

Automatic Organization of Programming
Resources by Neural Computing

Guojin Zhu

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: gjzhu.dhu@163.com

Le Liu

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email:liulefirst@163.com

Abstract—There are numerous of programming resources
on the Internet, such as programming problems on online
judge systems and program codes that solve these problems.
Although these resources are valuable for students to
practice programming, they are not effectively organized to
facilitate students learning. Students and teachers may both
hope that all these programming resources are organized as
a tutoring sequence. For this purpose, an approach which is
based on neural computing is proposed here to organize the
programming resources automatically into a tutoring
sequence. 2456 source codes were mined in our experiment,
resulting in 97 mainstream solutions to 105 programming
problems, respectively. These mainstream solutions were
sorted by their complexities to form a tutoring sequence
which organizes the problems together with their program
codes from easy to difficult.

Index Terms—programming resource, data mining, lobe
component analysis, self-organizing maps, knowledge
representation

I. INTRODUCTION

There are lots of online judges [1] that provide
thousands of problems for students to solve on a purpose
of programming practice. This results in abundant
program source codes (submitted by students as solutions
to the problems) on the Internet. All these problems and
their program source codes, however, are not organized
effectively for teaching and learning. It is often difficult
for students to choose suitable problems to practice. To
organize these programming resources, a method [2]
based on Formal Conception Analysis (FCA [3]) was
proposed to discover the knowledge behind the source
codes of the problem solutions. Another method [4] was
proposed on a basis of predefined knowledge structures
to identify the programming knowledge points in the
solution reports. However, they are both based on
predefined knowledge bases. Methods that depend on a
predefined knowledge base have several disadvantages.
For example, it is difficult to determinate how many
knowledge points are needed to put into the knowledge

base in advance [5].
To address such issue, we propose an approach to

organize these programming resources automatically
without any predefined knowledge base. The main idea of
this approach is to mine the program source codes by
neural computing to discover mainstream solutions to
programming problems. Moreover, the discovered
mainstream solutions are sorted to form a sequence from
simple to complex. This sorted sequence, in which each
of the programming problems can find its mainstream
solution, functions as a tutoring sequence which arranges
the programming problems together with their program
source codes from easy to difficult.

However, the program source code, a sequence of
strings, or a sequence of alphabets, is always trusted as a
non-vectorial item. This makes it difficult to mind the
program source codes by neural computing, which is
often based on vector computation. For this reason, we
use a vector, called code vector, to present the program
source code. The code vector indicates whether or not the
abstract syntax tree (AST [6-8]) of the program source
code contains some special sub-trees, called central sub-
trees.

Fig.1 shows the procedure to organize programming
problems and their program source codes into a tutoring
sequence by the proposed neural computing. The first
step is to convert the program source codes into their
abstract syntax trees by using the Java Complier
Complier (JavaCC [7,8]).

Usually, an AST is composed of several sub-trees. The
second step is to cut the ASTs into their sub-trees. We
find that most sub-trees are similar to others, so that we
try to use a central sub-tree to represent a group of similar
sub-trees. In the third step, we introduce a clustering
method which is called Self-Organizing Maps (SOM [9-
13]) to mine the central sub-trees for groups of similar
sub-trees. SOM is a clustering method considered as an
unsupervised variation of the artificial neural network.

In the forth step, we construct the code vector of each
program code on a basis of the central sub-trees. The
number of components of the code vector is equal to the
number of the central sub-trees. Each component of the
code vector is corresponding to a central sub-tree, and

Corresponding author: Guojin Zhu; Email gjzhu.dhu@163.com.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1471

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1471-1478

Programs

ASTs

Sub-trees

SOM

Central sub-trees

Vectors

LCA

Vectorial
templates

Tutoring
sequence

(1)

(2)

(3)

(4) (5)
(6)

Problems

Vectorization
Clustered by sorted

templates

JavaCC

Cut

Figure 1. The procedures of organize programming resources by neural computing

Figure 2. The abstract syntax tree of a simple source code

vice versa. The value of a component of the code vector
is the similarity value between a sub-tree of the program
code and the central sub-tree corresponding to the
component.

After obtaining the code vectors of program source
codes, we could apply Lobe Component Analysis (LCA
[14,15]) to mining them to discover the mainstream
solutions to the programming problems in the fifth step.
LCA is another type of the artificial neural network.

Finally, we generate a tutoring sequence by sorting the
discovered the mainstream solutions (represented by
vectorial templates) from simple to complex and
associating each of the mainstream solutions with its
corresponding problems as well as its corresponding
group of program source codes.

The rest of the paper is organized as follows. In
Section II, we introduce the abstract syntax tree (AST)
briefly and present two methods to measure the similarity
between ASTs. In Section III, we introduce the concept
of the central sub-tree, and explain how to obtain a
central sub-tree from similar sub-trees by SOM. In
Section IV, we convert source codes into their code
vectors on a basis of central sub-trees and mine the
solutions to problems from the code vectors by LCA. In
Section V, we propose a method to generate a tutoring
sequence by associating the problems with the mined
solutions. Section VI shows the experiment results which
demonstrate that our approach is feasible. Finally, we
draw the conclusion for our paper.

II. ABSTRACT SYNTAX TREES AND THEIR SIMILARITIES

A. Abstract Syntax Trees
In the field of computer science, an abstract syntax

tree (AST), or just a syntax tree, is a tree representation
of the abstract syntactic structure of a program source
code written in a programming language. An AST is
often the output of a parser and it forms the input to
semantic analysis and code generation. The Java
Complier Complier (JavaCC [7,8]) is a tool of parser-
generator written in Java that allows the parser to
produce ASTs. Each source code can be converted into
its AST. Fig.2 shows an AST of a simple source code
(displayed in the up right corner) generated by JavaCC.
Each node in the tree represents a constant, variable,
operator, or statement.

B. Tree Similarity
We define that the size of a tree is the number of

nodes that the tree contains. We define the tree size
similarity to measure the similarity between two trees.

Given two trees X and Y, the tree size similarity,
denoted by TreeSizeSimilarity(X, Y), measures the degree
that the tree Y is similar to the tree X in size, which is
defined as follows:

where Node(T) denotes the number of nodes in the tree T.
It is not enough to measure the similarity between two

trees only by the tree size similarity. Two trees that have
the same size may have different structures. For this
reason, we define the similarity between two structures,
called tree structure similarity. The tree structure
similarity is based on the tree edit distance [16] (TED).

() | () () |
(,)

()
(1)Node X Node X Node Y

TreeSizeSimilarity X Y
Node X

− −
=

1472 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Figure 3. The clusters of sub-trees

The tree edit distance is a measurement used to
measure the similarity between tree structured data. The
tree edit distance is defined as the minimum-cost
sequence of node edit operations that transform one tree
into another. If T is an ordered tree, these edit operations
are defined as follows:

 Rename the label of a node x in T;
 Delete a non-root node x in T with parent x’,

making the children of x become the children of
x’;

 Insert a node x as a child of x’ in T, making x the
parent of a consecutive subsequence of the
children of x’.

Given two trees X and Y, the tree structure similarity,
denoted by TreeStructureSimilarity(X, Y), measures the
degree that the tree Y is similar to the tree X in structure.
It is defined as follows:

where TED(X, Y) is the tree edit distance between X and
Y. Obviously, the smaller the tree edit distance TED(X, Y)
is, the bigger the tree structure similarity value will be.

III. MINING CENTRAL SUB-TREES

A. Sub-tree and Central Sub-tree
In computer programming, a block is a section of code

which is grouped together. Usually, a block is composed
of one or more declarations and statements. Each block
implements a special functionality. In an AST, each
block is corresponding to a sub-tree. The blocks in
C/C++ programming are delimited by curly braces. We
cut the AST into its sub-trees such that each of its sub-
trees represents a block of the source code.

We find that most sub-trees of ASTs are similar to
others, so that we try to use a central sub-tree to
represent a group of similar sub-trees. Fig.3 shows three
groups of similar sub-trees. They are represented by
circles, stars and squares. Each circle represents a sub-
tree. The sub-trees that the circles represent are similar to
each other. We can see that the circles are clustered
together. So are the stars and squares. The circle nearest
to the center of the cluster of circles is regarded as the

central one. The central circle represents the central sub-
tree of the similar sub-trees that the circles represent.

B. Self-Organizing Maps
The Self-Organizing Map (SOM) is a clustering

method considered as an unsupervised variation of the
artificial neural network. Compared with other artificial
neural networks, SOM uses neighborhood function [17]
to preserve the topological properties of the input space.
In maps consisting of thousands of nodes, it is possible to
perform cluster operations [18-19] on the map itself.

Let us briefly introduce the idea of Self-Organizing
Maps in terms of our trees. An SOM map consists of a
group of neurons. Each neuron includes two parts: its
corresponding tree on the SOM map, and a list of trees
under the neuron. The trees in the list under the neuron
are similar to its corresponding tree on the SOM map, so
that we think that its corresponding tree on the map
represents all the trees under the neuron. The SOM
algorithm forms a semantic map where similar trees are
mapped closely together and dissimilar ones apart.

These are the variables needed in the SOM algorithm.
1) t is the index of the input tree;
2) T(t) is an input tree;
3) n is a neuron in the map;
4) Tn is the tree corresponding to the neuron n;
5) Ln is the list of trees under the neuron n including

the neuron tree Tn;
6) s is the current iteration, and e is the iteration

limit;
7) similarity(x, y) is the formula to calculate the

similarity between the tree x and the tree y;
8) neighbor(n) is the neighborhood of the neuron n;
9) trees(n) is a set of all trees in the neighborhood

of the neuron n.
The SOM algorithm is described as follows.
1) Initialize the map such that each neuron n has a

randomly-chosen tree Tn and an empty list Ln of
trees under the neuron (i.e., Ln = ∅).

2) For each input tree T(t), do the following:
a) For each neuron n in the map, calculate the

similarity between the input tree T(t) and
the neuron tree Tn by the formula
similarity(Tn, T(t));

b) Choose the neuron m whose corresponding
tree Tm has the largest similarity value of
similarity(Tm, T(t)). Add the input tree T(t)
into the list Lm of trees under the neuron m.

3) For each neuron n, do the following:
a) Choose the tree Mn from the set trees(n) of

all trees in the neighborhood neighbor(n)
such that the tree Mn has the biggest sum S
of similarities

b) Replace the neuron tree Tn by the chosen
tree Mn.

4) Empty the list Ln of every neuron n, and increase
s.

() (,))
(,)

()
(2)Node X TED X Y

TreeStructureSimilarity X Y
Node X

−
=

()
(,) (3)n

T trees n

S s im ila r ity M T
∈

= ∑

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1473

© 2013 ACADEMY PUBLISHER

Sub-trees

Class 1 … Class k

C1 … Ci … Cm Cn

1-dimensional SOM

2-dimensional SOM

 Subclass i … Subclass 1 … Subclass m Subclass n

Figure 4. Using SOMs to obtain central sub-trees
AST

x1

x2

…

xk

Central sub-trees

Similar size sub-tree set

0.95
(2)

(3)

(1)

…

…

0

Tree structure
similarity

Code vector

Figure 5. The procedure to construct the code vector

5) Repeat from Step 2) to Step 4) while s < e.
Each neuron tree Tn in the map is a central tree which

represents the trees in the list Ln at the end of the above
algorithm.

C. Obtaining Central Sub-trees by SOM
For a given set of sub-trees, we apply the SOM

algorithm in two steps to obtain the central sub-trees, as
is shown in Fig.4.

We take a 1-dimensional SOM method to divide all
sub-trees into several classes. We use the tree size
similarity to measure the similarity between two sub-
trees, e.g., the similarity between the input sub-tree T(t)
and the neuron tree Tn is measured by
TreeSizeSimilarity(Tn, T(t)). For each neuron n, we treat
neurons at its left side and right side including itself as its
neighborhood neighbor(n). When the 1-dimensional
SOM operation is finished, the list Ln of sub-trees under
each neuron n is a class of sub-trees (e.g., Class 1, Class
k in Fig.4). The sub-trees in the same class are similar in
size.

Moreover, each class obtained by the 1-dimensional
SOM is further divided into several subclasses by a 2-
dimensional SOM method. We use the tree structure
similarity to measure the similarity between two sub-
trees in the same class, e.g., the similarity between the
input sub-tree T(t) and the neuron tree Tn is measured by
TreeStructureSimilarity(Tn, T(t)). For each neuron n, we
use Moore neighborhood algorithm [20] to determinate
the neurons including itself as its neighborhood
neighbor(n). When the 2-dimensional SOM operation is
finished, the list Ln of sub-trees under each neuron n is a
subclass of sub-trees (e.g., Subclass 1 and Subclass m in
Fig.4). The sub-trees in the same subclass are similar not
only in size but also in structure. Each neuron tree Tn in
the 2-dimensional SOM is a central sub-tree (e.g., C1 and
Cn in Fig.4) at the end of the 2-dimensional SOM
operation.

IV. MINING SOLUTIONS

A. Code Vectors
Fig.5 shows the procedure to construct the code vector

V = (v1, v2… vn) for a given source code, which is
described as follows.

1) Convert the source code to its abstract syntax
tree X, and cut the abstract syntax tree X into its sub-trees
x1, x2, …, xk such that each of them represents a block of
the source code, denoted by X = {x1 , x2 … xk}.

2) For each sub-tree x in X, do the following:
a) Construct a set S(x) of all central sub-tress

that are similar to the sub-tree x in size
such that every central sub-tree c in S(x)
satisfies TreeSizeSimilarity(c, x) > K,
where K is between 0.7 and 0.9 (e.g., 0.8).

b) If the set S(x) is not empty, choose the
central sub-tree cm that is the most similar
to the sub-tree x in structure, and set vm =
TreeStructureSimilarity(cm, x), where vm is
the component of the code vector V
corresponding to the central sub-tree cm.

3) Set each of the rest components of the code
vector V equal to 0.

For example, suppose an abstract syntax tree X = {x1,
x2, x3} and C = {c1, c2, c3, c4, c5, c6} be the set of central
sub-trees. For the sub-tree x1, there are two central sub-
trees c2 and c4 that are similar to it in size (larger than
0.8), i.e., the set S(x1) = {c2, c4}. The set S(x1) is not
empty. Thus, we choose the central sub-tree c2 that is the
most similar to the sub-tree x1 in structure, and set the
component v2 of the code vector V corresponding to the
central sub-tree c2 equal to TreeStructureSimilarity(c2, x1)
(e.g.,. v2 = 0.98). For the sub-trees x2 and x3, use the same
method to generate other two components of the code
vector V. In the end, the code vector is obtained, e.g., V =
(0, 0.98, 0, 0.92, 0, 0.87). Generally, the number of non-
zero components in the code vector is equal to the
number of sub-trees in the abstract syntax tree X.

B. Lobe Component Analysis for Mining Solutoins
The Lobe Component Analysis (LCA) is a type of

artificial neural network that supports incremental
learning. Its idea is to use as little as possible of the
vectors to represent the entire space of the data.

Now, let’s introduce the principle of LCA briefly.
Given a limited resource, LCA divides the sample space
R into c mutually non-overlapping regions called lobe
regions:

1 2 ... (4)cR r r r= ∪ ∪
where ri∩rj = ∅, if i ≠ j. Each region ri is represented
by a single unit feature vector called lobe vector.

1474 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

S

mask

&

* SP sy

Updated solutions

(1)

(2) (3)

Remove sy from S (5)

Solutions

Sequence

...

sy

s6

s3

Update mask (4)

Figure 6. The steps to generate the tutoring sequence

TABLE I
SOLUTIONS TO PROBLEMS

Solution Problems
s1 110-5(15)
s2 121-2(4), 110-5(2)
s3 131-3(16)

The second column indicates the information of the problems in the
solution. For example, 110-5(15) indicates that the problem whose ID

number is 110-5 has 15 source codes in the solution s1.

As we have mentioned earlier, each code vector
corresponds to a program code that solves a
programming problem. The solution to the problem is
implemented by the program code. Some program codes
may implement the same solution. LCA would divide all
code vectors into several mutually non-overlapping lobe
regions. Each of the lobe regions is a group of code
vectors that implement the same solution. Thus, we think
that each lobe vector represents a solution whereas each
code vector in the lobe region represents an instance of
the solution (i.e., each program code is a solution
instance). The lobe vector is called vectorial template in
Fig. 1.

Each component of the lobe vector is a real number.
To make it more clearly to analysis, we convert the lobe
vector into a zero-one vector, called solution vector. For
a given lobe vector L = (l1, l2… lk), its corresponding
solution vector O = (o1, o2… ok) is such that oi = 1 if li is
greater than 0, or oi = 0 otherwise. For example, L =
(0.95, 0, 0.9, 0.65, 0), its solution vector O = (1, 0, 1, 1,
0). It is easy to see that the more ones in the solution
vector, the more complexity the solution is.

C. Mainstream Solutions
Some solutions have many instances (i.e., code

vectors) in their corresponding lobe regions. Others have
few instances. The more instances in its corresponding
region, the more frequently used the solution is.

A problem may several solutions, among which the
one that is used most frequently to solve the problem is
called the mainstream solution of the problem. For
example, suppose there are three solutions s1, s2 and s3
obtained by LCA as shown in Table I. The solution s1
can be used to solve a problem whose ID number is 110-
5. The solution s2 can be used to solve two problems
whose ID numbers are 121-2 and 110-5, respectively.
The solution s3 can be to solve a problem whose ID
number is 131-3. For the problem “110-5”, there are two
solutions s1 and s2 that can be used to solve it. However,
the problem “110-5” has 15 code vectors in the solution
s1 and 2 code vectors in the solution s2. So we treat the
solution s1 as the mainstream solution of the problem
“110-5”.

Below are the variables needed in the algorithm for
finding mainstream solutions from the solutions obtained
by LCA.

1) P = {p1, p2, …, pn} is a set of problems, where n
is the number of problems;

2) S = {s1, s2, …, sk} is a set of solutions, where k is
the number of solutions;

3) N is a temporary set that used to store the data.

The algorithm to discover the mainstream solutions is
described as follows.

For each problem pi in the set P, do the following:
1) Empty the set N, i.e., N ← ∅;
2) Select from the set S all the solutions that can

solve the problem pi, and put them into the set N;
3) For each solution in the set N, calculate the

number of code vectors of the problem pi;
4) Choose a solution sx from the set N that has the

largest number of code vectors of the problem pi
as the mainstream solution of the problem pi.

Each problem will find its mainstream solution by the
algorithm above. Moreover, a mainstream may solve
more than one problem.

V. ORGANIZING PROGRAM SOURCE CODES

In this section, we present a method to generate the
tutoring sequence according to the mainstream solutions
and their corresponding problems.

These are the variables and operations needed in the
method.

1) mask is a variable of a zero-one vector,
initialized all ones, i.e., mask = (1, 1, … ,1).

2) & denotes the bitwise AND operation of two
zero-one vectors.

3) * denotes the dot product operation of two
vectors.

4) ~ denotes the reverse operation for a given zero-
one vector.

5) S = {s1, s2, …, sm} is the set of mainstream
solutions

6) O = {o1, o2… om} is the set of the solution
vectors. Each solution vector oi in the set O
corresponds to a solution si in the set S.

7) SP is the set that are used to store the temporary
solutions

8) Sequence is the list to store the sorted solutions.

Fig.6 depicts the algorithm to generate a tutoring
sequence, which is described as follows.

1) For each solution si in the set S, update its
solution vector oi by oi ← oi & mask.

2) For each solution si in the set S, calculate the dot
product of the vector variable mask and its solution
vector oi by xi = mask *oi (xi is an integer). Choose the

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1475

© 2013 ACADEMY PUBLISHER

TABLE II
MAINSTREAM SOLUTIONS

Solution Number Solution vector Problems
s1 7 (1, 0, 1, 0, 0) 203-20(5)
s2 7 (1, 0, 1, 0, 1) 123-1028(7)
s3 12 (1, 0, 1, 0, 0) 206-42(10)
s4 24 (1, 0, 1, 1, 1) 110-5(17), 203-24(8)

Number is the number of source codes in the solution.
Solution vector is the vector of the solution.

Problems indicate the problems in the solution. For example, 110-
5(17) indicates that the problem whose ID number is 110-5 has 17

source codes in the solution s4.

TABLE III
AFTER THE FIRST IERATION

ID Number Solution vector Problems
s1 7 (0, 0, 0, 0, 0) 203-20(5)
s2 7 (0, 0, 0, 0, 1) 123-1028(7)
s4 24 (0, 0, 0, 1, 1) 110-5(17),203-24(8)

TABLE IV
INFORMATION OF CLASSES

ID Number Scope Minimum Average
1 1298 [8, 11] 0.8 0.902
2 687 [12, 14] 0.923 0.95
3 627 [15 ,18] 0.882 0.941
4 547 [19 ,22] 0.905 0.954
5 469 [23 ,25] 0.958 0.973
6 563 [26 ,29] 0.929 0.962
7 530 [30 ,34] 0.938 0.962
8 519 [35 ,39] 0.946 0.967
9 447 [40 ,44] 0.930 0.969
10 482 [45 ,49] 0.957 0.976

Number is the number of sub-trees in the class;
Scope is the range of sizes of sub-trees in the class;

Minimum is the smallest value of tree size similarities;
Average is the average value of tree size similarities.

solutions which have the smallest value of the dot
product, and add these solutions into the set SP.

3) Choose a solution sy from the set SP that has
more instances than each of others in the set SP has, and
append the solution sy at the end of the list Sequence.

4) Update the vector variable mask by mask ← ~oy.
5) Remove the solution sy from the set S, and

empty the set SP.
6) Repeat from Step 1) to Step 5) until S = Ф.

By applying the algorithm above, we can get a
sequence of mainstream solutions in the list Sequence
sorted from simple to complex. A tutoring sequence is
formed by associating each problem with its mainstream
solution in the list Sequence.

For example, suppose we have four mainstream
solutions shown in Table II. The solution s1 can be used
to solve a problem whose ID number is 203-20. The
solutions s2 and s3 can solve the problems “123-1028”
and “206-42”, respectively. The solution s4 can be used
to solve two problems whose ID numbers are 110-5 and
203-24, respectively. During the first iteration, the set SP
= {s1, s3}. However, the solution s3 has 12 instances,
which are more than 7 instances that the solution s1 has.
So we append the solution s3 at the end of the list
Sequence.

After removing the solution s3 from the set S, the rest
of solutions are shown in Table III, where the solution
vectors has been updated by the bitwise AND operation
oi ← oi & mask.

At the end of the algorithm, we get a sequence of
mainstream solutions stored in the list Sequence = (s3, s1,
s2, s4). A tutoring sequence is obtained by associating
each problem with its mainstream solutions. We can
denote the tutoring sequence by problem ID numbers, e.g.,
(206-42, 203-20, 123-1028, 110-5, 203-24), which
corresponds to the list Sequence = (s3, s1, s2, s4).

VI. EXPERIMENTS

Our experiment is based on 105 problems which
consist of 45 simple problems fro freshmen and 60
medium problems for sophomores. We gathered 2456

corresponding C language source codes submitted by
118 students. All of these source codes were downloaded
from the online judge at http://acm.dhu.edu.cn/dhuoj.

A. Central Sub-trees
We converted the 2456 source codes to their ASTs.

11837 sub-trees were obtained after cutting the 2456
ASTs according to their curly braces.

By the clustering method of a 1-dimensional SOM, we
obtained twenty-five classes, ten of which are listed in
Table IV. We can see that sub-trees which are similar in
size are gathered in one class. Take the second class for
example. There are 687 sub-trees in this class. The size
of each sub-tree in the class is between 12 and 14
inclusive. The minimum tree size similarity between
these sub-trees is 0.923.

118 subclasses were generated by applying a 2-
dimensional SOM to the twenty-five classes. Thus, we
obtained 118 central sub-trees. Table V lists 4 central
sub-trees of them. Take the forth row for example, the ID
number of the central sub-tree is 593. There are 348 sub-
trees which are similar to this central sub-tree. The
minimum value of the tree structure similarities between
the central sub-tree and these sub-trees is 0.929.

B. Solutions
2456 code vectors were constructed on a basis of the

118 central sub-trees according to the method presented
in Section IV. In the LCA progress, we randomly select
400 solution instances (code vectors) to initialize their
corresponding solution vector.

TABLE V
CENTRAL SUB-TREES

No Center Number Minimum
1 584 34 0.867
2 160 185 0.929
3 600 73 0.867
4 593 348 0.929

Center is the ID number of the central sub-tree;
Number is the number of sub-trees in the subclass;

Minimum is the smallest value of tree structure similarities between the
central sub-tree and the sub-trees in the subclass.

1476 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

400 solutions were obtained after 3000 times training
of the LCA, and 97 mainstream solutions were obtained
from these solutions according to the method presented
in Section IV.

C. Tutoring Sequence
A tutoring sequence was generated in our experiment

which organized the problems together with their
program codes from easy to difficult. It is shown in
Table VII in Appendix. We can see that the simple
problems appear in the front of the tutoring sequence,
whereas the medium problems appear in the back of the
tutoring sequence. However, a medium problem (i.e.,
202-18 Accumulate Formula) appears near the front of
the sequence, and a simple problems (i.e., 110-46 Deal)
appears near the back of sequence. Such phenomenon is
normal, because a simple problem may need more code
blocks to solve it (i.e., if…else if…else statements). For
the medium problem, there is a clever approach to solve
it.

VII. CONCLUSION

There are lots of archives of problems for
programming practice on the Internet. The problems in
these archives, however, are not organized effectively for
programming tutoring. Teachers may hope that the
problems are organized into a tutoring sequence from
easy to difficult. In this paper, we proposed an approach
to organize programming problems and their program
source codes into a tutoring sequence by neural
computing. This approach includes converting the source
codes into their corresponding abstract syntax trees,
applying Self-Organizing Maps to extracting central sub-
trees from the abstract syntax trees, mining the program
codes to obtain the mainstream solutions by Lobe
Component Analysis, and producing a tutoring sequence
of the mainstream solutions from simple to complex. It is
hoped that such a tutoring sequence is useful for teachers
and students.

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
60973121.

REFERENCES
[1] http://en.wikipedia.org/wiki/Online_judge
[2] Z. Guojin and Z. Zhishou, "Knowledge unit discovery for

programming tutoring based on Formal Concept
Analysis," in Educational and Information Technology
(ICEIT), 2010 International Conference on, 2010, pp. V3-
476-V3-479.

[3] R. Wille, "Knowledge acquisition by methods of formal
concept analysis," presented at the Proceedings of the
conference on Data analysis, learning symbolic and
numeric knowledge, Antibes, 1989.

[4] G. Zhu and L. Fu, "Automatic Organization of
Programming Resources on the Web," in Advances in
Computer Science and Information Engineering. vol. 168,

D. Jin and S. Lin, Eds., ed: Springer Berlin Heidelberg,
2012, pp. 675-681.

[5] Z. Guojin and Z. Xingyin, "Autonomous mental
development for algorithm recognition," in Information
Science and Technology (ICIST), 2011 International
Conference on, 2011, pp. 339-347.

[6] J. Jones, "Abstract Syntax Tree Implementation Idioms,"
in Proceedings of the 10th Conference on Pattern
Languages of Programs (PLoP2003), 2003.

[7] G. Zhu and C. Deng, "Mining Source Codes of
Programming Learners by Self-Organizing Maps," in
Advances in Computer Science and Information
Engineering. vol. 168, D. Jin and S. Lin, Eds., ed:
Springer Berlin Heidelberg, 2012, pp. 683-688.

[8] V. Kodaganallur, "Incorporating language processing into
Java applications: a JavaCC tutorial," Software, IEEE, vol.
21, pp. 70-77, 2004.

[9] EA. Ferrán, B. Pflugfelder, and P. Ferrán, "Self-organized
neural maps of human protein sequences," Protein
science : a publication of the Protein Society, vol. 3, pp.
507-521, 03/ 1994.

[10] Z. Guojin and Z. Xingyin, "The Growing Self-organizing
Map for Clustering Algorithms in Programming Codes,"
in Artificial Intelligence and Computational Intelligence
(AICI), 2010 International Conference on, 2010, pp. 178-
182.

[11] T. Kohonen, "The self-organizing map," Proceedings of
the IEEE, vol. 78, pp. 1464-1480, 1990.

[12] Q. Xiao, X. Qian, and Liao, “Clustering Algorithm
Analysis of Web Users with Dissimilarity and SOM
Neural Networks”. Journal of Software, North America, 7,
nov. 2012.

[13] J. Vesanto and E. Alhoniemi, "Clustering of the self-
organizing map," Neural Networks, IEEE Transactions on,
vol. 11, pp. 586-600, 2000.

[14] W. Juyang and M. Luciw, "Dually Optimal Neuronal
Layers: Lobe Component Analysis," Autonomous Mental
Development, IEEE Transactions on, vol. 1, pp. 68-85,
2009.

[15] M. D. Luciw and W. Juyang, "Laterally connected lobe
component analysis: Precision and topography," in
Development and Learning, 2009. ICDL 2009. IEEE 8th
International Conference on, 2009, pp. 1-8.

[16] K. Zhang and D. Shasha, "Simple Fast Algorithms for the
Editing Distance between Trees and Related Problems,"
SIAM Journal on Computing, vol. 18, pp. 1245-1262,
1989.

[17] Y.-P. Qin, L.-Z. Lü, F.-W. Zhang, B.-B. Zhang, and J.
Zhang, "The Neighborhood Function and Its Application
to Identifying Large-Scale Structure in the Comoving
Universe Frame," The Astrophysical Journal, vol. 669, p.
692, 2007.

[18] X. Li, “A New Text Clustering Algorithm Based on
Improved K_means,” Journal of Software, North America,
7, jan. 2012.

[19] C. Huang, J. Yin, and Hou, “Text Clustering Using a
Suffix Tree Similarity Measure,” Journal of Computers,
North America, 6, oct. 2011.

[20] http://en.wikipedia.org/wiki/Moore_neighborhood

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1477

© 2013 ACADEMY PUBLISHER

TABLE VII
TUTORING SEQUENCE

No. Problem title No. Problem title No. Problem title

1 112-59 Date 36 200-3 Pure composite number 71 201-11 Translate letters

2 107-13 The day number of a month 37 207-46 Different date 72 201-9 Spiral square

3 123-1028 Count decimals-2 38 109-40 Complex formula 73 203-19 Three ships

4 112-43 Palindrome digital 39 106-24 Bred problem 74 203-22 Chess board

5 206-42 Josephus-2 40 106-25 Sum 75 204-25 Magic ratio

6 111-35 Real value calculate 41 201-7 Special Four-digit 76 113-39 Reverse order

7 110-55 Count letter 42 205-35 The three prime numbers 77 207-45 Seek prime

8 112-32 Encryption 43 202-14 Series 78 200-4 Count Series number

9 203-24 Lost pages 44 109-2 Magic number 79 209-60 Gold Bach’s Conjecture

10 202-18 Accumulate Formula 45 203-23 Construct sequence 80 106-42 Sort

11 113-8 Count decimals-1 46 208-51 Tree 81 209-58 The multiple of 7

12 202-16 Formula result 47 205-34 Ring 82 208-54 Adder

13 201-12 A multiple of T 48 105-53 Prime 83 209-59 Prime

14 203-20 Multiplication of tribal people 49 105-19 Sum of approximate 84 110-5 Absolute value

15 106-21 Seek big, small, average 50 112-18 Data reversal 85 105-38 Strange number

16 203-21 Bus 51 107-36 How about you score 86 204-28 Decimal

17 111-28 Shipping rate 52 205-32 Table tennis 87 206-38 Palindrome-1

18 111-37 Busy dog robber 53 209-57 Maximum 88 105-9 Check prime number

19 108-14 Print letter 54 200-1 Triangle number 89 206-39 Moto

20 113-7 Count reverse letter 55 208-53 Palindrome-2 90 201-10 Array

21 111-27 Function value 56 209-56 Series-2 91 204-27 Security system

22 105-10 Count zero 57 108-47 Print* 92 123-1026 Strange Shape

23 105-17 Sum of number 58 108-26 Back and front of letter 93 200-2 pure prime

24 107-11 Class problem 59 123-1025 Data division 94 110-46 Deal

25 106-56 Open/close light 60 209-55 Series-1 95 207-47 Magic square

26 110-45 SysConvert-1 61 204-26 Output Diamond-1 96 105-6 Greatest common divisor

27 110-48 SysConvert-2 62 202-15 Abc 97 200-6 Print sequence in order

28 202-17 Maximum benefits 63 106-44 Binary 98 207-44 Count String

29 200-5 Highest frequency 64 206-41 Josephus-1 99 207-43 The start of String

30 107-20 Which day 65 207-48 Longest letter 100 204-30 A multiple of N

31 111-52 A simple problem 66 106-22 Fibonacci 101 205-36 Matrix transfer

32 107-58 Triangle 67 201-8 Seek the biggest 102 206-37 Letter sort

33 204-29 Sparse matrix 68 109-12 Ticket price 103 205-31 poker

34 208-52 Triangle 69 208-50 Sequence 104 202-13 Divisible

35 205-33 Max and min 70 206-40 Numeric string processing 105 208-49 Scholarship
The problem title which starts with “1” indicates an easy problem, e.g., “112-59 Date” is an easy problem. The problem title which starts with “2”
indicates a medium problem, e.g., “208-50 Sequence” is a medium problem. When two programs have the same mainstream solution, put the one
that has more program codes before the other.

APPENDIX A

Guojin Zhu is an associate professor at
the Department of Computer Science,
Donghua University (DHU), Shanghai,
China. He received his M.S. and Ph.D.
degrees from DHU in 1991 and 2007,
respectively. He was a visiting scholar
at the Department of Computer Science
and Engineering, Michigan State
University, East Lansing, Michigan,
USA from November 2007 to

November 2008. His current research interests include
semantic web, knowledge discovery, and neural computing.

Le Liu is a graduate student of Computer
Application Technology at Donghua
University. He was born in Hunan province,
P. R. China in 1987. His current main
research interest is computer network and
AI.

1478 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

