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Abstract—Aiming at the core operation for XML data que-
ries—Tree Pattern Queries, we propose an effective method 
for minimizing XML query based on XML Schema. The 
method can make use of the structure constraints infor-
mation provided by XML Schema to optimize the tree query 
pattern containing the logic nodes AND and OR. Such tree 
pattern preferably satisfies requirements of XQuery queries 
describing and optimizing to support the high-performance 
implementation of XQuery. 
 
Index Terms—XML, XQuery, XML Tree Pattern Queries, 
XML Schema 

I.  INTRODUCTION 

Query pattern composed of several structural joins of-
ten appears in the query request described by XML query 
languages such as XPath and XQuery. This kind of tree 
pattern queries is called Twig Query, also called Tree 
Pattern Query (TPQ), which is considered as the core 
operation for XML data queries, while the extensible 
markup language XML has become indispensable in 
many areas[1]. However, TPQ often contains redundant 
sub-queries, which will bring additional expenses of the 
query processing. People have developed a variety of 
methods of minimizing TPQ. With the development of 
XML processing technology, more features in XQuery 
queries are included in TPQ semantics by adding logical 
nodes and weak bindings. Nevertheless, the existing 
XML query minimization techniques have not yet to 
support the new features. Therefore, the paper makes a 
study of minimization of expanded TPQ based on XML 
Schema. The main contributions of the paper are as fol-
lows: 
(1) Aiming at the TPQ with logical nodes and weak 
bindings, we propose an effective method of minimizing 
TPQ based on XML Schema. The method can remove the 
unnecessary query nodes and logical nodes according to 
the Required Parent-Child Constrains (RPC) and Re-
quired Ancestor-Descendant Constraints (RAD) between 

the XML nodes extracted from given XML Schema. 
(2) We develop and realize PRC and RAD extraction 
algorithm from XML schema without recursive defined 
element type. 
(3) We design and implement a TPQ minimization al-
gorithm with O(n) time and space. The effectiveness of 
the algorithm is demonstrated by testing. 

In the following sections, Section 2 introduces the re-
lated works and Session 3 describes the motivation of the 
work. Session 4 and Session 5 describes the algorithm of 
extracting RPC and RAD from XML Schema and algo-
rithm of minimizing Twig queries respectively. Session 6 
gives the experiment and the analysis of the result and 
Session 7 gives the conclusion. 

II.  RELATED WORK 

There is a variety of methods of optimizing query of 
XML data , such as references [2] and [3]. Reference [3] 
makes a systematic and comprehensive study of minimi-
zation of XML query. The methods of minimizing TPQ 
can be divided into two categories, one for the query pat-
terns which have redundancy themselves, another for 
Twig query patterns which are redundant under the con-
straints extracted from the given XML schema. 
Amer-Yahia[4] presented an O(n4) algorithm for mini-
mizing TPQ in the absence of constraints and presented 
an O(n6) algorithm for minimizing TPQ in the presence 
of RPC and RAD. Ramanan[5] presented O(n2) algorithm 
of minimizing TPQ in the absence of constraints, O(n4) 
algorithm in the presence of RPC, RAD and subtype, and 
O(n2) algorithms in the presence of RPC and RAD. 

In order to enrich query semantics of TPQ, reference [6] 
presents the concept of GTP, extending TPQ with the 
weak binding. Reference [7] presents the concept of ATP 
(Annotated Pattern Tree), adding predicate information 
on the basis of GTP. References [8], [9] and [10] add 
logical nodes and wildcard node test to TPQ respectively. 
However, the minimization methods above do not support 
the minimization of the TPQ which contains logical 
nodes and weak bindings. We propose a method of mini-
mizing TPQ to support the optimization of extended 
GTPs that contain weak bindings, logical nodes AND and 
OR. 
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III.  MOTIVATION 

The standard TPQ contains structural joins of Par-
ent-Child relations (PC) and Ancestor-Descendant rela-
tions (AD) only, and this kind of query pattern exists in 
XPath expressions and FLOWR expressions of the 
XQuery. However, there may be correlations among mul-
tiple TPQs in nested FLWOR expressions and different 
modules of XQuery. Several relevant TPQs can be com-
bined into an extended Twig query, i.e. GTP query, by 
adding weak bindings and logical nodes, so that multiple 
TPQs can be performed by a single GTP query. For ex-
ample, Fig. 1, shows two TPQs extracted from two 
XQuery programs. In Fig.1(a), the query requests the 
book nodes which must be the child of bib and have ei-
ther author node or title node as its child, and TPQ in 
Fig.1(a), expresses the query requirements. The nodes 
with XML label in TPQ are called query nodes, to match 
XML nodes in the XML documents. Each edge in TPQ 
represents a structural constraint between two XML 
nodes. The single-line edge represents PC (Parent-Child) 
relationship and the double-line edge represents AD (An-
cestor-Descendant) relationship. In TPQ shown in 
Fig.1(a), the double-line edge which connects the title 
node and logical node OR indicates an AD relationship 
between them. The double-circle node indicates a return 
node of TPQ. For the query in Fig.1(b), a structural con-
straint is given in for clause and where clause. That is, a 
book node must have a child node labeled with author. 
Therefore, the structural constraint in TPQ represented as 
a strong binding. There may be queries in the return 
clause which is applied on the results of the previous 
queries. These results are dispensable and the feature can 
be supported by weak binding in TPQ. In GTP queries, 
the solid edge shows the strong binding relationship be-
tween nodes while the dotted edge indicates the weak 
binding relationship. Moreover, the results of upper que-
ries are used in for clause and where clause in the internal 
FLOWR expressions, and the author node and price node 
must exist simultaneously. However, the result of the 
internal FLWOR expression is dispensable. Therefore, we 
extend GTP with the logical node AND to connect two 
strong bindings for expressing such special requirement, 

while a weak binding is used for the logical node AND. 
As shown in the Fig.1(b), the price and author nodes are 
connected with a strong binding and the node AND itself 
is connected with a weak binding. 

There are still opportunities for optimization in GTP 
queries which contain logical nodes and weak bindings. 
For example, the structural constraint information, which 
can be identified from XML Schema shown in Fig.2, in-
cludes RPC (book, title) and RAD (book, name). That is, 
every book node must have a title node as its child and a 
name node as its descendant. Accordingly, TPQ in Fig.3(a) 
can be optimized as follows. Because the semantics of the 
logical node OR only requires one branch’s condition to 
be satisfied, the constraint RAD(book, name) indicates 
the condition of the branch //name has been satisfied. 
Therefore, the logical node OR can be removed and the 
optimized TPQ is shown on the right side of Fig.3(a). For 
another example, the TPQ shown in Fig.3(b), has a logi-
cal node AND. If it is able to get the structural constraints 
RPC(book, title), RPC(title, @year) and RAD(book, 
name), the two branches’ conditions of the logical node 
AND are satisfied and the logical node AND can be re-
moved and the optimized TPQ is shown on the right in 
Fig.3(b). Although the structural constraints RAD (book, 
name) can be extracted from XML Schema and the re-
quirement of the logical node OR has been satisfied, the 
title node cannot be removed because it is the return node. 
However, as shown in Fig.3(c), the logical node OR can 
be removed at least. 

These cases illustrate GTPs with logical nodes can be 
also optimized based on the structural constraints pro-
vided by XML Schema. Therefore, this paper studies an 
effective method for minimizing queries to implement the 
optimization of this kind of TPQ queries. 

IV.  THE ALGORITHM OF EXTRACTING RPC AND RAD 
RELATIONSHIPS 

 
XML Schema information can be used to judge 

whether the relationship between two XML nodes can 
meet RPC or RAD relationship. In order to check the 

 

Figure1.  TPQs containing the logical node AND and OR. 
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RPC or RAD relationships efficiently, as the pretreatment 
of TPQ minimization, these algorithms getAllRChild and 
getAllRDescendant are used to obtain the required chil-
dren collection and the required descendant collection of 
each node in XML Schema respectively, which are the 
node collections satisfying PRC or RAD relationships 
with the current node. The specific algorithms are de-
scribed as follows 

 
 
Algorithm getAllRChild(xsd) 
Input: xsd: XML Schema document 
Output：  the required children collection of each element in XML 

Schema 
 

1. Begin 
2.  for  each global element in xsd do 
3.     insert the element into the queue handleElement; 
4.     for  each element in the handleElement  do 
5.        add its child element whose number of its occurrences is  

greater than zero into the required children collection of 
the element ; 

6.   add the attributes of the element marked as ‘required’  
into the required children collection of the element; 

7.        if  any child of the element is not in the handleElement 
then 

8.        add the child into the queue handleElement; 
9.  End 

 
 
 

 

Algorithm  getAllRDescendant(xsd, sets) 
Input:     xsd： XML Schema document  

sets:  each element and its required children collection in 
XML Schema 

Output:   the required descendant collection of each element in 
XML Schema 

 
1. Begin 
2.  for  each element without child and descendant in xsd do 
3.   insert the element into the queue handleElement; 
4.  for  each element in the handleElement do 
5.   let pa be parent of the element 
6.   merge the required children collection of the element in  

sets into the required descendant collection of pa; 
7.   merge the required descendant collection of the element 

into the required descendant collection of pa; 
8.   merge the required children collection of pa into the re-

quired descendant collection of pa; 
9.   if  every child of pa is in handleElement   then 
10.    insert pa into handleElement; 
11. End 

 
The algorithm getAllRchild above is used to get all 

RPC relationships and the algorithm getAllRDescendant 
is used to get all RAD relationships. The two algorithms 
use a queue handleElement to maintain the elements to be 
processed respectively. The former uses a top-down 
method and get the required children of each element 
gradually. The latter uses a bottom-up approach and cal-
culate the required descendant of each element gradually. 
Here, we assume that there is no recursive defined ele-
ment type in XML Schema, which can be represented by 
a directed acyclic graph. 

V.  OPTIMIZATION OF TWIG QUERY PATTERN 

In order to describe the algorithms easily, we give sev-
eral definitions. 

Definition 5.1 Given an XML Schema, for any PC 
edge (x,y) in TPQ, if x marked as a, y marked as b and 
there is a RPC(a, b) relationship in this XML Schema, 
then x and y are said to satisfy the RPC relationship, de-
noted as RChild(y). 

Definition 5.2 Given an XML Schema, for any AD 
edge (x,y) in TPQ, if x marked as a, y marked as b and 
there is a RAD(a, b) relationship in this XML Schema, 
then x and y are said to satisfy the RAD relationship, de-
noted as RDesc(y). 

 

 

Figure 3.  The examples of optimization of GTP. 

 
Figure 2.  XML Schema and the corresponding RPC and RAD 

relationships. 
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Definition 5.3 Given an XML Schema, for any query 

node x in TPQ, if every PC edge meets the RPC relation-
ship and every AD edge meets the RAD relationship in 
the sub-tree rooted at x, then the sub-tree is said to be 
redundant, denoted as Red(x). 

Definition 5.4 For any node x in a TPQ, if there is at 
least one return node in the sub-tree rooted at x, then the 
sub-tree must be retained, denoted as Ret(x). 

Definition 5.5 For any logical node x in TPQs, let y be 
an ancestors of x, if y is the nearest query node from x, 
then y is called real parent of x, denoted as realparent(x). 
As shown in Fig.3(a), the real parent of OR node is the 
book node, because it is a nearest query node from the 
OR node in its ancestors. 

A. Optimization of Query Node 
The nodes in TPQs are divided into two kinds. One is 

the query node, which expresses the requirements of the 
XML node to match. Another is the logical node, which 
represents the logical relationship between the various 
matching requirements. The algorithm of minimizing 
TPQ in the paper carries on TPQ optimization from bot-
tom to top. If the current node x and its parent are both 
query nodes, then optimize x according to the rules in 
Table I. If the current node is a query node and its parent 
node is a logical node, then we need to calculate Red(x) 
and Ret(x). If the current node is a logical node, we opti-
mize the logical node according to the optimization algo-
rithm of OR and AND respectively. After all children of 
the parent of the current node have been optimized, the 
parent node should be optimized. So we carry on a tra-
versal with all the nodes in the process of optimizing. The 
specific algorithm TreeOptimize is as follows: 
 
Algorithm TreeOptimize(root) 
Input:       root : the root of tree pattern  
Output:     the optimized tree pattern 

 
1. Begin 
2. put all leaf nodes of tree pattern into the queue handleNode ; 
3. for each node x in the handleNode  do 
4.    if  x and its parent are query nodes then 
5.     if x and its parent meet RPC/RAD  then 

6.     if Ret(x)=false  then 
7.     if Red(x)=true  then 
8.    remove the x ‘s sub-tree from tree pat-

tern; 
9.     else if  Ret(x)=true  then 
10.                 if  Red(x)=true and x connects its parent by 

a weak binding  then 
11.         change it into a strong binding; 
12.    else if  x is logical node  then 
13.    if  x is OR  then 
14.     optimize it by OrOptimize(x); 
15.    else if  x is AND then 
16.     optimize it by AndOptimize(x); 
17.     if  every child and descendent of the parent of x are in 

handleNode then 
18.    put the parent of x into handleNode; 
19.  End 

 

B. Optimization of the Logical Node OR 
The logical node OR may have multiple sub-trees, the 

RPC and RAD constraints obtained from XML Schema 
can make some sub-tree’s requirement of OR satisfied, 
and then make the requirement of OR satisfied. As shown 
in Fig.3(a), the book node has two sub-trees /title/@year 
and //name. If we get RAD (book, name), or RPC(book, 
title) and RPC(title, @year) constraints simultaneously, 
the requirement of OR is met and can be optimized. The 
optimization rules are given in Table II. 

The basic principles are: (1) If the requirement of OR 
is met, we should remove the logical node OR. (2) For 
each child node y of an OR node, if y and its real parent 
satisfy RPC/RAD, Red(y) is true and there is no return 
node in the sub-tree, then the sub-tree rooted at y can be 
removed. (3) If y and its real parent satisfy RPC/RAD, 
Red(y) is true and there is at least one return node in the 
sub-tree, then we create a structural connection between y 
and its real parent by a strong binding. (4) If Red(y) is 
false or y and its real parent do not satisfy RPC/RAD, and 
there is at least one return node in the sub-tree, then we 
create a structural connection between y and its real par-
ent by a weak binding. (5) If Red(y) is false or y and its 
parent do not satisfy RPC/RAD, and there is no return 
node in the sub-tree, then the sub-tree can be removed. 

TABLE I.  

THE OPTIMIZATION RULES OF QUERY NODE X 

 PC/AD binding Red(x) Ret(x) RChild/RDesc processing method 

1 PC any true false RChild remove x’s sub-tree 

2 AD any true false RDesc remove x’s sub-tree 

3 PC weak true true RChild become a strong 
binding 

4 AD weak true true RDesc Become a strong 
binding 
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For example of TPQ shown in Fig.2(a), if it is able 
to obtain constraints PRC(book, title) and RPC(title, 
@year), then requirement of OR is met and OR can be 
removed. The two sub-trees of OR can also be removed 
because there is no return node in them. For another ex-
ample in Fig.4(a), there are return nodes in sub-tree. If 
constraints RPC(book, title) and RPC(title, @year) can 
be obtained, then the requirement of the sub-tree 
/title/@year is satisfied. So the OR’s requirement is met 
and OR can be removed. At this time, because there is a 
return node labeled with title, this sub-tree should be 
added into its real parent by a strong binding. While the 
requirement of the sub-tree //name is not met and there is 
a return node labeled with name in this sub-tree, this 
sub-tree should be added into its real parent by a weak 
binding. 

The algorithm of minimizing the logical node OR is 
as follows. The method is to optimize every sub-tree in 
turn. Because the optimization algorithm is carried out 
from bottom to top, so when we optimize the logical node 
OR, each sub-tree of OR has been optimized. During 
processing, it is necessary to record whether the require-
ment of OR has been satisfied, and then judge it accord-
ing to the rules in Table II. 

 
Algorithm OrOptimize(x) 
Input:   the logical node x  
Output: the optimized logical node x 
 
1. Begin 
2.  for  each sub-tree of x  do 
3.   let y be the root of the sub-tree 
4. if  the sub-trees before y ‘s sub-tree do not meet the requirement 

of x  then 
5.   if Ret(y)=true and Red(y)=true and RChild(y) or RDesc(y) 

then 
6.         remove x; 
7.         add y’s sub-tree into realparent(x) by a strong binding; 
8.      if  the parent of x is a logical node OR  then 
9.         mark its parent’s requirement as met; 
10.      for  each sub-tree before y’s sub-tree  do 
11.    let c be the root of the sub-tree 
12.        if  Ret(c)=true  then 
13.   add c’s sub-tree into realparent(x) by a weak 

binding; 
14.    else 
15.      remove c’s sub-tree; 
16.   else if Ret(y)=false and Red(y)=true and RChild(y) or  

RDesc(y)   then 
17.   remove y’s sub-tree and x; 
18.      if   the parent of x is a logical node OR  then 
19.         mark its parent’s requirement as met; 
20.     for  each sub-tree before y’s sub-tree  do 
21.   let c be the root of the sub-tree 

 
Figure 4.  The examples of optimization of sub-tree of logical node containing return nodes 

TABLE II.  

THE SUB-NODE Y OF OR AND THE OPTIMIZATION RULES OF ITS SUB-TREE 

 PC/AD rela-
tionship 

The requirement of OR 
is satisfied 

Red(y) and 
RChild 

Red(y) and 
RDesc Ret(y) Processing method 

1 PC true true any true 
remove OR, add y’s sub-tree 

into realparent(OR) by a 
strong binding 

2 AD true any true true ibid. 

3 PC true true any false remove OR and y ‘s sub-tree

4 AD true any true false ibid. 

5 PC true false any true add y’s sub-tree into realpar-
ent(OR) by a weak binding 

6 AD true any false true ibid. 

7 PC true false any false remove y’s sub-tree 

8 AD true any false false ibid. 
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22.    if  Ret(c)=true  then 
23.   add c ‘s sub-tree into realparent(x) by a weak 

binding; 
24.        else 
25.      remove c’s sub-tree; 
26. else if the sub-trees before y’s sub-tree make the requirement of x 

satisfied  then 
27.   if  x is still in tree pattern  then 
28.      remove x from tree pattern; 
29.   if  the parent of x is a logical node OR  then 
30.      mark its parent’s requirement as met; 
31.   if  y is a logical node and Ret(y)=true  then 
32.      add y’s sub-tree into realparent(x) by a weak binding; 
33.   else if Ret(y)=true and Red(y)=true and RChild(y) or 

RDesc(y)   then 
34.   add y’s sub-tree into realparent(x) by a strong bind-

ing; 
35.       else if Ret(y)=true and (Red(y)=false or RChild(y)=false 

or RDesc(y)=false)  then 
36.   add y’s sub-tree into realparent(y) by a weak bind-

ing; 
37.    else  
38.        remove y’s sub-tree; 
39. End 

 

C. Optimization of the Logical Node AND 

The logical node AND has multiple branches in TPQ. 
According to the semantics of AND, the requirement of 
node AND is met only when the requirements of all the 
sub-trees of AND are met. As shown in Fig.3(b), the log-
ical node AND has two sub-trees, /title/@year and //name. 
If it is able to get constraints RPC(book, title), RPC(title, 
@year) and RAD(book, name), then the requirement of 
the logical node AND is met and the node AND can be 
moved. Table III gives the optimization rules for the child 
node y of AND and its sub-tree. The basic principles are: 
(1) Only consider the situation that Red(y) is true and y 
and its real parent satisfy RPC/RAD. (2) If we can con-
firm the satisfaction of the requirement of AND, then 
remove the logical node AND. (3) If there is no return 
node in the sub-tree, this sub-tree can be removed. (4)If 
there is at least one return node in the sub-tree, add the 
sub-tree into its real parent by a strong binding. 

For example of TPQ as shown in Fig.3(b), if we can 
get the constraints RPC(book, title), RPC(title, @year) 
and RAD(book, name), then the requirement of node 
AND is met and it can be removed. Because the two 
sub-trees do not have a return node, so the two sub-trees 
can also be removed. For another example, TPQ shown 
in Fig.4(b), if we can get the constraints RPC(book, title), 
RPC(title, @year) and RAD(book, title), the requirement 
of AND is met and the logical node AND can be removed 
from tree pattern. Because the two sub-trees both have 
return nodes and the requirements of the two sub-trees 
have been satisfied, so we add the two sub-trees into its 
real parent by a strong binding, as shown on the right in 
Fig.4(b). The algorithm is as follows. 

 
lgorithm     AndOptimize(x) 
Input:   the logical node x    
Output：the optimized logical node x 
 
1. Begin                
2.    i = 0; 
3.    for  each sub-tree of x do 
4.     let y be the root of the sub-tree 
5.     if Red(y)=true and RChild(y) or RDesc(y)  then 
6.    i++; 
7.    if  i = the number of x’s branches then  
8.       remove x; 
9.    if  Ret(y) = true then 
10.   add y’s sub-tree to realparent(x) by a strong   

binding,; 
11.    else 
12.        remove y’s sub-tree; 
13. End 

 

D. Computing Complexity 

The query minimization approach includes the algo-
rithms TreeOptimize, OrOptimize, AndOptimize. In 
TreeOptimize, TPQ is traversed completely once only. 
Therefore it is a linear time algorithm. Algorithms OrOp-
timize and AndOptimize are applied only on every logical 
node OR and And respectively and logical nodes is much 
less than query nodes typically. But they are based on 

TABLE III. 

 THE SUB-NODE Y OF AND AND THE OPTIMIZATION RULES OF ITS SUB-TREE 

 PC/AD 

relationship  

The requirement 
of AND has been 
satisfied 

Red(y) and 

RChild 

Red(y) and 

RDesc 

Red(y) Processing method 

1 PC true true any true remove AND and add y’s sub-tree to 
realparent(AND) by a strong binding 

2 AD true any true true ibid. 

3 PC false true any true add y’s sub-tree to realparent(AND) 
by a strong binding 

4 AD false any true true ibid. 

5 PC true true any false remove AND and y’s sub-tree 

6 AD true any true false ibid. 

7 PC false true any false remove y’s sub-tree 

8 AD false any true false ibid. 
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Red(x) for every node x in TPQ. The computation of 
Red(x) can be also completed in the time and space O(n) 
where n is the number of TPQ nodes.  

VI.  EXPERIMENT 

In the test section, we test in different cases of the 
number of XML Schema’s elements, the number of re-
turn nodes in TPQ and the number of the logical nodes in 
TPQ. We get a conclusion by comparing the number of 
nodes in TPQ before and after optimization. Detailed test 
data are shown in Table IV. 

Through the experiments above, we know that the 
more PRC/RAD relationships are obtained from XML 
Schema, the more nodes in TPQ can be reduced. For the 
optimization of logical node, if there are more logical 
nodes OR in Twig pattern, the number of nodes in Twig 
pattern can be reduced greatly, because the logical node 
OR only requires one of its sub-tree’s requirement to be 
satisfied. While the logical node AND can be optimized 
only when all its sub-tree’s requirements are met. Mean-
while, the number of return nodes in TPQ can also affect 
the optimization. Since the return nodes are not redundant, 

they cannot be removed in any case. If there are many 
return nodes in TPQ, no much optimization can be real-
ized. 

 VII.  CONCLUSION 

This paper proposes an effective method for minimiz-
ing XML query based on XML Schema for extended Tree 
Pattern Queries. The method can make use of the struc-
ture constraints information provided by XML Schema to 
optimize the tree query pattern containing the logic nodes 
AND and OR. We have developed and realized PRC and 
RAD extraction algorithm and TPQ minimization algo-
rithm. The effectiveness of the algorithm is demonstrated 
by testing. 

The future works is to identify more constraints from 
XML schema and apply them to optimize various ex-
tended GTPs. The XML schema with the recursive de-
fined element types should be also taken into account. 
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