPQs in nested FLWOR expressions and different
modules of XQuery. Several relevant TPQs can be com-
bined into an extended Twig query, i.e. GTP query, by
adding weak bindings and logical nodes, so that multiple
TPQs can be performed by a single GTP query. For ex-
ample, Fig. 1, shows two TPQs extracted from two
XQuery programs. In Fig.1(a), the query requests the
book nodes which must be the child of bib and have ei-
ther author node or title node as its child, and TPQ in
Fig.1(a), expresses the query requirements. The nodes
with XML label in TPQ are called query nodes, to match
XML nodes in the XML documents. Each edge in TPQ
represents a structural constraint between two XML
nodes. The single-line edge represents PC (Parent-Child)
relationship and the double-line edge represents AD (An-
cestor-Descendant) relationship. In TPQ shown in
Fig.1(a), the double-line edge which connects the title
node and logical node OR indicates an AD relationship
between them. The double-circle node indicates a return
node of TPQ. For the query in Fig.1(b), a structural con-
straint is given in for clause and where clause. That is, a
book node must have a child node labeled with author.
Therefore, the structural constraint in TPQ represented as
a strong binding. There may be queries in the return
clause which is applied on the results of the previous
queries. These results are dispensable and the feature can
be supported by weak binding in TPQ. In GTP queries,
the solid edge shows the strong binding relationship be-
tween nodes while the dotted edge indicates the weak
binding relationship. Moreover, the results of upper que-
ries are used in for clause and where clause in the internal
FLOWR expressions, and the author node and price node
must exist simultaneously. However, the result of the
internal FLWOR expression is dispensable. Therefore, we
extend GTP with the logical node AND to connect two
strong bindings for expressing such special requirement,

while a weak binding is used for the logical node AND.
As shown in the Fig.1(b), the price and author nodes are
connected with a strong binding and the node AND itself
is connected with a weak binding.

There are still opportunities for optimization in GTP
queries which contain logical nodes and weak bindings.
For example, the structural constraint information, which
can be identified from XML Schema shown in Fig.2, in-
cludes RPC (book, title) and RAD (book, name). That is,
every book node must have a title node as its child and a
name node as its descendant. Accordingly, TPQ in Fig.3(a)
can be optimized as follows. Because the semantics of the
logical node OR only requires one branch’s condition to
be satisfied, the constraint RAD(book, name) indicates
the condition of the branch //name has been satisfied.
Therefore, the logical node OR can be removed and the
optimized TPQ is shown on the right side of Fig.3(a). For
another example, the TPQ shown in Fig.3(b), has a logi-
cal node AND. If it is able to get the structural constraints
RPC(book, title), RPC(title, @year) and RAD(book,
name), the two branches’ conditions of the logical node
AND are satisfied and the logical node AND can be re-
moved and the optimized TPQ is shown on the right in
Fig.3(b). Although the structural constraints RAD (book,
name) can be extracted from XML Schema and the re-
quirement of the logical node OR has been satisfied, the
title node cannot be removed because it is the return node.
However, as shown in Fig.3(c), the logical node OR can
be removed at least.

These cases illustrate GTPs with logical nodes can be
also optimized based on the structural constraints pro-
vided by XML Schema. Therefore, this paper studies an
effective method for minimizing queries to implement the
optimization of this kind of TPQ queries.

IV. THE ALGORITHM OF EXTRACTING RPC AND RAD
RELATIONSHIPS

XML Schema information can be used to judge

whether the relationship between two XML nodes can
meet RPC or RAD relationship. In order to check the

Figure1. TPQs containing the logical node AND and OR.

1480 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

RPC or RAD relationships efficiently, as the pretreatment
of TPQ minimization, these algorithms getAllRChild and
getAllRDescendant are used to obtain the required chil-
dren collection and the required descendant collection of
each node in XML Schema respectively, which are the
node collections satisfying PRC or RAD relationships
with the current node. The specific algorithms are de-
scribed as follows

Algorithm getAllRChild(xsd)
Input: xsd: XML Schema document
Output： the required children collection of each element in XML

Schema

1. Begin
2. for each global element in xsd do
3. insert the element into the queue handleElement;
4. for each element in the handleElement do
5. add its child element whose number of its occurrences is

greater than zero into the required children collection of
the element ;

6. add the attributes of the element marked as ‘required’
into the required children collection of the element;

7. if any child of the element is not in the handleElement
then

8. add the child into the queue handleElement;
9. End

Algorithm getAllRDescendant(xsd, sets)
Input: xsd： XML Schema document

sets: each element and its required children collection in
XML Schema

Output: the required descendant collection of each element in
XML Schema

1. Begin
2. for each element without child and descendant in xsd do
3. insert the element into the queue handleElement;
4. for each element in the handleElement do
5. let pa be parent of the element
6. merge the required children collection of the element in

sets into the required descendant collection of pa;
7. merge the required descendant collection of the element

into the required descendant collection of pa;
8. merge the required children collection of pa into the re-

quired descendant collection of pa;
9. if every child of pa is in handleElement then
10. insert pa into handleElement;
11. End

The algorithm getAllRchild above is used to get all

RPC relationships and the algorithm getAllRDescendant
is used to get all RAD relationships. The two algorithms
use a queue handleElement to maintain the elements to be
processed respectively. The former uses a top-down
method and get the required children of each element
gradually. The latter uses a bottom-up approach and cal-
culate the required descendant of each element gradually.
Here, we assume that there is no recursive defined ele-
ment type in XML Schema, which can be represented by
a directed acyclic graph.

V. OPTIMIZATION OF TWIG QUERY PATTERN

In order to describe the algorithms easily, we give sev-
eral definitions.

Definition 5.1 Given an XML Schema, for any PC
edge (x,y) in TPQ, if x marked as a, y marked as b and
there is a RPC(a, b) relationship in this XML Schema,
then x and y are said to satisfy the RPC relationship, de-
noted as RChild(y).

Definition 5.2 Given an XML Schema, for any AD
edge (x,y) in TPQ, if x marked as a, y marked as b and
there is a RAD(a, b) relationship in this XML Schema,
then x and y are said to satisfy the RAD relationship, de-
noted as RDesc(y).

Figure 3. The examples of optimization of GTP.

Figure 2. XML Schema and the corresponding RPC and RAD

relationships.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1481

© 2013 ACADEMY PUBLISHER

Definition 5.3 Given an XML Schema, for any query

node x in TPQ, if every PC edge meets the RPC relation-
ship and every AD edge meets the RAD relationship in
the sub-tree rooted at x, then the sub-tree is said to be
redundant, denoted as Red(x).

Definition 5.4 For any node x in a TPQ, if there is at
least one return node in the sub-tree rooted at x, then the
sub-tree must be retained, denoted as Ret(x).

Definition 5.5 For any logical node x in TPQs, let y be
an ancestors of x, if y is the nearest query node from x,
then y is called real parent of x, denoted as realparent(x).
As shown in Fig.3(a), the real parent of OR node is the
book node, because it is a nearest query node from the
OR node in its ancestors.

A. Optimization of Query Node
The nodes in TPQs are divided into two kinds. One is

the query node, which expresses the requirements of the
XML node to match. Another is the logical node, which
represents the logical relationship between the various
matching requirements. The algorithm of minimizing
TPQ in the paper carries on TPQ optimization from bot-
tom to top. If the current node x and its parent are both
query nodes, then optimize x according to the rules in
Table I. If the current node is a query node and its parent
node is a logical node, then we need to calculate Red(x)
and Ret(x). If the current node is a logical node, we opti-
mize the logical node according to the optimization algo-
rithm of OR and AND respectively. After all children of
the parent of the current node have been optimized, the
parent node should be optimized. So we carry on a tra-
versal with all the nodes in the process of optimizing. The
specific algorithm TreeOptimize is as follows:

Algorithm TreeOptimize(root)
Input: root : the root of tree pattern
Output: the optimized tree pattern

1. Begin
2. put all leaf nodes of tree pattern into the queue handleNode ;
3. for each node x in the handleNode do
4. if x and its parent are query nodes then
5. if x and its parent meet RPC/RAD then

6. if Ret(x)=false then
7. if Red(x)=true then
8. remove the x ‘s sub-tree from tree pat-

tern;
9. else if Ret(x)=true then
10. if Red(x)=true and x connects its parent by

a weak binding then
11. change it into a strong binding;
12. else if x is logical node then
13. if x is OR then
14. optimize it by OrOptimize(x);
15. else if x is AND then
16. optimize it by AndOptimize(x);
17. if every child and descendent of the parent of x are in

handleNode then
18. put the parent of x into handleNode;
19. End

B. Optimization of the Logical Node OR
The logical node OR may have multiple sub-trees, the

RPC and RAD constraints obtained from XML Schema
can make some sub-tree’s requirement of OR satisfied,
and then make the requirement of OR satisfied. As shown
in Fig.3(a), the book node has two sub-trees /title/@year
and //name. If we get RAD (book, name), or RPC(book,
title) and RPC(title, @year) constraints simultaneously,
the requirement of OR is met and can be optimized. The
optimization rules are given in Table II.

The basic principles are: (1) If the requirement of OR
is met, we should remove the logical node OR. (2) For
each child node y of an OR node, if y and its real parent
satisfy RPC/RAD, Red(y) is true and there is no return
node in the sub-tree, then the sub-tree rooted at y can be
removed. (3) If y and its real parent satisfy RPC/RAD,
Red(y) is true and there is at least one return node in the
sub-tree, then we create a structural connection between y
and its real parent by a strong binding. (4) If Red(y) is
false or y and its real parent do not satisfy RPC/RAD, and
there is at least one return node in the sub-tree, then we
create a structural connection between y and its real par-
ent by a weak binding. (5) If Red(y) is false or y and its
parent do not satisfy RPC/RAD, and there is no return
node in the sub-tree, then the sub-tree can be removed.

TABLE I.

THE OPTIMIZATION RULES OF QUERY NODE X

 PC/AD binding Red(x) Ret(x) RChild/RDesc processing method

1 PC any true false RChild remove x’s sub-tree

2 AD any true false RDesc remove x’s sub-tree

3 PC weak true true RChild become a strong
binding

4 AD weak true true RDesc Become a strong
binding

1482 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

For example of TPQ shown in Fig.2(a), if it is able
to obtain constraints PRC(book, title) and RPC(title,
@year), then requirement of OR is met and OR can be
removed. The two sub-trees of OR can also be removed
because there is no return node in them. For another ex-
ample in Fig.4(a), there are return nodes in sub-tree. If
constraints RPC(book, title) and RPC(title, @year) can
be obtained, then the requirement of the sub-tree
/title/@year is satisfied. So the OR’s requirement is met
and OR can be removed. At this time, because there is a
return node labeled with title, this sub-tree should be
added into its real parent by a strong binding. While the
requirement of the sub-tree //name is not met and there is
a return node labeled with name in this sub-tree, this
sub-tree should be added into its real parent by a weak
binding.

The algorithm of minimizing the logical node OR is
as follows. The method is to optimize every sub-tree in
turn. Because the optimization algorithm is carried out
from bottom to top, so when we optimize the logical node
OR, each sub-tree of OR has been optimized. During
processing, it is necessary to record whether the require-
ment of OR has been satisfied, and then judge it accord-
ing to the rules in Table II.

Algorithm OrOptimize(x)
Input: the logical node x
Output: the optimized logical node x

1. Begin
2. for each sub-tree of x do
3. let y be the root of the sub-tree
4. if the sub-trees before y ‘s sub-tree do not meet the requirement

of x then
5. if Ret(y)=true and Red(y)=true and RChild(y) or RDesc(y)

then
6. remove x;
7. add y’s sub-tree into realparent(x) by a strong binding;
8. if the parent of x is a logical node OR then
9. mark its parent’s requirement as met;
10. for each sub-tree before y’s sub-tree do
11. let c be the root of the sub-tree
12. if Ret(c)=true then
13. add c’s sub-tree into realparent(x) by a weak

binding;
14. else
15. remove c’s sub-tree;
16. else if Ret(y)=false and Red(y)=true and RChild(y) or

RDesc(y) then
17. remove y’s sub-tree and x;
18. if the parent of x is a logical node OR then
19. mark its parent’s requirement as met;
20. for each sub-tree before y’s sub-tree do
21. let c be the root of the sub-tree

Figure 4. The examples of optimization of sub-tree of logical node containing return nodes

TABLE II.

THE SUB-NODE Y OF OR AND THE OPTIMIZATION RULES OF ITS SUB-TREE

 PC/AD rela-
tionship

The requirement of OR
is satisfied

Red(y) and
RChild

Red(y) and
RDesc Ret(y) Processing method

1 PC true true any true
remove OR, add y’s sub-tree

into realparent(OR) by a
strong binding

2 AD true any true true ibid.

3 PC true true any false remove OR and y ‘s sub-tree

4 AD true any true false ibid.

5 PC true false any true add y’s sub-tree into realpar-
ent(OR) by a weak binding

6 AD true any false true ibid.

7 PC true false any false remove y’s sub-tree

8 AD true any false false ibid.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1483

© 2013 ACADEMY PUBLISHER

22. if Ret(c)=true then
23. add c ‘s sub-tree into realparent(x) by a weak

binding;
24. else
25. remove c’s sub-tree;
26. else if the sub-trees before y’s sub-tree make the requirement of x

satisfied then
27. if x is still in tree pattern then
28. remove x from tree pattern;
29. if the parent of x is a logical node OR then
30. mark its parent’s requirement as met;
31. if y is a logical node and Ret(y)=true then
32. add y’s sub-tree into realparent(x) by a weak binding;
33. else if Ret(y)=true and Red(y)=true and RChild(y) or

RDesc(y) then
34. add y’s sub-tree into realparent(x) by a strong bind-

ing;
35. else if Ret(y)=true and (Red(y)=false or RChild(y)=false

or RDesc(y)=false) then
36. add y’s sub-tree into realparent(y) by a weak bind-

ing;
37. else
38. remove y’s sub-tree;
39. End

C. Optimization of the Logical Node AND

The logical node AND has multiple branches in TPQ.
According to the semantics of AND, the requirement of
node AND is met only when the requirements of all the
sub-trees of AND are met. As shown in Fig.3(b), the log-
ical node AND has two sub-trees, /title/@year and //name.
If it is able to get constraints RPC(book, title), RPC(title,
@year) and RAD(book, name), then the requirement of
the logical node AND is met and the node AND can be
moved. Table III gives the optimization rules for the child
node y of AND and its sub-tree. The basic principles are:
(1) Only consider the situation that Red(y) is true and y
and its real parent satisfy RPC/RAD. (2) If we can con-
firm the satisfaction of the requirement of AND, then
remove the logical node AND. (3) If there is no return
node in the sub-tree, this sub-tree can be removed. (4)If
there is at least one return node in the sub-tree, add the
sub-tree into its real parent by a strong binding.

For example of TPQ as shown in Fig.3(b), if we can
get the constraints RPC(book, title), RPC(title, @year)
and RAD(book, name), then the requirement of node
AND is met and it can be removed. Because the two
sub-trees do not have a return node, so the two sub-trees
can also be removed. For another example, TPQ shown
in Fig.4(b), if we can get the constraints RPC(book, title),
RPC(title, @year) and RAD(book, title), the requirement
of AND is met and the logical node AND can be removed
from tree pattern. Because the two sub-trees both have
return nodes and the requirements of the two sub-trees
have been satisfied, so we add the two sub-trees into its
real parent by a strong binding, as shown on the right in
Fig.4(b). The algorithm is as follows.

lgorithm AndOptimize(x)
Input: the logical node x
Output：the optimized logical node x

1. Begin
2. i = 0;
3. for each sub-tree of x do
4. let y be the root of the sub-tree
5. if Red(y)=true and RChild(y) or RDesc(y) then
6. i++;
7. if i = the number of x’s branches then
8. remove x;
9. if Ret(y) = true then
10. add y’s sub-tree to realparent(x) by a strong

binding,;
11. else
12. remove y’s sub-tree;
13. End

D. Computing Complexity

The query minimization approach includes the algo-
rithms TreeOptimize, OrOptimize, AndOptimize. In
TreeOptimize, TPQ is traversed completely once only.
Therefore it is a linear time algorithm. Algorithms OrOp-
timize and AndOptimize are applied only on every logical
node OR and And respectively and logical nodes is much
less than query nodes typically. But they are based on

TABLE III.

 THE SUB-NODE Y OF AND AND THE OPTIMIZATION RULES OF ITS SUB-TREE

 PC/AD

relationship

The requirement
of AND has been
satisfied

Red(y) and

RChild

Red(y) and

RDesc

Red(y) Processing method

1 PC true true any true remove AND and add y’s sub-tree to
realparent(AND) by a strong binding

2 AD true any true true ibid.

3 PC false true any true add y’s sub-tree to realparent(AND)
by a strong binding

4 AD false any true true ibid.

5 PC true true any false remove AND and y’s sub-tree

6 AD true any true false ibid.

7 PC false true any false remove y’s sub-tree

8 AD false any true false ibid.

1484 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Red(x) for every node x in TPQ. The computation of
Red(x) can be also completed in the time and space O(n)
where n is the number of TPQ nodes.

VI. EXPERIMENT

In the test section, we test in different cases of the
number of XML Schema’s elements, the number of re-
turn nodes in TPQ and the number of the logical nodes in
TPQ. We get a conclusion by comparing the number of
nodes in TPQ before and after optimization. Detailed test
data are shown in Table IV.

Through the experiments above, we know that the
more PRC/RAD relationships are obtained from XML
Schema, the more nodes in TPQ can be reduced. For the
optimization of logical node, if there are more logical
nodes OR in Twig pattern, the number of nodes in Twig
pattern can be reduced greatly, because the logical node
OR only requires one of its sub-tree’s requirement to be
satisfied. While the logical node AND can be optimized
only when all its sub-tree’s requirements are met. Mean-
while, the number of return nodes in TPQ can also affect
the optimization. Since the return nodes are not redundant,

they cannot be removed in any case. If there are many
return nodes in TPQ, no much optimization can be real-
ized.

 VII. CONCLUSION

This paper proposes an effective method for minimiz-
ing XML query based on XML Schema for extended Tree
Pattern Queries. The method can make use of the struc-
ture constraints information provided by XML Schema to
optimize the tree query pattern containing the logic nodes
AND and OR. We have developed and realized PRC and
RAD extraction algorithm and TPQ minimization algo-
rithm. The effectiveness of the algorithm is demonstrated
by testing.

The future works is to identify more constraints from
XML schema and apply them to optimize various ex-
tended GTPs. The XML schema with the recursive de-
fined element types should be also taken into account.

ACKNOWLEDGMENT

The author wishes to thank HuSheng Liao and Hang
Su for their patient guidance. This work was both sup-

TABLE IV.

THE TEST DATA

the number of

elements in XML
Schema

The number of
return nodes in

TPQ

the number of logical

nodes
the number of TPQ

nodes before optimi-
zation

the number of TPQ
nodes after optimi-

zation
AND OR

1 20 1 0 0 4 2

2 20 3 0 0 4 3

3 20 2 2 0 8 4

4 20 2 0 2 8 7

5 20 3 2 2 16 10

6 40 1 0 0 4 3

7 40 3 0 0 4 3

8 40 1 2 0 8 6

9 40 1 0 2 8 2

10 40 3 2 2 16 14

11 60 1 0 0 4 1

12 60 2 0 0 4 2

13 60 1 2 0 8 7

14 60 1 0 2 8 4

15 60 3 2 2 16 8

16 80 1 0 0 4 1

17 80 2 0 0 4 2

18 80 1 2 0 8 7

19 80 1 0 2 8 6

20 80 3 2 2 16 9

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1485

© 2013 ACADEMY PUBLISHER

ported in part by the Beijing Nature Science Foundation
under Grant 4122011and the National Science Founda-
tion for Young Scientists of China under Grant
61202074.

REFERENCESE

[1] Christopher League and Kenjone Eng, Schema-Based
Compression of XML Data with Relax NG, Journal of
Computers, Vol 2, No 10(2007), 9-17, Dec 2007, doi:
10.4304/jcp.2.10.9-17.

[2] Fatma Zohra Bessai-Mechmache and Zaia Alimazighi,
Aggregated Search in XML Documents, Journal of
Emerging Technologies in Web Intelligence, Vol 4, No
2(2012), 181-188, May 2012 doi: 10.4304/jetwi.4.2.
181-188.

[3] Liu X P and Wan C X, Minimizing XML Queries Using a
Family of Constraints, In: Proceedings of 4th International
Conference on Fuzzy Systems and Knowledge Discovery,
Haikou, China. 24-27 August, 2007, IEEE Computer Soci-
ety, 601-607.

[4] A. Y. Sihem and S. R. Cho, Minimization of Tree Pattern
Queries, ACM SIGMOD International Conference on
Management of Data, 2001, pp. 497-508.

[5] Prakash Ramanan, Efficient Algorithms for Minimizing
Tree Pattern Queries, ACM SIGMOD International Con-
ference on Management of Data, June, 2002.

[6] Wood P. T., Minimising Simple XPath Expression, In:
Proceeding of the 4th WebDB International Workshop on
the Web and Database, Santa Barbara, California, USA.
May 24-25, 2001.

[7] Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan,
and H. V. Jagadish, Tree Logical Classes for Efficient
Evaluation of XQuery, ACM SIGMOD International Con-
ference on Management of Data, 2004, pp. 71-82.

[8] Jiang H, Lu H, and Wang W, Efficient Processing of XML
Twig Queries with OR-Predicates, ACM SIGMOD Inter-
national Conference on Management of Data, pp. 59-70.

[9] Chan C Y, Fan W, and Zeng Y, Taming XPath Queries by
Minimizing Wildcard Steps, In: Proceedings of the Thirti-
eth International Conference on Very Large Data Bases,
Toronto, Canada, August 31-September 3, 2004, Morgan
Kaufmann, 156-167.

[10] Lu J H, Ling T W, Bao Z F, and Wang Chen, Extended
XML Tree Pattern Matching: Theories and Algorithms[J],
IEEE Transactions on Knowledge and Data Engineering,
2011, 23(3): 402-416.

Hui Li was born in Qingdao in 1987. She
is a M.S. candidate at Beijing University
of Technology in P.R.China. Her major
field of study is the optimization of Twig
query

Husheng Liao was born in Changchun in
1954. He is a professor and doctoral su-
pervisor at Beijing University of Tech-
nology in P.R.China. His research inter-
ests include software automation meth-
ods and data integration technology, etc.

Hang Su was born in Shenyang in 1978.
He is a lecturer of computer science at
the Beijing University of Technology in
P.R.China. His current interests include
XML technology, query languages and
program transformation.

1486 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

