
Dynamic Collection of Reliability-Related Data
and Reliability Evaluation for Internet Software

GUO Yong

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Email: guoy@hit.edu.cn

MA Pei Jun, SU Xiao Hong

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Email: {ma, sxh}@hit.edu.cn

Abstract—Internet software is an emerging software
paradigm. Traditional evaluation methods for software
reliability are no longer applicable because of the open and
dynamic characteristics of the Internet software. In order to
evaluate its reliability accurately, there must be a dynamic
and open reliability evaluation approach. This paper
presents the collection approach of the reliability-related
data for the Internet software and its components. The
paper also designs a software system for the reliability
evaluation. The approach bases on the characteristics of
Internet software; it uses aspect-oriented programming and
pattern programming techniques to trace component real-
time running data and save the data to a database. The
approach can trace different granularity data according to
the performance requirements of the system. The reliability
evaluation system can predict the components and system
reliability using the real-time data. This makes the
components be selected expediently when the Internet
software system is assembled dynamically. A case study is
presented to illustrate the effectiveness of this approach.

Index Terms—Internet software, reliability evaluation, data
dynamic collection, component, Aspect-Oriented
Programming

I. INTRODUCTION

With the development of the Internet, traditional
software structure cannot meet the open and dynamic
network environment which has unpredictable behaviors
and autonomy nodes. In order to meet the challenge, a
new emerging software paradigm, Internet software is
developed. Ref. [1] gives the definition of the Internet
software: “Essentially, Internet software is constructed by
a set of autonomous software entities distributed over the
Internet, together with a set of connectors enabling the
collaboration among these entities in various fashions.
The Internet software entities are able to be aware of the
dynamic changes of the running environments, and
continuously adapt to these changes by means of
structural and behavioral evolutions.” From the definition

we can see, as a new paradigm, Internet software has
many different features compared with traditional
software. The specific features are autonomous,
cooperative, reactivity and multi-objective evolutionary
[2]. These features lead to the entity behaviors of Internet
software are unpredictable in the Internet environment.
Traditional evaluation methods for software reliability
fail to satisfy the requirements of the Internet software. It
needs a new dynamic method to evaluate reliability of
each unit and Internet software system [3].

The structure of traditional software will not change
automatically after it has been developed and put into
use[4]. Contrarily, at different times, the Internet software
may use different components to finish the same function.
The constitution paradigm of the Internet software is no
longer a static tightly-coupled, but a dynamic assembly
way. It will adjust and evaluate itself automatically
according to the requirements of the function and
reliability after perceiving changes in the external
environment [1]. Sometimes a system needs the
collaboration between components’ service to implement
its required function. To ensure the function
implementation, the selection of components not only
depends on whether the components provide the desired
services, but also depends on the reliability of the
services.

Traditional approaches usually only give the overall
reliability of a component [5-7], but do not give the
reliability of each service. Therefore, it can’t be known
whether the component meets the dynamic assembly
requirements. For example, two components provide the
same required services. The overall reliability of the first
component is better than the second one. However, the
reliability of the first component services used in the
designed system is worse than the second one. Therefore,
the second component should be selected. If a component
provider does not provide the service reliability, a
component user possibly makes the wrong choice select
the first component. So if a user wants to make a right
selection from many meeting requirement components, it
is not enough only to know component reliability; the
services’ reliability of a component should be obtained.

Manuscript received May 22, 2012; revised October 25, 2012;
accepted November 18, 2012.

Corresponding author: GUO Yong, Email: guoy@hit.edu.cn

1390 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1390-1397

Component with
trace code

Use selected
component in system

and collect data

Reliability
information

database

Component database

Put into

Selected Componentselect

Collected data

Put into

Reliability
evaluation

meet
the criterion

Design system

	

Figure	1.	The	selection	and	information	collection	for	component

However few studies focused on how to obtain the
reliability of the component services before. The
reliability evaluation of component service needs to
accumulate a series of historical data from the real
running environment, because there is a certain difference
between the reliability of the emulation environment and
the actual running environment. Moreover, designing the
emulation environments for some complex systems are
very difficult. Therefore, we should better trace each
component service in the actual environment to obtain the
information, and then evaluate the reliability. Just like
Ref. [8] mentioned, “The reliability evaluation of the
Internet software emphasizes a flexible dependability
evaluation, inference and application mechanism based
on historical information running in an open
environment.” In order to achieve this goal, this paper
proposes a dynamic data collection approach and an
evaluation framework for the Internet software reliability.

The paper proposes an approach which uses AOP and
pattern programming to select the appropriate connection
point according to the evaluation granularity. The
approach monitors the use of components and records the
corresponding reliability data in real-time. Component
users can obtain component reliability from the
framework and can predict the running system reliability
at a certain time. The trace type includes operation, error
and other related information. The reliability evaluation
results can be used to select the component in the
dynamic assembly. The proposed method makes the
collection of reliability data with the authenticity,
continuity and integrity.

The rest of the paper is organized as follows: Section II
presents works related to studying. Section III introduces
the main process. Section IV discusses the dynamic
collection approach and reliability evaluation. In Section
V, we give a demonstration and performance analysis.
Finally, we conclude this study.

II. RELATED WORK

Some researchers proposed techniques for monitoring
software executions[9]. Ref. [10] proposed a method to
generate tests for single components and for their
integration automatically. The method focuses on test and
integration; it is unconcerned with reliability data
collection. Ref. [11] gave a method that could
automatically analysis methods in the bytecode, but it is
only used for java language. Ref. [12] presented an
infrastructure for monitoring and managing distributed
middleware, but the method is a bit complicated for the
dynamic collection of the Internet software data.
Bertolino proposed approaches for tracing dependability
and performance of connected systems [13]. It focused on
dynamically connected systems. Ref. [14] proposed an
extension for the conventional dynamic data flow
analysis to test Java programs. It focuses on Java
programs.

Recently, there have been many literatures about how
to apply AOP technology to trace the behaviors of
software system and test software reliability [15-18]. Ref.
[15] focuses on fault detection and recovery using AOP

technology. Ref. [15] proposed a method to obtain the
reliability information dynamically in a software system
using AOP, but the trace granularity is bigger. The
method only concerns the reliability of the entire
component. It neither concretely concerns the used
behaviors’ reliability of a component, nor records the
interaction information of each component’s behavior.
Ref. [16] focus on the collection of software
maintainability dynamic metrics using AOP. Ref. [17]
mainly studied how to use AOP for automatic testing. Ref.
[18] mainly concerns the reliability of the design phase.
These methods do not address how to collect the running
data and evaluate reliability in the open Internet software
environment detailed. Ref. [16] presented an AOP-based
framework for collecting dynamic metrics, it only suits
for the component programed in java language.

III. MAIN PROCESS OF THE PROPOSED METHOD

Generally speaking, a component has a reliability
index after it has developed. The index is usually
assessed in the test environment. The test value will
inevitably have the deviation from the value coming from
the real running environment, because the test
environment is different from the actual running
environment. Therefor we should collect the data from
the real running environment, dynamically measure the
component reliability based on the collected data.
Dynamic reliability assessment is based on the idea; data
are collected automatically while the component is used
in the real environment. The main process is shown in
Fig.1.

A component combined with its trace code is put into
the component database. Component users select a
component form the database when they design system.
Component users evaluate the reliability of the selected
component. If the reliability does not come up to the
requirements, they select another one. When the designed
system is running, trace code will collect the running
information and store them into the reliability information
database automatically. Component users will use these
collected data to select component when they design
system or used for Internet software dynamically
assembling. This paper mainly discusses how to program
the trace code and the way of using collected data.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1391

© 2013 ACADEMY PUBLISHER

	
Figure	2. The wrapped component

IV. DYNAMIC COLLECTION OF RELIABILITY DATA

A. Granularity of data collection
A component is usually implemented using object-

oriented technology. Component and object are abstract
descriptions of the real world, which encapsulate reusable
code. However, the object provides methods to a user,
and the components provide services to a user. A
component may contain one or more objects. The
component services are ultimately achieved through some
concrete methods of the objects inside the component. So
the reliability-related data collection can be divided into
different granularity according to the concrete
circumstances. It can be divided into component-level,
object-level, service level and method level. The
collected information can include component’s ID,
component running time, the called object of the
component, the services of the component, the methods
of the object ,their success or failure information and so
on.

The data collection of the component-level regards the
component as a whole and its internal structure is not
concerned. Only the two processes are traced; the two
processes are the reference of the component and the
completion of the assigned functions. The collected data
include the times of success and failure, the component
running time, the interaction between components and so
on. The component reliability is evaluated based on the
collected data.

The reliability data collection of object-level is more
fine-grained. This way traces the use of the objects of a
component. The trace includes the interaction between
the objects, the times of success and failure, and so on.
Generally speaking, the objects in a component are
packaged together, so that the communication reliability
cannot be considered, namely, communication among
objects in a component is reliable.

The data collection of service-level means monitoring
the use of each service and collecting the related
information. Many components not only provide one
service, so obtaining the reliability of each service is
more meaningful. Some systems only use some of the
services of a component, not all the services, so we
should use the actually used services of a component to
evaluate the system reliability.

We can trace each method of the object in a
component and collect its running information. Using this
method, we can obtain the called frequency and locate
faults for each method. The traced methods include the
external and internal methods. The external method is the
“public” method and is used for objects to call one
another in a component, and it can be defined as a service
of the component. The internal method is “private” or
“protected” method in an object. The internal method
cannot be called direct by other objects. It can only be
called within its object.

The choice of the collection granularity depends on the
actual situation because the data are collected in a real
running environment of a system; the trace code may
affect the performance of the system. We should consider

the following aspects: First, efficiency, if the system
requires a high operating efficiency, we cannot use more
fine-grained data collection methods, otherwise the
efficiency will be decreased and affect the system
operation. The second is the available information of the
component. If the internal structure information of the
component is not available, we had better use component-
level or service-level collection method. Otherwise we
can use object-level or method-level collection method.
No matter what kind of granularity is used may affect the
performance of the system. In order not to affect the
actual use of the system, we should choose the
granularity according to the performance requirements of
the system.

Bytecode instrumenting tools [11] or middleware
functionality [12] can be used to collect running data, but
the two methods are a bit complicated. We will use the
adapter pattern [19], proxy pattern [19] and weaving
method for online data collection. These three methods
are more convenient. After the data collection, codes are
combined with a component, if only the internal codes of
the component are modified, the data collection codes
will not require modification. We can simply replace the
original component with the new one.

B. Data collection using adapter
The adapter pattern [19] can translate one interface for

a class into a compatible interface. By this way, the
components which interfaces are incompatible can work
together. The adapter pattern is often referred to as the
wrapper pattern or simply a wrapper. Data collection is
achieved by a wrapper of a component. We use a wrapper
wrap the component so that the component provides its
services to outside through the wrapper. We put the
tracing code in the wrapper avoid modifying the
component code. This way can be used COTS
components and other components. The component
wrapping diagram is shown in Fig. 2. This method can
collect service-level and component-level reliability
information.

A typical code structure is as follows.

public class ComponentAdapter implements Target
{

private Component adaptee;
Private ReliabilityTrace reliabilityTrace;
public ComponetnAdapter (Component adaptee)
{

this.adaptee=adaptee;
}
public void F1()
{

reliabilityTrace.before();
adaptee.F1();

1392 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Figure	3.	Component	proxy	diagram	

	
Figure 4. The diagram for weaving method

reliabilityTrace.after();
}
public void F2()
{

reliabilityTrace.before();
adaptee.F2();
reliabilityTrace.after();

}
}
The “ReliabilityTrace” is a class. This class is used for

trace component running information of different
granularity and storing them into a database. The
“Component” is wrapped by “ComponentAdapter.”

C. Data collection using proxy
Proxy pattern [19] provides a proxy object for a single

object, and the proxy object controls the reference of the
object. We can put tracing code in the proxy object and
avoid modifying the component code. However, we have
to design a proxy for every component and put some
necessary code. The workload is bigger. Component
proxy diagram is shown as Fig.3.

A typical code structure is as follows.

public interface ComInterface
{

 public void F1();
 public void F2();
 }

public class ProxyComponent implements
ComInterface
 {
 Component realCom=null;

 public void F1()
 {
 if (realCom == null)
 {
 realCom = new Component ();
 }

 reliabilityTrace.before();
 realCom.F1();

reliabilityTrace.after();
 }

 …
}

D. Data collection using AOP
Aspect-Oriented Programming(AOP)[20] is an

extension of the object-oriented paradigm. AOP uses
“crosscutting” technology to encapsulate the common
behaviors into the called “aspect” reusable modules. The
common behaviors usually are not relevant to the
business and impact many classes. AOP reduces code
duplication and coupling between modules in a system. It

is beneficial to system maintainability and
maneuverability. According to “cross-cutting” technology,
AOP divides a software system into two parts: the core
concerns and crosscutting concerns. The functions which
the system provides are the core concern; another part
which has little relationship with the functions is a cross-
cutting concern, such as: user authentication, logging,
security, etc. There are two ways of the AOP
implementation: dynamic crosscutting and static
crosscutting. Dynamic crosscutting is implemented by
intercepting the object receiving message and replaces the
original object's behaviors with the new behaviors. The
second is a static crosscutting. Compiler weaves the
aspect codes into the original codes when the program is
compiled. It does not dynamically change an object's
behavior.

Currently, there are hundreds of AOP-related projects.
The mainstream program languages, such as Java, C++,
C#, etc., support AOP. The java-based AOP tools, which
have been adapted for commercial use, mainly include
Aspectj, AspectWerkz, SpringFramework and Jboss and
so on. AOP includes the following features:

 join point: an execution point
 point cut: a structure used to capture join point
 advice: the execution code of point cut. It is the

implementation of “aspects”
 aspect: the composition of point cuts and advice
 introduce: it is used to introduce additional

methods or properties for object, which can
modify the object structure.

This section will present how to use AOP techniques to
get the actual operation information of the components in
the open dynamic Internet software environment.

The Aspectj method weaves aspect code into a
component. The advantage of this method is that we can
obtain more fine-grained information of a component,
such as the method running information within a
component or an object. The weaving method is shown as
Fig.4.

A typical code structure is as follows.

public aspect TraceAspect
{

pointcut TracePointcut():call(* F1(..))||call(* F2(..);
before():TracePointcut ()
{

reliabilityTrace.before();
}

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1393

© 2013 ACADEMY PUBLISHER

after():TracePointcut
{
 reliabilityTrace.after();
}

}

E. Reliability evaluation
A component user can choose an existing model or

design their own model for evaluating components’
reliability in the system design stage using the collected
historical data of the components. Based on the
evaluating results, the component user decides whether to
use the components. In order to facilitate developer to
select components, we can add a variety of typical
models such as J-M model [21], NHPP model [22], Musa
Basic model [23] to the component management system.
We use the NHPP [22] model as an example to describe
the calculation method.

NHPP models are widely used for evaluating software
reliability. It is an “exponential model”. The execution of
the Internet software can be modeled as a fault counting
process. If the last failure occurred at time t, the software
reliability in the time interval (t, t + x) is as follows.

)]()([)|(tmxtmetxR  (1)

m(t) is the expected number of faults which
experiences up to a certain time t. m(t) can be calculated
using the collected data.

The components in the Internet software distribute on
Internet nodes. They are assembled by network
connection. The communication reliability impacts the
overall system, so the communication reliability must be
considered. Suppose ms(t) is the system expected number
of fault to time t then ms(t) as follows:

  
  


s s sN

i
ijij

N

i
ij

N

j
lijijiiiciis TdTtdTmTtmtm

1 1 1
)]()([)]()([)( (2)

Where t = tc + tl, tc is sum of all components’ execution
time to the time t, tl is sum of all components’
communication time to the time t. τi is the execution time
proportion of component i in the time tc. πij is the
proportion which component i communicates with
component j in the time tl. Ti is the time that component i
has executed. Tij is the time that component i has
communicated with component j. Ns is the sum of system
components.

If the communication is reliable, and we do not
consider the internal structure of components, then (2)
becomes (3).





sN

i
iiiciis TmTtmtm

1
)]()([)(

(3)

V. DEMONSTRATION AND PERFORMANCE ANALYSIS

A. The ATM system for demonstration
OSGi(open services gateway initiative) [24] provides a

service-oriented, component-based development
approach. Nowadays, some literatures present the

development of the Internet software based on OSGi [25,
26]. We will use an ATM (automated teller machine)
system to illustrate the method presented in this paper.
The system is developed based on R-OSGi platform. The
system running information will be captured by the trace
code and stored to a database. We develop a component
management system to evaluate the reliability of each
component and system using the collected information.
Fig.5 is the overview of the component register and use.

Figure 5. The overview of components register and use

The ATM system includes four components: system
main component (ATMmain), security management
component (SecurityManager), transaction processing
component (TransactionProcessor) and data access
component(DataAccessor). The interaction among these
components is shown as Fig.6.

Figure 6. The components relationships in the Atm system

We use the methods presented in this paper to collect

the execution information of the system. And then use the
collected data to evaluate the system and component
reliabilities. Table I shows the services provided by the
components.

TABLE I.
SERVICES PROVIDED BY THESE COMPONENTS

ATMmain SecurityManager TransProcess DataAccessor

mainFram exitCard Deposit Update

 encrypt withdraw getData

 modifyPwd Transfer

 verifyUser queryBanalce

 getCardID printBill

 decrypt

 checkPwd

1394 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

B. Using Aspectj method for data collection
Using Aspectj method collects the system running

information. The class diagram of trace code is shown in
Fig.7. The “TraceAspect” is the aspect code for tracing
the operational information of each unit, the “Process” is
used to process the obtained information obtained, and
the “DataAccess” is used to store the processed
information to a database. In order to minimize the
impact to the system, the collected data are not real-time
stored to the database. The collected data are kept in a
queue. These data are stored to the database after an
ATM user finishes all of his operations.

Figure 7. Data collection model using Aspectj

C. Reliability evaluation system
Besides the ATM system, we also developed a system

to present how to use the collected data. The developed
system can show all collected data, evaluate a component
and a system reliability using the collected data, calculate
the components’ interaction frequencies, use frequency of
each component, and performance analysis.

 After a period of execution of the system, we
accumulate some trace data. These data can be used to
evaluate the reliability. Fig.8 shows the failure
information of components obtained by trace method
proposed above.

Figure 8. Failure information of the components

The transition probabilities between components and
used probabilities are shown in Fig. 9. These values can
be used to evaluate the components and the system
reliability when we develop a new system.

Figure 9. The transition probabilities and use frequencies the components

Fig.10 shows the reliability evaluating results of the
components and system using some models according to
the collected data.

Figure 10. The evaluating results of components and system reliability

D. Comparison of performance
In order to compare the performance of a system for

different trace method with the system which does not
have the trace codes, we developed the ATM systems
using different trace methods mentioned above. One is no
reliability data collection. The other three ones use
different methods for reliability data collection. The first
one uses Aspectj for reliability data collection, the second
uses adapter for reliability data collection, and the third
uses proxy method for reliability data collection. We run
the four systems in the same environment and compare
the performance. The results are as follows.

Figure 11. Performance comparison

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1395

© 2013 ACADEMY PUBLISHER

TABLE II
COMPONENT SERVICES RUNNING TIME IN THE FOUR SYSTEMS

Service
Name

No
Trace(ns)

Aspectj
Trace(ns)

Adapter
Trace (ns)

Proxy
Trace (ns)

checkPwd 1247423 1274343 1316977 1324885
decrypt 570327 579192 614995 620250
desposit 1251775 1261431 1284827 1285886
encrypt 604690 605586 623545 637982
exitCard 360945 374396 391070 410138

getCardID 399328 402743 404173 412012
getData 1015761 1037171 1038519 1213220

modifyPwd 1822927 1839522 1860790 1869731
printBill 384481 385068 386128 413250

queryBalance 1289444 1300187 1303103 1375828
transfer 3318670 3325806 3401584 3429219
Update 868911 873787 900272 995127

verifyUser 1689182 1743935 1763369 1932543
withdraw 2468135 2552478 2558709 2746145
average 1235143 1253975 1274862 1333301

Impact Rate
(%) 0 1.52 3.22 7.95

From Table II and Fig.11 we can see that the Aspectj

trace method has the minimal impact on system
performance. The average running time of the services in
the system which uses the Aspectj trace is only lower
1.52% than the method that has no data collection; the
second is the adapter trace method, the average running
time of the services is 3.22% slow; the last is the proxy
trace method, the service average running time is 7.95%
slow. Aspectj trace has the least impact on system
performance, but the method requires that the
programming language of the components must support
the Aspectj technology. The other two methods have
larger application scope; especially the adapter trace
method is suitable for components written in any program
language. However, the adapter trace mode and proxy
trace mode will make the data trace code tangle with the
component together.

VI. CONCLUSION

Aiming at the Internet software, this paper proposes
the automatic dynamic data collection methods and the
component evaluation framework. Usually the reliability
of commercial-off-the-shelf components is a static value.
The value cannot represent the real reliability of the
component that runs in the Internet. The components of
the Internet software will evolve continuously; its
reliability will continue to change. We should collect the
reliability-related data continuously, and then we evaluate
and predict the reliability of component and system
according to the data. In this way we can get more
accurate component and system reliability. The collected
data would not be accurate enough if the collection is
done entirely by hand. Especially the failure time and the
execution duration of every component and system would
have the deviation with the real value. The method
proposed in this paper can collect various information of
a system expediently, and can easily evaluate reliability
of component and system using collected data. Based on
the system performance requirements, this paper gives

the data collection methods of different granularity. We
can select a proper method according to the actual system
performance requirements.

The method presented in this paper is only a
preliminary model. The selection of granularity depends
on the system information we can get. If we want to use
the method-level collections, we must have the source
code or component internal information. How to collect
method-level information in the absence of source code
conveniently needs further study.

ACKNOWLEDGMENT

This research was supported by the National Natural
Science Foundation of China (Grant No. 61073052 and
No. 61173021).

REFERENCES

[1] H. Mei and X. Z. Liu, “Internetware: An Emerging
Software Paradigm for Internet Computing,” Journal of
Computer Science and Technology, vol. 26, pp. 588-599,
2011.

[2] L. Jian, T. Xian-Ping, M. Xiao-xing, H. Hao, X. Feng, and
C. Cun, “On agent-based software model for internetware,”
Science in China, vol. (Series E), pp. 1233-1253, 2005.

[3] A. Bertolino, A. Calabró, F. Lonetti, A. Di Marco, and A.
Sabetta, “Towards a model-driven infrastructure for
runtime monitoring,” Software Engineering for Resilient
Systems, pp. 130-144, 2011.

[4] Z. Li and J. Tian, “An Approach of Trustworthiness
Evaluation of Software Behavior Based on
Multidimensional Fuzzy Attributes,” Journal of Computers,
vol. 7, pp. 2572-2577, 2012.

[5] S. S. Gokhale, “Architecture-based software reliability
analysis: Overview and limitations,” Ieee Transactions on
Dependable and Secure Computing, vol. 4, pp. 32-40, Jan-
Mar 2007.

[6] M. Palviainen, A. Evesti, and E. Ovaska, “The reliability
estimation, prediction and measuring of component-based
software,” Journal of Systems and Software, vol. 84, pp.
1054-1070, 2011.

[7] K. Li, J. Kou, and L. Gong, “Predicting software quality by
optimized BP network based on PSO,” Journal of
Computers, vol. 6, pp. 122-129, 2011.

[8] L. Jian, M. X. Xing, T. X. Ping, X. Feng, and H. Hao,
“Research and progress on Internetware,” Science in China,
vol. (Series E), pp. 1037-1080, 2006.

[9] Z. Li and J. Tian, “A software behavior automaton model
based on system call and context,” Journal of Computers,
vol. 6, pp. 889-896, 2011.

[10] L. Mariani and M. Pezze, “Behavior capture and test for
controlling the quality of component-based integrated
systems,” 2003, pp. 23-28.

[11] H. B. Lee and B. G. Zorn, “BIT: a tool for instrumenting
java bytecodes,” presented at the Proceedings of the
USENIX Symposium on Internet Technologies and
Systems on USENIX Symposium on Internet Technologies
and Systems, Monterey, California, 1997.

1396 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

[12] G. Rackl, M. Lindermeier, M. Rudorfer, and B. Süss,
“MIMO — An infrastructure for monitoring and managing
distributed middleware environments,” presented at the
IFIP/ACM International Conference on Distributed
systems platforms, New York, New York, United States,
2000.

[13] A. Bertolino, A. Calabró, F. Di Giandomenico, and N.
Nostro, “Dependability and Performance Assessment of
Dynamic Connected Systems,” Formal Methods for
Eternal Networked Software Systems, vol. 6659, pp. 350-
392, 2011.

[14] A. Boujarwah, K. Saleh, and J. Al-Dallal, “Testing Java
programs using dynamic data flow analysis,” 2000, pp.
725-727.

[15] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, and G.
Spiezia, “An Aspect-Oriented Programming-based
approach to software development for fault detection in
measurement systems,” Computer Standards & Interfaces,
vol. 32, pp. 141-152, 2010.

[16] A. Tahir and R. Ahmad, “An AOP-Based Approach for
Collecting Software Maintainability Dynamic Metrics,” in
Computer Research and Development, 2010 Second
International Conference on, 2010, pp. 168-172.

[17] A. Dantas, F. Brasileiro, and W. Cirne, “Improving
automated testing of multi-threaded software,” 2008 First
IEEE International Conference on Software Testing,
Verification and Validation (ICST '08), pp. 521-4, 2008.

[18] F. Rafique, K. Mahmood, U. R. Tauseef, and K. Rasheed,
“Design Phase Analysis of Software Reliability Using
Aspect-Oriented Programming,” in Information and
Communication Technologies, 2005. ICICT 2005. First
International Conference on, 2005, pp. 263-271.

[19] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design
patterns: Elements of reusable object-oriented software,”
Reading: Addison-Wesley, 1995.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, et al., “Aspect-oriented

programming,” ECOOP'97Object-Oriented Programming,
pp. 220-242, 1997.

[21] Z. a. M. Jelinski, P, Software Reliability Research. New
York: Statistical Computer Performance Evaluation,
Academic Press, 1972.

[22] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software Reliability and Other
Performance Measures,” IEEE Transactions on Reliability,
vol. 28, pp. 206-211, 1979.

[23] J. D. Musa, “A theory of software reliability and its
application,” IEEE Trans. Software Engineering, vol. SE-
1(3), pp. 312-327, 1975.

[24] O. Alliance, Osgi service platform, release 3: IOS Press,
Inc., 2003.

[25] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi:
Distributed applications through software modularization,”
2007, pp. 1-20.

[26] Z. Shi and H. L. Peng, “Dynamic Service Evolving Based
On OSGi,” Journal of Software, pp. 1201-1211, 2008.

Yong Guo Since 2008 he has been a PhD candidate in the
Department of Computer Science & Technology, Harbin
Institute Technology, China. His main research interests include
software quality assessment, component-based software
development, aspect-oriented programming.

Pei-Jun Ma was born in 1963. PhD, professor and PhD
supervisor the Department of Computer Science & Technology,
Harbin Institute Technology, China. Member of China
Computer Federation. His Main research interests include
software engineering, information fusion, image processing, and
space computing.

Xiao-Hong Su was born in 1966. PhD, professor and PhD
supervisor the Department of Computer Science & Technology,
Harbin Institute Technology, China. Member of China
Computer Federation. Her main research interests include
software defect detection, image processing and reorganization,
information fusion, intelligent computing, etc.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1397

© 2013 ACADEMY PUBLISHER

