
Automatic Connection of Components for
Dynamic Distributed Applications

Guojin Zhu

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: gjzhu.dhu@163.com

Yongjiang Zhou

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: zyj_163com@126.com

Abstract—Self-management, self-connection and self-
configuration capabilities are emerging as important
requirements for a generation of large-scale, highly dynamic,
distributed applications. We propose a new solution to
manage the connection of the components in a distributed
application automatically. Each component in the
distributed application is equipped with an autonomous
connection unit (ACU). The ACU will allocate to its
corresponding component an address consisting of an IP
address and a port number. This address of the component
will be delivered by the ACU to remote components, so that
the remote components could communicate with the local
component. In addition, the ACU could start up the
component software module autonomously according to
user settings. This solution is a generic model which could
be adapted to many distributed applications. It has been
successfully applied to a distributed online judge system for
a campus contest in Donghua University.

Index Terms— Distributed application, Automatic
connection, Automatic configuration, Online judge,
Network, Automatic communication

I. INTRODUCTION

Today, many organizations are facing problems of
managing the large collections of distributed resources.
These might include the distributed file systems,
distributed workstations and other distributed applications.
The computers that hold the distributed application may
be located in a room, spread across a building or campus,
or even be scattered around the world. The configurations
of these applications could change from time to time. The
computers that a distributed application works on also
could be changed rapidly. To a growing degree, the
distributed application is expected to be self-configuring
and self-managing, because the management of the
configuration will be becoming an enormously complex
operation as the number of components grows.

Now, the most widely-used, scalable distributed
application is the Domain Name System (DNS), which is
a directory service that associates IP address. The DNS
was designed primarily to map domain names to IP

addresses and mail servers. Besides, the DNS has been
extended to make it more dynamic and support wider
variety of applications. However, the DNS system has
some limitation, for it was just designed to resolve the
problem that the computer connects to the Internet. The
Hadoop[1] is another distributed application architecture.
To set up a real Hadoop cluster, the system operator
needs to write the host name (or IP addresses) and the
port number of each Hadoop node into the configuration
file hadoop-site.xml. This distributed application
architecture is mainly used in distributed file systems and
large data processing.

A distributed application is such an application that
executes a collection of commands to coordinate the
actions of multiple processes on a network, so that all
components cooperate together to finish a single or small
set of related tasks [2]. The ability to connect remote
users with remote resources in an open and scalable way
is a good property of a distributed system. When we say
open, we mean each component is continually open to
interaction with other components. The scalable property
means that the system can easily be altered to
accommodate changes in the number of users, resources
and computing entities. A distributed application can be
very large and very powerful by giving the combined
capabilities of all components in the distributed
application [3][4][5]. But it is not easy - for a distributed
application to be useful, it needs to have better
connectivity. This is a difficult goal to achieve because of
the complexity of the interactions between
simultaneously running components.

The connection issue here for a distributed application
refers to that every component in a distributed application
is able to know the IP addresses and the port numbers of
other components that it will communicate with. For a
Hadoop node, it could be done by its reading the
configuration file hadoop-site.xml. With the same
problem, each component in the Donghua University On-
line Judge [6] (DHUOJ) also needs to fetch these
addresses from its configuration file. The DHUOJ is a
distributed application whose software modules are
installed on different computers. In order to communicate
with each other, each of these modules has a Corresponding author: Guojin Zhu; Email gjzhu.dhu@163.com.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1419

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1419-1427

TABLE I.
MODULES IN DHUOJ

No. Module name Corresponding machine
1 Primer Primer Server
2 Proxy Proxy Server
3 Schedule Schedule Server
4 Judge Judge Server
5 Client Proxy Server (but run on PC)

Figure 1. The architecture of the DHUOJ system

TABLE II.
THE LOCAL INFORMATION FOR THE COMPONENT PROXY

No. Item name Example
1 Module name Proxy
2 Module IP 192.168.3.91
3 Module port 80
4 Configuration file launch.jnlp
5 Relative path ./apache-tomcat/webapps/dhuoj/
6 Location Attribute: codebase

configuration file that contains the IP addresses and port
numbers of others. Unfortunately, the components of the
DHUOJ do not always stay in the same computers. The
DHUOJ may be installed on different computers for
different contests at different sites. Furthermore, the
topological structure of the DHUOJ may be changed to fit
the scale of the contest. Each of computers could get its
IP address by Dynamic Host Configuration Protocol
(DHCP) [7]. However, it is not so easy to configure the
DHUOJ. The system operator needs to know the IP
addresses and available ports of all the computers that the
DHUOJ modules will be installed on. After writing the IP
addresses and available port numbers to the configuration
file of each component, the system operator needs to test
the installed DHUOJ system to make sure that the
configuration could work correctly. It is obvious that
automatic assignment of these IP addresses and port
numbers can avoid the mistake that the system operator
may make during the configuration operation.

In this paper, we propose a new distributed application
management method called autonomous connection unit
(ACU). Unlike the DNS, the ACU is not bound to
specific servers or applications. The target systems
maintained by the ACU could be different from each
other. The ACU could make the target distributed
application more flexible and scalable. We take the
DHUOJ as an example to illustrate how the ACU works.

II. THE PROBLEMS

Fig.1 illustrates the architecture of the DHUOJ that has
been used in Donghua University. The below side is the
hardware platform which is composed of networked
normal computers. The hardware platform could be
networked computers in a college computer room. The
upper part of Fig.1 is the software modules of the
DHUOJ. Each module is installed on the corresponding
machine in the below side, see Table I.

 The installation of the DHUOJ needs many operations.
When setting up the module Proxy, for instance, the
system operator needs to export its IP address and port
number for the client to use the services that the

component Proxy offers, such as paper downloading,
program submitting and result delivering. Moreover, the
IP address of the component Primer needs to be set into
the configuration file of the component Proxy, otherwise
the component Proxy will fail to get the web service of
the component Primer. For the configuration of the
component Primer, the system operator needs to make
sure the port number that the component Primer will use
to offer its web service is not occupied by other services
on the same host machine. The configuration operations
of the component Schedule are just as complicated as the
component Proxy. The system operator needs to write the
IP address of the component Primer into the
configuration file of the component Schedule.
Furthermore, the system operator needs to set the IP
address and port number of the component Judge into the
configuration file of the component Schedule, too.
Sometimes, the component Schedule has to communicate
with more than one Judge component. When a new Judge
component is added to the DHUOJ, the system operator
needs to restart the component Schedule.

A. Assigning Addresses to Components
The address of a component consists of an IP address

and a port number. The IP address assigned to a
component should be the IP address of the host machine
on which the component runs. The port number assigned
to the component should not be occupied by other
applications on the same host machine. Furthermore, the
system operator needs to know the path and the file name
of the configuration file in which the address of the
component should be put.

Table II shows the information of the address which
will be assigned to a component named Proxy. With this
information, the system operator is able to assign the
address to the component Proxy by writing the IP address
192.168.3.91 and the port number 80 into the
configuration file “launch.jnlp” located in the directory
“./apache-tomcat/webapps/dhuoj/”. The information item
Location in Table II indicates that the assigned address
should be put in the configuration file as the new value of
the attribute “codebase”.

B. Writing Remote Addresses into Configuration Files
For each local component in DHUOJ, the IP address

and port number of its remote components need to be set
into its configuration file. For the component Proxy, it
needs to know the address assigned to the component
Primer. For the component Schedule, it needs to know
not only the address assigned to the component Primer
but also the addresses assigned to the components named
Judge. Table III shows the remote address information

1420 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

TABLE IV.
THE REMOTE ADDRESS INFORMATION FOR THE COMPONENT PROXY

No Item name Example
1 Remote module Primer
2 Remote role Primer
3 Remote IP 222.204.211.72
4 Remote port 80
5 Configuration file web.xml
6 Relative path ./apache-tomcat/webapps/dhuoj/WEB
7 Location tag name: param-value

TABLE V.
THE EXCHANGED INFORMATION

No. Item name Example
1 Remote name Primer
2 Remote Role Primer
3 Remote IP 222.204.211.72
4 Remote Port 80

TABLE III.
THE LOCAL ADDRESS INFORMATION FOR THE COMPONENT PROXY

No. Item name Value
1 Component name Proxy
2 Component role Proxy
3 Component IP address 222.204.211.35
4 Component port number 80
5 Out IP address 192.168.3.91
6 ACU IP address 222.204.211.35
7 ACU TCP port 8001
8 ACU UDP port 8101

Figure 2． The structure of the ACU

for the component Proxy. The address of the remote
module Primer consists of the remote IP address
222.204.211.72 and the remote port number 80, which
should be written into the configuration file web.xml
located in the directory./apache-tomcat/webapps/dhuoj/
WEB. The information item Location in Table III
indicates that this remote address should be put between
the tags named param-value in the configuration file
web.xml. The remote role is needed for the system
operator to know which module should be used. Usually,
the remote role shows the main function of this remote
component.

C. Exchanging Local Address Information
The ACU could get the local address listed in Table II

from the local computer. However, how does the ACU
get the remote address listed in Table III? It is necessary
for ACUs to exchange their local address information.
Each ACU should deliver its local message information
to remote ACUs in the network. Table IV shows an
example of the exchanged information delivered by the
ACU that the component Primer is equipped with. It tells
the address of the component Primer as well as its name
and role.

D. Applicable to Each Component
There are many modules in a distributed application

[9]. It is not wise to develop many specific connection
programs such that each of them is dedicated to a specific
module. Such dedicated connection programs could not
be used for the modules that might be developed to add to
the distributed application in the future. To adapt to all
possible modules including those that might be developed
in the future, the ACU needs to handle all possible
situations that might be encountered in the configuration
operations for a distributed application. For example, the
ACU needs to adapt to not only the component Primer
but also the component Proxy. This requires that the
ACU should set the address information to each
component of a distributed application in a general way.
Furthermore, the ACU needs to adapt to not only the
DHUOJ but also other distributed applications.

III. AUTONOMOUS CONNECTION UNIT

In this solution, every component in a distributed
application is equipped with an autonomous connection
unit (ACU). The ACU will allocate to its corresponding
component an address consisting of an IP address and a
port number. This address of the component will be
delivered by the ACU to remote components, so that the
remote components could communicate with the local
component. We regard these two actions as address
information synchronization [8]. All the ACUs have the
same structure, which consists of a local address
information file, an address lookup table file, a task list
file and an executive cell, see Fig. 2.

A. The Executive cell
The executive cell will get the IP address and an

available port number of the local machine on which the
component has been deployed. This IP address and the
port number are then written as the local address of the
component into the local address information file. At the
same time, the executive cell broadcasts this local address
to the network. Every ACU in the network will receive
the local address and keep it in its own address lookup
table file. With the address lookup table file, the
executive cell updates the task list file, so that it can then
execute the tasks in the task list file to update the
configuration file of the component. Finally, the
executive cell starts up the component to run it.

B. The Local Address Information
The local address information file keeps the details of

the local address, including the IP address of the host
machine on which the component runs and the port
number assigned to the component. The executive cell
could modify the local address information file
automatically. The information items that the executive
cell needs to write into the local address information file
is listed in Table V.

Component name: The name of the component that the

Executive
cell

Local
address

information
Task
list

Address
lookup
table

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1421

© 2013 ACADEMY PUBLISHER

TABLE VII.
TAGS IN THE LOCAL ADDRESS INFORMATION FILE

No. Item name Tag name
1 Component name OJ_MODEL_NAME
2 Component role OJ_MODEL_ROLE
3 Component IP address OJ_MODEL_IP
4 Component port number OJ_MODEL_PORT
5 Out IP address OUT_IP
6 ACU IP address IP
7 ACU TCP port tcp_port
8 ACU UDP port udp_port

TABLE VIII.
THE STRUCTURE OF TASK LIST FILE

Item name Comment
Command 1 Add a path to a batch file
Command 2 Write a command to a batch file
Operation 1 Modify a xml configuration file
Operation 2 Add an item to a ini file
Operation 3 Add another item to ini file

TABLE VI.
THE ADDRESS LOOKUP TABLE

Name Role IP In or out Port
JackForB6 Judge 222.204.211.231 in 58002
JackForB3 Proxy 192.168.3.91 out 80
JackForB3 Proxy 222.204.211.35 in 80
JackForB5 Proxy 192.168.3.92 out 80
JackForB5 Proxy 222.204.211.36 in 80
JackForB4 primer 222.204.211.72 in 80
JackForB2 Schedule 222.204.211.83 in 80
JackForB Judge 222.204.211.232 in 58002

ACU works for. The system uses this name to distinguish
one component from others.

Component role: The role of the component that the
ACU works for. The role indicates what function that the
component has. Components with the same role have the
same function.

Component IP address: An IP address that is assigned
to the component. This IP address is identical to the IP
address of the host machine on which the component runs.

Component port number: A port number that is
assigned to the component. This port number is an
available port number on the host machine.

ACU IP address: The IP address of the ACU. The
ACU uses this IP address to communicate with other
ACUs.

ACU UDP port: An UDP port number that is used by
the ACU. It is this port number that the ACU uses to
search the whole local area network to get addresses of
remote components when the ACU enters into the
network at its first time.

ACU TCP port: A TCP port number that is used by the
ACU. This TCP port number is very important for the
system. Almost all the messages between ACUs are
exchanged by the TCP protocol.

Out IP address: An IP address that is used to resolve a
situation that there are two network interface cards in one
computer. When an ACU comes across this situation, its
executive cell will select one of these two IP addresses as
the out IP address. For DHUOJ, the component Proxy
needs one IP address as the “out IP address” for the client
to use its service while the other one as the “component
IP address” to communicate with the component Primer.

All the information items listed in Table V are stored
in the local address information file, which is an xml file
named NativeMessage.xml. Table VI lists the tags of
items in the xml file NativeMessage.xml.

C. The Address Lookup Table
The address lookup table keeps addresses of all the

components in a distributed application. This table is
stored in an xml file, called address lookup table file. It
will be updated by the ACU in time. Each entry in the
address lookup table includes the name, the role, the IP
address and the port number of the component, see Table
VII.

Each component has a unique name but may have the
same role as the others have. In Table VII, for example,
the component whose name is JackForB3 has the same
role as the component whose name is JackForB5. Some

component may have two addresses. For instance, the
component named JackForB3 has two addresses
192.168.3.91:80 and 222.204.211.35:80. The address
indicated by “out” is the “out IP address” in the local
address information file, whereas the address indicated by
“in” is the “component IP address” in Table V.

D. The Task List
It is the task list that makes the ACU applicable to

many distributed applications. The ACU is designed to be
applicable to every component in a distributed application
although the component that the ACU works for could be
different from each other. For this reason, the task list is
employed to record the operations that the ACU will
execute to update the configuration file of its target
component. Changing the operations described in the task
list makes the same ACU work for a different component.
In other words, the task list describes the functions that
the ACU will perform. The system operator could add
more operations to the task list if the component needs
more configuration operations. All the configuration
operations that the ACU needs to do come from the task
list. Thus, an ACU could be adapted to a different
component in a different distributed application by
modifying its task list.

The task list is mainly composed of two parts: the
commands used to start up the component and the
operations used to update the configuration file of the
component. The structure of the task list is shown in
Table VIII.

There are several operations in a task list. Each
operation updates one address in a configuration file,
such as assigning a local address to the component or
writing a remote address into the configuration file. Table
IX shows an operation that instructs the ACU to write the
address 222.204.211.72:3306 of the remote component
Primer into the configuration file hibernate.cfg.xml of the
component Schedule by putting the string “jdbc:mysql:
//222.204.211.72:3306/dhuoj?useUnicode=true” between

1422 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

TABLE IX.
AN OPERATION IN THE TASK LIST

No. Field name Example
1 Type xml
2 File name ./persistence/hibernate.cfg.xml
3 Tag name property
4 Property Hibernate.connection.url
5 Attribute
6 Need role primer
7 Header jdbc:mysql://
8 IP 222.204.211.72
9 Port 3306
10 Tail /dhuoj?useUnicode=true

netInterfaces = getNetworkInterfaces();
ni = netInterfaces.nextElement();
ips = ni.getInetAddresses();
ip = ips. getHostIPAddress();

Figure 3. The algorithm to find the local IP address

TABLE XI.
ILLEGAL IP ADDRESSES

IP address Reason

127.0.0.1 This is the loopback IP address and can not
be used as the external IP address.

0.0.0.0 This IP address is illegal.
..*** There is no enough segments number.
...*** The value of one IP address segment is null.

..***.256
The value of one IP address segment is not a
legal value. For example, the value is less
than 0 or greater than 255.

Algorithm to get an available port in a computer
port = ChoiceAPort(8000);
while(PortAreAvailable(port))

 port = port + 1;
StorePort(port);

End
Figure 4. The algorithm to find an available port number

TABLE X.
TWO COMMANDS IN THE TASK LIST

Commands Tag name Example
Command 1 type path

prefix cd
value .\judge_server\judge_server

Command 2 type string
prefix
value java –jar judge_server.jar

the tags <property name=Hibernate.connection.url>. The
values of the fields tag name and property indicate the
place where the address should be put, whereas the values
of the fields header and tail are the head and tail of the
address, respectively. The field type indicates whether the
configuration file is an xml file or an ini file.

The commands in the task list are used to start up a
component of a distributed application. Table X shows
the structure of the commands in the task list file. The
two configuration commands in this table will generate
two corresponding commands as follows:

cd C:\workspace\ judge_server\judge_server
java -jar judge_server.jar

which are used to start up the component Schedule.

IV. AUTOMATIC CONNECTION

A. Getting the Local Address
To generate the local address information file, the

ACU needs to get the IP address of the local computer.
The ACU could obtain the IP address from the
information of the network interface card by some
method, such as in Fig. 3.

However, the ACU needs to verify whether the
obtained IP address is legal before putting it into use.
Table XI lists the illegal IP addresses that the ACU uses
to verify an obtained IP address. If its format matches one
item in the illegal IP address table, the obtained IP
address will be discarded.

For a distributed application, every component uses the
port number to comminute with others. There are 65535
port numbers in each computer. The ACU needs to get

some available port number from the local computer to
assign to its target component. Fig. 4 shows an algorithm
to get available port number in the local computer. It
chooses a port number and tests it. If the chosen number
is occupied by other applications, it will choose another
port number until the chosen number is not occupied by
any application. The ACU uses ServerSocket [11] class to
test a TCP port and use DatagramSocket [12] class to test
an UDP port.

In addition to the IP address and available port number,
the ACU will obtain the name and the role of the local
component from its task list to write them into the local
address information file.

B. Generating the Address Lookup Table
The address lookup table keeps the addresses of all

components in the distributed application. Each ACU
needs to update its address lookup table file in time.

The data in the address lookup table come from local
address information files of all ACUs in the network.
Each ACU sends its local address information to the
remote ACUs, so that each ACU could receives the
remote address information to fill in its address lookup
table. More details of how an ACU builds a connection
with a remote ACU to get the address information of a
remote component could be found in Section V in this
paper.

C. Updating the Task List
Initially, the system operator writes into the task list

file all operations that the ACU should do. The executive
cell of the ACU will update the IP address and the port
number in each operation in the task list file according to
the address lookup table.

The executive cell of an ACU modifies the task list file
as follows.

(1) Find an unmodified operation OP in the task list;
(2) Get the role value R in the operation OP;
(3) Search for an address entry A which contains the

role value R in the address lookup table;
(4) Update the address in the operation OP by the

address in the address entry A;
(5) Repeat from Step (2) to Step (4) until all

operations in the task list are modified.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1423

© 2013 ACADEMY PUBLISHER

addressInformation = ReadAddressFile(AddressInformation.xml);
 taskList = ReadTaskListFile(taskListConfig.xml);
 While
 Task = ReadATask(taskList, TASK_OPERATE);
 Role = GetNeedRoleFromTask(Task, NEEDROLE);
 Require = GetRequire (Task);
 Message = GetNeedMessageFromAddressFile(Role, Require,

 AddressInformation);
 ModifyCorrespondFile(Task, Message);
 End;
 Exit;

Figure 5. The alogrithm to modify task list file

…
<property name="hibernate.connection.url">

jdbc:mysql://222.204.211.72:3306/dhuoj?useUnicode=true&am

p;characterEncoding=UTF-8

</property>
…
Figure 6. The updated value in the configuration file hibernate.cfg.xml

Operations = ReadOperationFromTaskListFile(taskListConfig.xml);
While
 Operation = ReadAOperation(Operations, TASK_OPERATE);
 fileType = GetFileType(Operation, FILETYPE);
 filename = GetFileName(Operation, FILE);
 tag = GetTAG(Operation, TAG_NAME);
property = GetChangeProperty(Operation, CHANGE_PROPERTY);

 attribute = GetChangeAttribute(Operation, CHANGE_ATTRI);
 header = GetHeader(Operation, HEADER);
 ip = GetIP(Operation, IP);
 port = GetPort(Operation, PORT);
 tail = GetTail(Operation, TAIL);
 value = header + ip + port + tail;
 UpdateConfigureFile(tag, property, attribute, value);
End;

Figure 7. Algorithm to modify the configuration file

fileName = GetFileName(taskListConfig.xml, TASK_FILENAME);
RecreateFile(fileName);
While
 Command =

GetACommand(taskListConfig.xml, TASK_COMMANDFILE)
 addType = GetAddType(Command, ADDTYPE);
 prefix = GetPrefix(Command, PREFIX);
 value = GetValue(Command, VALUE);
 AddToFile(fileName, addType, prefix, value);
End;
ExecuteFile(fileName);
End;

Figure 9. The algorithm to start up a component

cd C:\workspace\judge_server\judge_server
java -jar dhuoj_server.jar

Figure 8. A file startup.bat

Fig. 5 shows the algorithm to update the task list file
(taskListConfig.xml) by using the address lookup table
file (AddressInformation.xml).

D. Updating the Configuration File
Usually, there is much work needed to do, when the

system operator configures a distributed application by
hands. To modify a configuration file of the component
Schedule in the DHUOJ, for example, the system
operator needs to find and open the configuration file
named hibernate.cfg.xml under the directory .\persistence,
and locate the position of the value that needs updating.
Fig. 6 shows the details of the position in the
configuration file. The boldface digits between tags
<property name="hibernate.connection.url"> are the IP
address and port number that the system operator should
put.

This configuration operation can be described in the
task list (see Table IX). The ACU could use the task list
to modify the configuration file of a component in a
distributed application. Fig. 7 show the algorithm to
modify the configure file (an xml file) of a component in
a distributed application. The steps to modify the
configuration file are as follows.

(1) Find an unexecuted operation OP in the task list;
(2) Get the file type T and name F of the

configuration file from the operation OP;
(3) Get the tag name N, the attribute A and the

property P from the operation OP;
(4) Get the header, IP, Port and tail from the

operation OP and generate a new value V by V =
header + IP + Port + tail (The sign “+” means
that the corresponding values will be combined.);

(5) Locate the position Pos in the configuration file F
by N, A and P, and update the value at the position
Pos with V by a method for the file type T;

(6) Repeat from Step (1) to Step (5) until all
operations in the task list are executed.

E. Starting up the Component
After finishing the configuration of a distributed

application, the system operator needs to start up this
application. He needs to initialize the environment and
execute the executable program [13][14]. Sometimes, the
system operator could use a batch file to make this
process more convenient. To start up the component
Schedule in the DHUOJ, for example, the system
operator may create a batch file (such as startup.bat) and
add the needed commands to it as in Fig. 8.

There are two commands in this batch file: one is a
command to enter into a directory under which the
component Schedule is located, the other is a command to
start up the component Schedule. The executive cell of
the ACU will also do this operation. It will create a batch
file which contains the commands constructed on a basis
of the information from the task list (see Table X). The
ACU will start up the component Schedule with this
created batch file.

The method to create a batch file and start up the
component is as follows.

(1) Get the file name startupFileName that the ACU
will use to start up the target component;

(2) Create a batch file named startupFileName;
(3) Get the next undealt command CMD in the task

list in order;
(4) Get the type T, the prefix P and the value V from

the command CMD;
(5) Generate a command cmd by T, P and V;
(6) Append the command cmd to the batch file

startupFileName;
(7) Repeat from Step (3) to Step (6) until all

commands in the task list are dealt with;
(8) Start up the target component by executing the

batch file startupFileName;
Fig. 9 shows the algorithm to start up a component.

1424 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

TABLE XII.
THE FORMAT OF THE MESSAGE TRANSMITTED BY UDP

Field name Comment
Header The head of the UDP message
ACU IP address The IP address of the ACU
TCP port number The TCP port number of the ACU
UDP port number The UDP port number of the ACU
ACU name The name of the ACU (the sender)
Component IP The IP address of the component
Component port The port number of the component
Component role The role of the component
Component name The name of the component
Tail The tail of the UDP message

TABLE XIV.
FOUR MESSAGES EXCHANGED BY ACUS

No Function Protocol Comment
1 Request TCP For connecting to a remoter ACU.
2 Respond TCP Returning a local address in response.
3 Leave TCP A message used when the ACU leaves.
4 Search UDP Searching for remote ACUs.

Figure 12. A connection is built.

TABLE XIII.
THE FORMAT OF THE MESSAGE TRANSMITTED BY TCP

Field name Comment
Message type The type of this message
ACU IP address The local IP address of the ACU
TCP port number The TCP port number of the ACU
UDP port nmuber The UDP port number of the ACU
ACU name The name of the ACU (the sender)
Component name The name of the component
Component role The role of the component
Component IP The IP address of the component
Component port The port number of the component

Figure 11. Replying the message

Figure 10. Sending a UDP message to the network

V. COMMUNICATION BETWEEN ACUS

To fill the information in the address lookup table, the
ACU needs to connect to other ACUs in the network.
Basically, most of information is exchanged through the
connections [14].

When a new ACU is started up and enters into the
network, it will send a searching message with the UDP
protocol to the network to find other ACUs that may exist
in the network, see Fig. 10.

This message contains the IP address and port number
of the sender (see Table XII). If there is an ACU running
on the network, it will receive this message and send a
responding message back with the TCP protocol, see Fig.
11.

 This responding message contains the IP address and
port number of the responder (see Table XIII). Thus,
either of these two ACUs obtains the address of the other,
so that they could comminute with each other, see Fig. 12.

After that, the ACU is in a listening state to wait for
the searching messages that come from other ACUs.
When receiving a message (searching or responding), the
ACU will obtain the IP address, the port number and
other information of the remote component and keep
these information items in its own address lookup table
file.

If an ACU wants to leave the system, it will send a
leaving message to other ACUs. Then other ACUs will
get this leaving message and delete the address of the
leaving component from their address lookup table files.

There are two protocols needed [15][16] for ACUs to
exchange their messages: the TCP protocol and the UDP
protocol.

The format of the message transferred by UDP is
shown in Table XII. The fields ACU name, ACU IP
address, TCP port number and UDP port number are
used to send the address information of the local ACU to
remote ACUs, so that the remote ACU could
communicate with the local ACU. The fields component
IP, component port, component role and component name
are used to tell remote components the address
information of the local component, so that the remote
components can communicate with the local component.
The field header is used to distinguish the message sent
by the ACU from the one not sent by the ACU (e.g., other
applications may send messages on their own purpose).
The field tail is used to verify that an UDP message is
legal.

The format of the message transmitted by TCP
protocol is shown in Table XIII . There are three kinds of
messages that are transferred by TCP. The field message
type indicates the type of the message.

Table XIV lists four kinds of messages that the ACU
needs to communicate with remote ACUs. The first kind
of the message is used to request for connecting to a
remote ACU by sending a local address to the remote
ACU. The second kind of the message is used to return a
local address in response to the remote ACU that sends a
request message or a searching message to the responder.
The third one is used to tell other ACUs that the sender
will leave the system. The last one is used to search for

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1425

© 2013 ACADEMY PUBLISHER

Figure 14. The ACU named ACU4 has started up.

…
<Address>

<Name>ACU2</Name>
<Role>Proxy</Role>
<IP>222.204.211.19</IP>
<OUT_IP>222.204.211.19</OUT_IP>
<Port>80</Port>

</Address>
<Address>

<Name>ACU1</Name>
<Role>Schedule</Role>
<IP>222.204.211.60</IP>
<OUT_IP>222.204.211.19</OUT_IP>
<Port>80</Port>

</Address>
<Address>

<Name>ACU3</Name>
<Role>Primer</Role>
<IP>222.204.211.74</IP>

 …
Figure 13. Remote information kept in the address lookup table file

Figure 15. The service interface of the component Proxy

C:\workspace\judge_server\java –jar judge_server.jar
2012-12-26 12:27:47 org.hibernate.cfg.evironment
Message:Hibernate 3.2.5
2012-12-26 12:27:47 org.hibernate.cfg.evironment
Message:hibernate.properties

Figure 16. The information of starting up the component Schedule

remote ACUs that may exit in the network.

VI. APPLICATION

The ACU has been applied to the campus contest in
Donghua University on December 26, 2012. This contest
was held in three computer rooms, each of which is
equipped with 80 computers for students and one
computer for the teacher. The DHUOJ was installed in
the forth computer room which is equipped with 40
computers

The method that the ACU builds connections and
manages the DHUOJ was verified in the contest. When it
is started up, the ACU uses the two algorithms in Fig. 3
and Fig. 4 to obtain the local IP address and an available
port number, and write them into its local address
information file. The ACU then gets its role from its task
list and write it into its local address information file.
After that, the ACU broadcasts its local address
information to the network and waits for receiving the
address information from remote ACUs. If it receives the
address information of a remote ACU, the local ACU will
keep the received information in its address lookup table
as in Fig. 13. Fig. 14 shows that the ACU named ACU4
has obtained the address information of remote ACUs. If
a remote ACU withdraws from the system, the ACU will
delete the information of the remote ACU from its
address lookup table.

As the system operator click the button Begin in Fig.
14, the ACU will update the addresses in the operations
in its task list file according to its address lookup table

and will execute the updated operations to modify the
configuration file of the component that the ACU works
for. After that, the ACU starts up the component to run it.
If the system operator wants to restart the component, he
could click the button Restart.

The local ACU in Fig. 14 is named ACU4, which
works for the component Judge. The three remote ACUs
are named ACU2, ACU3 and ACU4, which work for the
components Schedule, Proxy and Primer, respectively.
After the ACU ACU2 starts up the component Proxy
successfully, the client could get the service from the
component Proxy, as shown in Fig. 15. Fig. 16 shows that
the ACU ACU1 has started up the component Schedule.
The component Primer is started up by the ACU ACU3.
These ACUs managed the DHUOJ successfully during
the campus contest.

CONCLUSION

There are many kinds of distributed applications in the
world. Some of the distributed applications have many
components and their configuration operations are
complex. It is unavoidable for the system operator to
make mistakes during the complex operations, leading to
unpredictable results.

The DHUOJ is such a distributed application that
needs many configuration operations, which often result
in many mistakes. The system operator needs to take
several hours to install the DHUOJ for a contest held in
college computer rooms. The computers on which the
DHUOJ is installed change frequently and the system
operator needs to reinstall the DHUOJ from time to time.
Sometimes, the port numbers that the components of the
DHUOJ used to communicate with each other were
occupied by other programs. This made the configuration
operations more complex.

The proposed ACU could do configuration operations
for distributed applications automatically. The system
operator just needs to set the task list file for one time,
and then the ACU could serve for a given distributed
application forever without any more configurations
regardless where the distributed application would be
installed. For example, if the system operator wants to
make an ACU to maintain the component Proxy in the
DHUOJ, he just needs to add corresponding commands

1426 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

and operations to the task list file of the ACU. After that,
the ACU could configure the component Proxy and start
it up automatically.

The ACU is not just for the DHUOJ. It could be
applied to any distributed application if needed. Because
all the configuration operations come from its task list file,
the ACU can adapt to any situation just by modifying its
task list file.

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
60973121.

REFERENCES

[1] K. Shvachko, “The Hadoop distributed file system,” 2010
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pp 1-10, May 2010.

[2] G. Ferrari, R. Guanciale, D. Strollo, E. Tuosto,
“Coordination via types in an event-based framework,”
Formal Techniques for Networked and Distributed Systems
– FORTE 2007, 2007.

[3] José C. Cunha, Carmen P. Morgado, Jorge F. Custódio,
“Group Abstractions for Organizing Dynamic Distributed
systems,” Euro - Par 2008 Workshops - Parallel
Processing, 2009.

[4] B. Benatallah, M. Dumas, M.-C. Fauvet, F. Rabhi,
“Patterns and skeletons for parallel and distributed
computing,” Towards Patterns of Web Services
Composition, pp. 265–296. May 2003.

[5] Elena Verdúa, M. Luisa Reguerasa, J. María Verdúa, P.
José Lealb, P. Juan de Castroa, “A distributed system for
learning programming on-line,” Computers &
Education,Volume 58, Issue 1, January 2012.

[6] Guojin Zhu, Yang Guan, “Communities of Autonomous
connection units for Distributed Online Judge Systems,”
pressed by the 2010 Second International Conference on
Future Computer and Communication, IEEE Transel.
Shanghai, China, 2010(9).

[7] R. Droms, "Dynamic Host Configuration Protocol," RFC
2131, ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt, Bucknell
Univ., Lewisburg, Pa., Mar. 1997.

[8] Yoram Moses;Michel Raynal, “No Double Discount:
Condition-Based Simultaneity Yields Limited Gain.
Distributed Computing”, 2008.

[9] B. Benatallah, M. Dumas, M.-C. Fauvet, F. Rabhi,
“Patterns and skeletons for parallel and distributed
computing,” Towards Patterns of Web Services
Composition, pp. 265–296. Springer, Heidelberg (2003).

[10] Damien Imbs, Michel Raynal, “A Lock-Based STM
Protocol That Satisfies Opacity and Progressiveness,”
Principles of Distributed systems, 2008.

[11] M. Eid, A. Alamri, A.E. Saddik, “A reference model for
dynamic Web service composition systems,” Int.J.Web
Grid Serv, 2008.

[12] D. Kandlur Dilip, Debanjan Saha, M. Willebeek-LeMair,
“Protocol architecture for multimedia applications over
ATM networks,” ACM SIGCOMM Computer
Communication, 1995, Volume 25 Issue 3, Pages 33 – 43.

[13] D. Skeen, M. Stonebraker, “A Formal Model of Crash
Recovery in a Distributed System,” Software Engineering,
IEEE Transactions on, May 2009.

[14] M. Frank, D. Basin, J.M. Buhmann, “A Class of Prob-
abilistic Models for Role Workering,” Proc.15th ACM
Conf. Computer and Communications Security, 2008.

[15] Andreas Grau, Klaus Herrmann, Kurt Rothermel,
“Scalable Network Emulation - The NET Approach,”
Journal of Networks, 2012, Vol 7:3-16

[16] Hongzhen Xu, Guosun Zeng, Bo Chen, “Description and
Verification of Dynamic Software Architectures for
Distributed Systems,” Journal of Networks, 2010, Vol 5:
721-728.

Guojin Zhu is an associate professor at
the Department of Computer Science,
Donghua University (DHU), Shanghai,
China. He received his M.S. and Ph.D.
degrees from DHU in 1991 and 2007,
respectively. He was a visiting scholar at
the Department of Computer Science and
Engineering, Michigan State University,
East Lansing, Michigan, USA from
November 2007 to November 2008. His
current research interests include semantic

web, knowledge discovery, and neural computing.

Yongjiang Zhou is a graduate student of
Computer Application Technology at
Donghua University. He was born in
Shandong province, P. R. China in 1987,
and received the bachelor degree of
computer science and technology in
Qufu normal University in 2010. His
current main research interest is
computer network and AI.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1427

© 2013 ACADEMY PUBLISHER

