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Abstract—There are numerous of programming resources 
on the Internet, such as programming problems on online 
judge systems and program codes that solve these problems. 
Although these resources are valuable for students to 
practice programming, they are not effectively organized to 
facilitate students learning. Students and teachers may both 
hope that all these programming resources are organized as 
a tutoring sequence. For this purpose, an approach which is 
based on neural computing is proposed here to organize the 
programming resources automatically into a tutoring 
sequence. 2456 source codes were mined in our experiment, 
resulting in 97 mainstream solutions to 105 programming 
problems, respectively. These mainstream solutions were 
sorted by their complexities to form a tutoring sequence 
which organizes the problems together with their program 
codes from easy to difficult. 
 
Index Terms—programming resource, data mining, lobe 
component analysis, self-organizing maps, knowledge 
representation 
 

I. INTRODUCTION 

There are lots of online judges [1] that provide 
thousands of problems for students to solve on a purpose 
of programming practice. This results in abundant 
program source codes (submitted by students as solutions 
to the problems) on the Internet. All these problems and 
their program source codes, however, are not organized 
effectively for teaching and learning. It is often difficult 
for students to choose suitable problems to practice. To 
organize these programming resources, a method [2] 
based on Formal Conception Analysis (FCA [3]) was 
proposed to discover the knowledge behind the source 
codes of the problem solutions. Another method [4] was 
proposed on a basis of predefined knowledge structures 
to identify the programming knowledge points in the 
solution reports. However, they are both based on 
predefined knowledge bases. Methods that depend on a 
predefined knowledge base have several disadvantages. 
For example, it is difficult to determinate how many 
knowledge points are needed to put into the knowledge 

base in advance [5]. 
To address such issue, we propose an approach to 

organize these programming resources automatically 
without any predefined knowledge base. The main idea of 
this approach is to mine the program source codes by 
neural computing to discover mainstream solutions to 
programming problems. Moreover, the discovered 
mainstream solutions are sorted to form a sequence from 
simple to complex. This sorted sequence, in which each 
of the programming problems can find its mainstream 
solution, functions as a tutoring sequence which arranges 
the programming problems together with their program 
source codes from easy to difficult. 

However, the program source code, a sequence of 
strings, or a sequence of alphabets, is always trusted as a 
non-vectorial item. This makes it difficult to mind the 
program source codes by neural computing, which is 
often based on vector computation. For this reason, we 
use a vector, called code vector, to present the program 
source code. The code vector indicates whether or not the 
abstract syntax tree (AST [6-8]) of the program source 
code contains some special sub-trees, called central sub-
trees. 

Fig.1 shows the procedure to organize programming 
problems and their program source codes into a tutoring 
sequence by the proposed neural computing. The first 
step is to convert the program source codes into their 
abstract syntax trees by using the Java Complier 
Complier (JavaCC [7,8]). 

Usually, an AST is composed of several sub-trees. The 
second step is to cut the ASTs into their sub-trees. We 
find that most sub-trees are similar to others, so that we 
try to use a central sub-tree to represent a group of similar 
sub-trees. In the third step, we introduce a clustering 
method which is called Self-Organizing Maps (SOM [9-
13]) to mine the central sub-trees for groups of similar 
sub-trees. SOM is a clustering method considered as an 
unsupervised variation of the artificial neural network. 

In the forth step, we construct the code vector of each 
program code on a basis of the central sub-trees. The 
number of components of the code vector is equal to the 
number of the central sub-trees. Each component of the 
code vector is corresponding to a central sub-tree, and 
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Figure 1.  The procedures of organize programming resources by neural computing 

Figure 2.  The abstract syntax tree of a simple source code 

vice versa. The value of a component of the code vector 
is the similarity value between a sub-tree of the program 
code and the central sub-tree corresponding to the 
component.  

After obtaining the code vectors of program source 
codes, we could apply Lobe Component Analysis (LCA 
[14,15]) to mining them to discover the mainstream 
solutions to the programming problems in the fifth step. 
LCA is another type of the artificial neural network. 

Finally, we generate a tutoring sequence by sorting the 
discovered the mainstream solutions (represented by 
vectorial templates) from simple to complex and 
associating each of the mainstream solutions with its 
corresponding problems as well as its corresponding 
group of program source codes. 

The rest of the paper is organized as follows. In 
Section II, we introduce the abstract syntax tree (AST) 
briefly and present two methods to measure the similarity 
between ASTs. In Section III, we introduce the concept 
of the central sub-tree, and explain how to obtain a 
central sub-tree from similar sub-trees by SOM. In 
Section IV, we convert source codes into their code 
vectors on a basis of central sub-trees and mine the 
solutions to problems from the code vectors by LCA. In 
Section V, we propose a method to generate a tutoring 
sequence by associating the problems with the mined 
solutions. Section VI shows the experiment results which 
demonstrate that our approach is feasible. Finally, we 
draw the conclusion for our paper. 

II. ABSTRACT SYNTAX TREES AND THEIR SIMILARITIES 

A. Abstract Syntax Trees 
In the field of computer science, an abstract syntax 

tree (AST), or just a syntax tree, is a tree representation 
of the abstract syntactic structure of a program source 
code written in a programming language. An AST is 
often the output of a parser and it forms the input to 
semantic analysis and code generation. The Java 
Complier Complier (JavaCC [7,8]) is a tool of parser-
generator written in Java that allows the parser to 
produce ASTs. Each source code can be converted into 
its AST. Fig.2 shows an AST of a simple source code 
(displayed in the up right corner) generated by JavaCC. 
Each node in the tree represents a constant, variable, 
operator, or statement. 

B. Tree Similarity 
We define that the size of a tree is the number of 

nodes that the tree contains. We define the tree size 
similarity to measure the similarity between two trees.  

Given two trees X and Y, the tree size similarity, 
denoted by TreeSizeSimilarity(X, Y), measures the degree 
that the tree Y is similar to the tree X in size, which is 
defined as follows: 

where Node(T) denotes the number of nodes in the tree T. 
It is not enough to measure the similarity between two 

trees only by the tree size similarity. Two trees that have 
the same size may have different structures. For this 
reason, we define the similarity between two structures, 
called tree structure similarity. The tree structure 
similarity is based on the tree edit distance [16] (TED). 
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Figure 3.  The clusters of sub-trees 

The tree edit distance is a measurement used to 
measure the similarity between tree structured data. The 
tree edit distance is defined as the minimum-cost 
sequence of node edit operations that transform one tree 
into another. If T is an ordered tree, these edit operations 
are defined as follows: 

 Rename the label of a node x in T; 
 Delete a non-root node x in T with parent x’, 

making the children of x become the children of 
x’; 

 Insert a node x as a child of x’ in T, making x the 
parent of a consecutive subsequence of the 
children of x’. 

Given two trees X and Y, the tree structure similarity, 
denoted by TreeStructureSimilarity(X, Y), measures the 
degree that the tree Y is similar to the tree X in structure. 
It is defined as follows: 

where TED(X, Y) is the tree edit distance between X and 
Y. Obviously, the smaller the tree edit distance TED(X, Y) 
is, the bigger the tree structure similarity value will be. 

III. MINING CENTRAL SUB-TREES 

A. Sub-tree and Central Sub-tree 
In computer programming, a block is a section of code 

which is grouped together. Usually, a block is composed 
of one or more declarations and statements. Each block 
implements a special functionality. In an AST, each 
block is corresponding to a sub-tree. The blocks in 
C/C++ programming are delimited by curly braces. We 
cut the AST into its sub-trees such that each of its sub-
trees represents a block of the source code. 

We find that most sub-trees of ASTs are similar to 
others, so that we try to use a central sub-tree to 
represent a group of similar sub-trees. Fig.3 shows three 
groups of similar sub-trees. They are represented by 
circles, stars and squares. Each circle represents a sub-
tree. The sub-trees that the circles represent are similar to 
each other. We can see that the circles are clustered 
together. So are the stars and squares. The circle nearest 
to the center of the cluster of circles is regarded as the 

central one. The central circle represents the central sub-
tree of the similar sub-trees that the circles represent. 

B. Self-Organizing Maps  
The Self-Organizing Map (SOM) is a clustering 

method considered as an unsupervised variation of the 
artificial neural network. Compared with other artificial 
neural networks, SOM uses neighborhood function [17] 
to preserve the topological properties of the input space. 
In maps consisting of thousands of nodes, it is possible to 
perform cluster operations [18-19] on the map itself. 

Let us briefly introduce the idea of Self-Organizing 
Maps in terms of our trees. An SOM map consists of a 
group of neurons. Each neuron includes two parts: its 
corresponding tree on the SOM map, and a list of trees 
under the neuron. The trees in the list under the neuron 
are similar to its corresponding tree on the SOM map, so 
that we think that its corresponding tree on the map 
represents all the trees under the neuron. The SOM 
algorithm forms a semantic map where similar trees are 
mapped closely together and dissimilar ones apart. 

These are the variables needed in the SOM algorithm. 
1) t is the index of the input tree; 
2) T(t) is an input tree; 
3) n is a neuron in the map; 
4) Tn is the tree corresponding to the neuron n; 
5) Ln is the list of trees under the neuron n including 

the neuron tree Tn; 
6) s is the current iteration, and e is the iteration 

limit;  
7) similarity(x, y) is the formula to calculate the 

similarity between the tree x and the tree y; 
8) neighbor(n) is the neighborhood of the neuron n; 
9) trees(n) is a set of all trees in the neighborhood 

of the neuron n. 
The SOM algorithm is described as follows. 
1) Initialize the map such that each neuron n has a 

randomly-chosen tree Tn and an empty list Ln of 
trees under the neuron (i.e., Ln = ∅). 

2) For each input tree T(t), do the following: 
a) For each neuron n in the map, calculate the 

similarity between the input tree T(t) and 
the neuron tree Tn by the formula 
similarity(Tn, T(t)); 

b) Choose the neuron m whose corresponding 
tree Tm has the largest similarity value of 
similarity(Tm, T(t)). Add the input tree T(t) 
into the list Lm of trees under the neuron m. 

3) For each neuron n, do the following: 
a) Choose the tree Mn from the set trees(n) of 

all trees in the neighborhood neighbor(n) 
such that the tree Mn has the biggest sum S 
of similarities 

b) Replace the neuron tree Tn by the chosen 
tree Mn. 

4) Empty the list Ln of every neuron n, and increase 
s.  
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5) Repeat from Step 2) to Step 4) while s < e. 
Each neuron tree Tn in the map is a central tree which 

represents the trees in the list Ln at the end of the above 
algorithm. 

C. Obtaining Central Sub-trees by SOM 
For a given set of sub-trees, we apply the SOM 

algorithm in two steps to obtain the central sub-trees, as 
is shown in Fig.4. 

We take a 1-dimensional SOM method to divide all 
sub-trees into several classes. We use the tree size 
similarity to measure the similarity between two sub-
trees, e.g., the similarity between the input sub-tree T(t) 
and the neuron tree Tn is measured by 
TreeSizeSimilarity(Tn, T(t)). For each neuron n, we treat 
neurons at its left side and right side including itself as its 
neighborhood neighbor(n). When the 1-dimensional 
SOM operation is finished, the list Ln of sub-trees under 
each neuron n is a class of sub-trees (e.g., Class 1, Class 
k in Fig.4). The sub-trees in the same class are similar in 
size. 

Moreover, each class obtained by the 1-dimensional 
SOM is further divided into several subclasses by a 2-
dimensional SOM method. We use the tree structure 
similarity to measure the similarity between two sub-
trees in the same class, e.g., the similarity between the 
input sub-tree T(t) and the neuron tree Tn is measured by 
TreeStructureSimilarity(Tn, T(t)). For each neuron n, we 
use Moore neighborhood algorithm [20] to determinate 
the neurons including itself as its neighborhood 
neighbor(n). When the 2-dimensional SOM operation is 
finished, the list Ln of sub-trees under each neuron n is a 
subclass of sub-trees (e.g., Subclass 1 and Subclass m in 
Fig.4). The sub-trees in the same subclass are similar not 
only in size but also in structure. Each neuron tree Tn in 
the 2-dimensional SOM is a central sub-tree (e.g., C1 and 
Cn in Fig.4) at the end of the 2-dimensional SOM 
operation. 

IV. MINING SOLUTIONS 

A. Code Vectors 
Fig.5 shows the procedure to construct the code vector 

V = (v1, v2… vn) for a given source code, which is 
described as follows. 

1) Convert the source code to its abstract syntax 
tree X, and cut the abstract syntax tree X into its sub-trees 
x1, x2, …, xk such that each of them represents a block of 
the source code, denoted by X = {x1 , x2 … xk}. 

2) For each sub-tree x in X, do the following: 
a) Construct a set S(x) of all central sub-tress 

that are similar to the sub-tree x in size 
such that every central sub-tree c in S(x) 
satisfies TreeSizeSimilarity(c, x) > K, 
where K is between 0.7 and 0.9 (e.g., 0.8). 

b) If the set S(x) is not empty, choose the 
central sub-tree cm that is the most similar 
to the sub-tree x in structure, and set vm = 
TreeStructureSimilarity(cm, x), where vm is 
the component of the code vector V 
corresponding to the central sub-tree cm. 

3) Set each of the rest components of the code 
vector V equal to 0. 

For example, suppose an abstract syntax tree X = {x1, 
x2, x3} and C = {c1, c2, c3, c4, c5, c6} be the set of central 
sub-trees. For the sub-tree x1, there are two central sub-
trees c2 and c4 that are similar to it in size (larger than 
0.8), i.e., the set S(x1) = {c2, c4}. The set S(x1) is not 
empty. Thus, we choose the central sub-tree c2 that is the 
most similar to the sub-tree x1 in structure, and set the 
component v2 of the code vector V corresponding to the 
central sub-tree c2 equal to TreeStructureSimilarity(c2, x1) 
(e.g.,. v2 = 0.98). For the sub-trees x2 and x3, use the same 
method to generate other two components of the code 
vector V. In the end, the code vector is obtained, e.g., V = 
(0, 0.98, 0, 0.92, 0, 0.87). Generally, the number of non-
zero components in the code vector is equal to the 
number of sub-trees in the abstract syntax tree X. 

B. Lobe Component Analysis for Mining Solutoins 
The Lobe Component Analysis (LCA) is a type of 

artificial neural network that supports incremental 
learning. Its idea is to use as little as possible of the 
vectors to represent the entire space of the data. 

Now, let’s introduce the principle of LCA briefly. 
Given a limited resource, LCA divides the sample space 
R into c mutually non-overlapping regions called lobe 
regions: 

1 2 ... ( 4 )cR r r r= ∪ ∪  
where ri∩rj = ∅, if i ≠ j. Each region ri is represented 
by a single unit feature vector called lobe vector. 
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TABLE I 
SOLUTIONS TO PROBLEMS 

Solution Problems 
s1 110-5(15) 
s2 121-2(4), 110-5(2) 
s3 131-3(16) 

The second column indicates the information of the problems in the 
solution. For example, 110-5(15) indicates that the problem whose ID 

number is 110-5 has 15 source codes in the solution s1. 

As we have mentioned earlier, each code vector 
corresponds to a program code that solves a 
programming problem. The solution to the problem is 
implemented by the program code. Some program codes 
may implement the same solution. LCA would divide all 
code vectors into several mutually non-overlapping lobe 
regions. Each of the lobe regions is a group of code 
vectors that implement the same solution. Thus, we think 
that each lobe vector represents a solution whereas each 
code vector in the lobe region represents an instance of 
the solution (i.e., each program code is a solution 
instance). The lobe vector is called vectorial template in 
Fig. 1. 

Each component of the lobe vector is a real number. 
To make it more clearly to analysis, we convert the lobe 
vector into a zero-one vector, called solution vector. For 
a given lobe vector L = (l1, l2… lk), its corresponding 
solution vector O = (o1, o2… ok) is such that oi = 1 if li is 
greater than 0, or oi = 0 otherwise. For example, L = 
(0.95, 0, 0.9, 0.65, 0), its solution vector O = (1, 0, 1, 1, 
0). It is easy to see that the more ones in the solution 
vector, the more complexity the solution is. 

C. Mainstream Solutions 
Some solutions have many instances (i.e., code 

vectors) in their corresponding lobe regions. Others have 
few instances. The more instances in its corresponding 
region, the more frequently used the solution is. 

A problem may several solutions, among which the 
one that is used most frequently to solve the problem is 
called the mainstream solution of the problem. For 
example, suppose there are three solutions s1, s2 and s3 
obtained by LCA as shown in Table I. The solution s1 
can be used to solve a problem whose ID number is 110-
5. The solution s2 can be used to solve two problems 
whose ID numbers are 121-2 and 110-5, respectively. 
The solution s3 can be to solve a problem whose ID 
number is 131-3. For the problem “110-5”, there are two 
solutions s1 and s2 that can be used to solve it. However, 
the problem “110-5” has 15 code vectors in the solution 
s1 and 2 code vectors in the solution s2. So we treat the 
solution s1 as the mainstream solution of the problem 
“110-5”. 

Below are the variables needed in the algorithm for 
finding mainstream solutions from the solutions obtained 
by LCA. 

1) P = {p1, p2, …, pn} is a set of problems, where n 
is the number of problems; 

2) S = {s1, s2, …, sk} is a set of solutions, where k is 
the number of solutions; 

3) N is a temporary set that used to store the data. 

The algorithm to discover the mainstream solutions is 
described as follows. 

For each problem pi in the set P, do the following: 
1) Empty the set N, i.e., N ← ∅; 
2) Select from the set S all the solutions that can 

solve the problem pi, and put them into the set N; 
3) For each solution in the set N, calculate the 

number of code vectors of the problem pi; 
4) Choose a solution sx from the set N that has the 

largest number of code vectors of the problem pi 
as the mainstream solution of the problem pi. 

Each problem will find its mainstream solution by the 
algorithm above. Moreover, a mainstream may solve 
more than one problem. 

V. ORGANIZING PROGRAM SOURCE CODES 

In this section, we present a method to generate the 
tutoring sequence according to the mainstream solutions 
and their corresponding problems. 

These are the variables and operations needed in the 
method. 

1) mask is a variable of a zero-one vector, 
initialized all ones, i.e., mask = (1, 1, … ,1). 

2) & denotes the bitwise AND operation of two 
zero-one vectors. 

3) * denotes the dot product operation of two 
vectors. 

4) ~ denotes the reverse operation for a given zero-
one vector. 

5) S = {s1, s2, …, sm} is the set of mainstream 
solutions 

6) O = {o1, o2… om} is the set of the solution 
vectors. Each solution vector oi in the set O 
corresponds to a solution si in the set S. 

7) SP is the set that are used to store the temporary 
solutions 

8) Sequence is the list to store the sorted solutions. 

Fig.6 depicts the algorithm to generate a tutoring 
sequence, which is described as follows. 

1) For each solution si in the set S, update its 
solution vector oi by oi ← oi & mask. 

2) For each solution si in the set S, calculate the dot 
product of the vector variable mask and its solution 
vector oi by xi = mask *oi (xi is an integer). Choose the 
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TABLE II 
MAINSTREAM SOLUTIONS 

Solution Number Solution vector Problems 
s1 7 (1, 0, 1, 0, 0) 203-20(5) 
s2 7 (1, 0, 1, 0, 1) 123-1028(7) 
s3 12 (1, 0, 1, 0, 0) 206-42(10) 
s4 24 (1, 0, 1, 1, 1) 110-5(17), 203-24(8) 

Number is the number of source codes in the solution. 
Solution vector is the vector of the solution. 

Problems indicate the problems in the solution. For example, 110-
5(17) indicates that the problem whose ID number is 110-5 has 17 

source codes in the solution s4. 

TABLE III  
AFTER THE FIRST IERATION 

ID Number Solution vector Problems 
s1 7 (0, 0, 0, 0, 0) 203-20(5) 
s2 7 (0, 0, 0, 0, 1) 123-1028(7) 
s4 24 (0, 0, 0, 1, 1) 110-5(17),203-24(8) 

TABLE IV 
INFORMATION OF CLASSES 

ID Number Scope Minimum Average 
1 1298 [8, 11] 0.8 0.902 
2 687 [12, 14] 0.923 0.95 
3 627 [15 ,18] 0.882 0.941 
4 547 [19 ,22] 0.905 0.954 
5 469 [23 ,25] 0.958 0.973 
6 563 [26 ,29] 0.929 0.962 
7 530 [30 ,34] 0.938 0.962 
8 519 [35 ,39] 0.946 0.967 
9 447 [40 ,44] 0.930 0.969 
10 482 [45 ,49] 0.957 0.976 

Number is the number of sub-trees in the class; 
Scope is the range of sizes of sub-trees in the class; 

Minimum is the smallest value of tree size similarities; 
Average is the average value of tree size similarities. 

solutions which have the smallest value of the dot 
product, and add these solutions into the set SP. 

3) Choose a solution sy from the set SP that has 
more instances than each of others in the set SP has, and 
append the solution sy at the end of the list Sequence. 

4) Update the vector variable mask by mask ← ~oy. 
5) Remove the solution sy from the set S, and 

empty the set SP. 
6) Repeat from Step 1) to Step 5) until S = Ф. 

By applying the algorithm above, we can get a 
sequence of mainstream solutions in the list Sequence 
sorted from simple to complex. A tutoring sequence is 
formed by associating each problem with its mainstream 
solution in the list Sequence. 

For example, suppose we have four mainstream 
solutions shown in Table II. The solution s1 can be used 
to solve a problem whose ID number is 203-20. The 
solutions s2 and s3 can solve the problems “123-1028” 
and “206-42”, respectively. The solution s4 can be used 
to solve two problems whose ID numbers are 110-5 and 
203-24, respectively. During the first iteration, the set SP 
= {s1, s3}. However, the solution s3 has 12 instances, 
which are more than 7 instances that the solution s1 has. 
So we append the solution s3 at the end of the list 
Sequence. 

After removing the solution s3 from the set S, the rest 
of solutions are shown in Table III, where the solution 
vectors has been updated by the bitwise AND operation 
oi ← oi & mask.  

At the end of the algorithm, we get a sequence of 
mainstream solutions stored in the list Sequence = (s3, s1, 
s2, s4). A tutoring sequence is obtained by associating 
each problem with its mainstream solutions. We can 
denote the tutoring sequence by problem ID numbers, e.g., 
(206-42, 203-20, 123-1028, 110-5, 203-24), which 
corresponds to the list Sequence = (s3, s1, s2, s4). 

VI. EXPERIMENTS 

Our experiment is based on 105 problems which 
consist of 45 simple problems fro freshmen and 60 
medium problems for sophomores. We gathered 2456 

corresponding C language source codes submitted by 
118 students. All of these source codes were downloaded 
from the online judge at http://acm.dhu.edu.cn/dhuoj. 

A. Central Sub-trees 
We converted the 2456 source codes to their ASTs. 

11837 sub-trees were obtained after cutting the 2456 
ASTs according to their curly braces. 

By the clustering method of a 1-dimensional SOM, we 
obtained twenty-five classes, ten of which are listed in 
Table IV. We can see that sub-trees which are similar in 
size are gathered in one class. Take the second class for 
example. There are 687 sub-trees in this class. The size 
of each sub-tree in the class is between 12 and 14 
inclusive. The minimum tree size similarity between 
these sub-trees is 0.923. 

118 subclasses were generated by applying a 2-
dimensional SOM to the twenty-five classes. Thus, we 
obtained 118 central sub-trees. Table V lists 4 central 
sub-trees of them. Take the forth row for example, the ID 
number of the central sub-tree is 593. There are 348 sub-
trees which are similar to this central sub-tree. The 
minimum value of the tree structure similarities between 
the central sub-tree and these sub-trees is 0.929. 

B. Solutions 
2456 code vectors were constructed on a basis of the 

118 central sub-trees according to the method presented 
in Section IV. In the LCA progress, we randomly select 
400 solution instances (code vectors) to initialize their 
corresponding solution vector. 

TABLE V 
CENTRAL SUB-TREES 

No Center Number Minimum 
1 584 34 0.867 
2 160 185 0.929 
3 600 73 0.867 
4 593 348 0.929 

Center is the ID number of the central sub-tree; 
Number is the number of sub-trees in the subclass; 

Minimum is the smallest value of tree structure similarities between the 
central sub-tree and the sub-trees in the subclass. 
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400 solutions were obtained after 3000 times training 
of the LCA, and 97 mainstream solutions were obtained 
from these solutions according to the method presented 
in Section IV. 

C. Tutoring Sequence 
A tutoring sequence was generated in our experiment 

which organized the problems together with their 
program codes from easy to difficult. It is shown in 
Table VII in Appendix. We can see that the simple 
problems appear in the front of the tutoring sequence, 
whereas the medium problems appear in the back of the 
tutoring sequence. However, a medium problem (i.e., 
202-18 Accumulate Formula) appears near the front of 
the sequence, and a simple problems (i.e., 110-46 Deal) 
appears near the back of sequence. Such phenomenon is 
normal, because a simple problem may need more code 
blocks to solve it (i.e., if…else if…else statements). For 
the medium problem, there is a clever approach to solve 
it. 

VII. CONCLUSION 

There are lots of archives of problems for 
programming practice on the Internet. The problems in 
these archives, however, are not organized effectively for 
programming tutoring. Teachers may hope that the 
problems are organized into a tutoring sequence from 
easy to difficult. In this paper, we proposed an approach 
to organize programming problems and their program 
source codes into a tutoring sequence by neural 
computing. This approach includes converting the source 
codes into their corresponding abstract syntax trees, 
applying Self-Organizing Maps to extracting central sub-
trees from the abstract syntax trees, mining the program 
codes to obtain the mainstream solutions by Lobe 
Component Analysis, and producing a tutoring sequence 
of the mainstream solutions from simple to complex. It is 
hoped that such a tutoring sequence is useful for teachers 
and students. 
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TABLE VII 
TUTORING SEQUENCE 

No. Problem title No. Problem title No. Problem title 

1 112-59 Date  36 200-3 Pure composite number  71 201-11 Translate letters  

2 107-13 The day number of a month  37 207-46 Different date  72 201-9 Spiral square  

3 123-1028 Count decimals-2  38 109-40 Complex formula  73 203-19 Three ships  

4 112-43 Palindrome digital  39 106-24 Bred problem  74 203-22 Chess board  

5 206-42 Josephus-2  40 106-25 Sum  75 204-25 Magic ratio  

6 111-35 Real value calculate  41 201-7 Special Four-digit  76 113-39 Reverse order  

7 110-55 Count letter  42 205-35 The three prime numbers  77 207-45 Seek prime  

8 112-32 Encryption  43 202-14 Series  78 200-4 Count Series number  

9 203-24 Lost pages  44 109-2 Magic number  79 209-60 Gold Bach’s Conjecture  

10 202-18 Accumulate Formula  45 203-23 Construct sequence  80 106-42 Sort  

11 113-8 Count decimals-1  46 208-51 Tree  81 209-58 The multiple of 7  

12 202-16 Formula result  47 205-34 Ring  82 208-54 Adder  

13 201-12 A multiple of T  48 105-53 Prime  83 209-59 Prime  

14 203-20 Multiplication of tribal people  49 105-19 Sum of approximate  84 110-5 Absolute value  

15 106-21 Seek big, small, average  50 112-18 Data reversal  85 105-38 Strange number  

16 203-21 Bus  51 107-36 How about you score  86 204-28 Decimal  

17 111-28 Shipping rate  52 205-32 Table tennis  87 206-38 Palindrome-1  

18 111-37 Busy dog robber  53 209-57 Maximum  88 105-9 Check prime number  

19 108-14 Print letter  54 200-1 Triangle number  89 206-39 Moto  

20 113-7 Count reverse letter  55 208-53 Palindrome-2  90 201-10 Array  

21 111-27 Function value  56 209-56 Series-2  91 204-27 Security system  

22 105-10 Count zero  57 108-47 Print*  92 123-1026 Strange Shape  

23 105-17 Sum of number  58 108-26 Back and front of letter  93 200-2 pure prime  

24 107-11 Class problem  59 123-1025 Data division  94 110-46 Deal  

25 106-56 Open/close light  60 209-55 Series-1  95 207-47 Magic square  

26 110-45 SysConvert-1  61 204-26 Output Diamond-1  96 105-6 Greatest common divisor  

27 110-48 SysConvert-2  62 202-15 Abc  97 200-6 Print sequence in order  

28 202-17 Maximum benefits  63 106-44 Binary  98 207-44 Count String  

29 200-5 Highest frequency  64 206-41 Josephus-1  99 207-43 The start of String  

30 107-20 Which day  65 207-48 Longest letter  100 204-30 A multiple of N  

31 111-52 A simple problem  66 106-22 Fibonacci  101 205-36 Matrix transfer  

32 107-58 Triangle  67 201-8 Seek the biggest  102 206-37 Letter sort  

33 204-29 Sparse matrix  68 109-12 Ticket price  103 205-31 poker  

34 208-52 Triangle  69 208-50 Sequence  104 202-13 Divisible  

35 205-33 Max and min  70 206-40 Numeric string processing  105 208-49 Scholarship  
The problem title which starts with “1” indicates an easy problem, e.g., “112-59 Date” is an easy problem. The problem title which starts with “2” 
indicates a medium problem, e.g., “208-50 Sequence” is a medium problem. When two programs have the same mainstream solution, put the one 
that has more program codes before the other. 
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