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Abstract—Globalization is adding more dimensions to 
software effort estimation process. The notions of leadership 
and culture carry with them highly variable assumptions, 
and thus, must be explicitly modeled. A new model that 
incorporates leadership and culture is proposed, elaborated 
and validated.  A survey was undertaken to determine the 
impact of culture and its effect on the software development 
process in the areas of project team timeliness, collaboration 
and team work, leadership characteristics, cultural 
intelligence, motivation and communication.. The use of the 
Bootstrap method for estimating the effort involved in a 
given project, along with analogies using real historical data, 
demonstrates the effectiveness of this approach in 
surmounting difficulties in describing abstract quantitative 
variables. Our approach is tested on a cluster sample 
dataset of 41 cases (projects) collected in 2007 from more 
than 20 organizations. The results show that the inclusion of 
leadership and culture in the cost estimation model 
improves the accuracy of software cost estimation. 
 
Index Terms—Effort estimation, Leadership, Team culture, 
CBR, Bootstrapping, Ontology 
 

I.  INTRODUCTION 

Software development teams are becoming less 
homogeneous and more distributed as a result of 
globalization. In this new setting, team members tend to 
possess diverse backgrounds, thus affecting the dynamics 
and quality attributes of the team. These attributes play a 
significant role in determining the cost and quality of 
software projects ([8]; [22]).  Moreover, the behavior of 
an organization and its productivity depend highly on the 
culture and leadership among the members of the 
organization ([14]; [27]; [12]; [33]; [28]). Consequently, 
culture and leadership become critical parameters for 
software cost estimation.  

 

There has been a continuous search for better models 
and tools to aid project managers in the cost estimation 
process ([18]; [17]; [13]).  Commonly software cost 
estimates are based on various methods, such as: 
Algorithmic Estimation Models COCOMO [8]; SLIM 
[26], and Function Points [4], Expert Judgment [16] and 
Case-Based Reasoning ([24]; [1]; [31]). Jørgensen and 
Shepperd [17] identified over 300 papers on software cost 
estimation. Many attempts have also been made to 
identify the effect of individual differences in software 
developers [22]. However, not enough attention is 
explicitly given to leadership and cultural issues.  

Given the multitude of cost estimation approaches, we 
chose to concentrate our research on analogy methods, 
such as those proposed by Shepperd and Schofield [32], 
and specifically on case-based reasoning (CBR).  CBR is 
an approach used to improve effort estimation by 
understanding and measuring the similarity between 
cases ([31]; [5]; [23]). CBR tries to predict an outcome by 
finding similar cases to the current problem ([1]; [30]). 
The major strategy of CBR is capturing previous 
experiences into a case database in order to propose 
solutions to new problems (cases). The database of past 
projects is used as a reference point in order to combine 
actual costs of previous projects for the prediction of the 
costs of a new project with similar attributes. CBR can be 
applied either at the project level as a whole, or at the 
sub-system level.  

Our research investigates the hypothesis that 
organizational culture and project leadership are 
significant factors in determining accurately the cost of 
software projects development within the Arab Gulf 
States. In this region, there is a rapid expansion of IT 
infrastructure and services, and a generalized use of 
expatriate labor. These states share key similarities, but 
differ significantly from the rest of the world [2]. Besides 
culture, a major difference between Arab leadership and 
leadership in other nations is to be found in Arab 
authority values. Our ultimate goal was to develop a 
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TABLE I.   
LEADERSHIP CHARACTERISTICS 

TABLE II.   
TEAM CULTURAL CHARACTERISTICS 

 

 
In general, the means and the medians of all the 

leadership and cultural characteristics are quite high 
indicating their importance. Regarding the correlations 
between the leadership characteristics, Table 3 shows that 
all these characteristics correlate highly (p<0.001). The 
cultural characteristics also show strong correlations (see 
Table 4). The only exception is 'Team Experience' which 
seems to correlate only with 'Reward Mechanism' and 
'Communications'. It is also interesting to see the 
correlation between leadership and cultural characteristics 

(see Table 5). 'Team Experience' correlates only with 
'Decision-Making' and 'Communication Skills'. Some 
leadership and cultural characteristics appear to be more 
important than others. These characteristics were believed 
by the respondents to be significant attributes in most 
cases. This is probably due to the fact that these are 
innate attributes which are part of the individuals’ 
characters which have been shaped by interaction with 
others and by life experience in the community. 

 

TABLE III.   
CORRELATION BETWEEN LEADERSHIP CHARACTERISTICS 

 

 

 

 

6.9500 7.0000 1.2015 2.5000 9.0000
6.8950 7.0000 1.2564 3.8000 9.0000
6.5250 7.0000 1.3985 3.5000 8.8000
6.7150 7.0000 1.3552 2.8000 8.3000
7.2450 7.5000 1.1507 2.0000 8.5000
7.2150 7.6500 1.0890 3.8000 9.0000

Interaction and Relationship
Decision-Making
Ability to Motivate
Understanding Project Culture
Active Thinking
Communication skills

Mean Median Std. Deviation Minimum Maximum

 
6.6658 7.0000 8.500 0 1.7500 1.4575 
6.9750 7.0000 8.500 0 3.0000 1.3447 
6.7303 7.0000 8.750 0 3.2500 1.2058 
7.0539 7.1250 8.250 0 5.0000 1.0335 
6.4298 7.0000 8.000 0 2.3333 1.2566 
7.1184 7.5000 9.000 0 3.5000 1.3187 
6.6461 7.0000 8.250 0 3.8000 1.1155 

Timeliness 
Collaboration 
Job Stabi lit y 
Intercultural Intelligence 

Reward Mechanism  
Communication  
Team E xperience

Mean Median Maximum Minimum STD Deviat ion 

1 .743** .677** .760** .750** .789**
.000 .000 .000 .000 .000

.743** 1 .714** .717** .743** .884**

.000 .000 .000 .000 .000

.677** .714** 1 .779** .607** .645**

.000 .000 .000 .000 .000

.760** .717** .779** 1 .688** .648**

.000 .000 .000 .000 .000

.750** .743** .607** .688** 1 .793**

.000 .000 .000 .000 .000

.789** .884** .645** .648** .793** 1

.000 .000 .000 .000 .000

Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)

Interaction and
Relationships

Decision-Making

Ability to Motivate

Understanding
Organisation Culture

Active Thinking

Communication skills

Interaction
and

Relationships
Decision
Making

Ability to
Motivate

Understanding
Organisation

Culture
Active

Thinking
Communication

skills

Correlation is significant at the 0.01 level (2-tailed).**. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1355

© 2013 ACADEMY PUBLISHER



I

The signi
inclusion of 
2).  

 
The augm

leadership ch
identified as

Timeliness

Collaboration

Job Stability

Intercultural
Intelligence

Reward
Mechanism

Communication

Team
Experience

Correlatio**. 

Interacti
Relation
Decision

Ability to

Underst
Organiz
Active T

Commu
Skills

Co**. 

II.  AN AUGM

ificance of o
culture and l

Figure 2.  

mented CBR in
haracteristics,
 influencing 

Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)
Pearson Correla
Sig. (2-tailed)

n

on is significant at th

Pea
Sig
Pea
Sig
Pea
Sig
Pea
Sig
Pea
Sig
Pea
Sig

on and
nships
n-Making

o Motivate

anding
ation Culture

Thinking

nication

orrelation is signific

C

CORRELAT

MENTED CBR M

our approach
eadership in o

The Augmented 

ncorporates sp
, factors, and
cost estimatio

1

.700*

.000

.791*

.000

.693*

.000

.520*

.001

.598*

.000

.286

.073

ation

ation

ation

ation

ation

ation

ation

Timeliness

e 0.01 level (2-tailed

arson Correlation
. (2-tailed)
arson Correlation
. (2-tailed)
arson Correlation
. (2-tailed)
arson Correlation
. (2-tailed)
arson Correlation
. (2-tailed)
arson Correlation
. (2-tailed)
cant at the 0.01 lev

TA
CORRELATION BET

TA
TION BETWEEN CU

MODEL  

h to CBR is
our model (Fi

CBR 

pecific cultura
d issues that 
on. The ident

.700**

.000
** 1

** .694**
.000

** .667**
.000

** .686**
.000

** .666**
.000
.170
.295

Collaboration

d).

.692**

.000

.677**

.000

.598**

.000

.714**

.000

.609**

.000

.580**

.000

Timeliness

Col
(Inte

Re

vel (2-tailed).  *.Co

ABLE IV. 
TWEEN CULTURE

ABLE V. 
ULTURE AND LEA

s the 
igure 

 

al and 
were 
tified 

para
Figu
orga
lead
proj

.791**

.000

.694**

.000
1

.752**

.000

.449**

.004

.476**

.002

.133

.413

Job Stability
Inter
Inte

.690** .73

.000 .00

.849** .62

.000 .00

.790** .61

.000 .00

.773** .74

.000 .00

.750** .55

.000 .00

.776** .50

.000 .00

laboration
erpersonal
elation)

Job
Stabili

orrelation is signific

 
E CHARACTERISTI

 
ADERSHIP CHARA

ameters have b
ure 3): organiz
anization typ
dership, projec
ect completio

Fig

.693**

.000

.667**

.000

.752**

.000
1

.443**

.004

.453**

.003

.110

.498

rcultural
lligence

Rewa
Mechan

8** .571**
0 .000
8** .529**
0 .001
0** .472**
0 .003
1** .644**
0 .000
8** .398**
0 .013
1** .469**
1 .003

ty
Intercultural
Intelligence

cant at the 0.05 lev

CS 

ACTERISTICS 

been categoriz
zation line of 
pe, organiza
ct technical e
n.  

gure 3.  Mod

.520** .

.001 .

.686** .

.000 .

.449** .

.004 .

.443** .

.004 .
1 .

.
.584**
.000
.303 .
.057 .

ard
nism Communica

* .458**
.004

* .571**
.000

* .666**
.000

* .690**
.000

* .538**
.000

* .611**
.000

Reward
Mechanism C

vel (2-tailed).

zed into seve
f business, app
ational cult
environment, 

del Parameters 

.598** .286

.000 .073

.666** .170

.000 .295

.476** .133

.002 .413

.453** .110

.003 .498

.584** .303

.000 .057
1 .467**

.002
.467** 1
.002

ation
Team

Experience

.585**

.000

.706**

.000

.487**

.002

.449**

.005

.591**

.000

.701**

.000

Communication E

 

 
n groups (see

plication type,
ture, project

and year of

*

.165

.322
  .338*

.038

.092

.583

.132

.430

.242

.144
.345*
.034

Team
Experience

e 
, 
t 
f 

 

1356 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER



The cultural and leadership characteristics are 
measured using a nine-point type scale, where 1 means 
Not Influential at all and 9 means Highly Influential. The 
remaining parameters are coded as follows. The 
Organization Line of Business was measured by a seven-
point type scale (code 1 to 7): Medical, Governmental 
Services, Communication, Public Services, Tourism 
Services, Education and Oil and Gas. The Application 
Type was measured on a two-point scale (code 1, 2) with 
1 being Core systems and 2 being Support systems. The 
Organizational type was measured on a three-point type 
scale (code 1 to 3) with 1 being Project Oriented (project 
manager has the highest power in making decisions), 2 
being Matrix (Project Manager has moderate power in 
making decisions), and 3 being Functional (project 
manager has lowest level of power in making decisions). 
The Project Technical Environment parameter is 
measured according to the number of Core Users 
(Backend Users), number of Clients, number of 
Transactions, numbers of Entities, and Technology 
(Hardware and Software Infrastructure). The Year of 
Project Completion measures the duration of the project. 

A component of our CBR approach is the Estimation 
by Analogy method (EBA). The key idea behind the EBA 
is that similar input data vectors have similar output 
values [5]. A number of nearest neighbors is sought 
according to a distance metric to determine the output 
approximation. The estimation of the outputs is 
calculated by using the average of the outputs of the 
neighbors (analogies).  It is a procedure consisting of 
three steps. First, the new class for which the project 
effort is to be estimated is characterized by a set of 
attributes common to the ones characterizing previous 
projects in a historical database. Second, one or more 
similar projects (neighbors or analogies) from the dataset 
are identified. Similarities and differences between the 
different projects’ features and the source case that is 
nearest the target are identified by measuring the distance 
between cases. Finally, the values of the neighbor 
projects are used to produce the estimate (usually by 
computing their mean). A sample data structure for 
representing the cases is shown in Figure 4. 

 

 
 

 
Figure 4.  The data structure [5] 

A.  Effort Estimation Procedure 
The following 3-stage procedure (Figure 5) is used to 

estimate the amount of effort for the new project.  
1. Extract historical cases that are most similar to 

the current one according to a selected metric. 
2. Estimate the response variable “effort” for the 

new case based on the extracted cases. 
3. Estimate the precision and carry out validation.  

a. Use the Bootstrap method to get an estimate of 
the standard deviation : 
• Select (with replacement) the bootstrap 

samples. 
• Determine the bootstrap replicates of the 

median (or the mean). 
• Compute the standard deviation of the 

bootstrap replicates of the median (or the 
mean).  

b. Use the Bootstrap method to get an estimate of 
the bias and carry out validation. 
• Compute the bootstrap replicates of the bias 

for the median (or mean) as the difference 
between each bootstrap replicate of the 
median (or mean) and the sample median 
(or mean) of the dataset used. 

• Compute the bootstrap estimate of the bias 
as the average of the bootstrap replicates of 
the bias.  The mean bias either shows the 
over estimation (+) or underestimation of 
the effort (-). A positive value of the mean 
bias represents overestimation and a 
negative value represents underestimation.  

• Validate by correcting for the bias 
according to its sign (+/-). 

 
 
 
 

 

 Effort Attribute 1 Attribute 2 … Attribute k 

Case 1 1E  11X  12X  … kX 1  
Case 2 2E  21X  22X  … kX 2  

…. … … … … … 
Case n nE  1nX  2nX  … nkX  

New Case Unknown 1Y  2Y  … kY  
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unknown parameter θ ൌ tሺFሻ is estimated by θ෠ ൌ sሺxሻ on 
the basis of a random sample x ൌ ൫xଵ, xଶ, … x୬൯	from the 
probability distribution F.  The procedure used by the 
Bootstrap method to estimate the standard error of s(x) is 
shown in Figure 6. Given the observed dataset 		x ൌ൫xଵ, xଶ, … x୬൯, a statistic of interest sሺxሻ  to compute, a B 
bootstrap replication of s, say sሺx∗ଵሻ, sሺx∗ଶሻ, … sሺx∗୆ሻ,	 where B , the number of 
replications, is a some large number, e.g., around 1000.  
 

 
Figure 7.  Standard Bootstrap 

Here seෝ ୠ୭୭୲ሺsሺx∗ሻሻ  is the sample standard deviation 
of	s൫x∗୩൯, k ൌ 1,2… , B. Generally, the Bootstrap method 
gives adequate results for B between 25 and 200 [11]. A 
bootstrap sample x∗ ൌ ሺx∗ଵ, x∗ଶ … x∗୆ሻ	 is a random 
sample of size n drawn from 		F෢ . For the Bootstrap 
standard error estimate, it is known that    lim୆→ஶ seෝ ୠ୭୭୲ sሺx∗ሻሻ ൌ Se୊൫θ෠∗൯.  The limit is an ideal, 
though not fully accurate, estimate of the S.E. of	sሺx∗ሻ.  
In theory, Bootstrap estimates the standard deviation of 
the sample median. This is normally given by the 
standard error of the sample mediansሺxሻ, i.e., using the 
distribution of the median which is not obvious. The 
Bootstrap estimate of the standard error (calculated for 
the sample median) gives an easy and practical answer. 

 

IV.  MEASURE ACCURACY AND VALIDATION  

The model was tested on a number of governmental 
development projects in order to determine its accuracy 
and appropriateness. Results suggest that closer estimates 
are obtained when cultural and leadership attributes are 
included in the estimation model. Specifically, the 
estimation of actual effort improved in 90% of the 
support system projects and in 50% of the core system 
projects, when leadership and cultural attributes were 
added.  

We used the jack-knife method to evaluate the 
predictive accuracy for our approach [21]. This validation 
method is an effective useful tool for assessing the error 
of the prediction procedure. Given a set of completed 
cases, one of the cases (say the ith case) is removed from 
the dataset and the remaining cases are used as a basis for 
the estimation of the removed case. 

Two measures of local error (Table 6) are calculated: 

1. The magnitude of relative error (MRE) [9]. 
2. The magnitude of relative error to the estimate 

(MER) [19]. 

TABLE VI.   
LOCAL ACCURACY MEASURES 

 
 

 
The local measures are the basis for the estimation of 

the global predictive accuracy measures MMRE, 
predmre25, MMER and predmer25 (Table 7).  

 

TABLE VII.   
GLOBAL ACCURACY MEASURES 
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If the MMRE (or MMER) is small, then these are a 

good set of predictions. A usual criterion for accepting a 
prediction method as good is that it has a 25.0≤MMRE  
(similarly for MMER). The opposite is the case for the 
predmre25 (or predmer25) accuracy measure. A standard 
criterion for considering a method as acceptable is 

75.025 ≥mrepred  (similarly for predmer25). 
In order to select the appropriate number of analogies 

the jack-knife technique is applied from one up to ten 
analogies and the MMRE, MRE, and pred25 accuracy 
measures are calculated for each of the cases in the whole 
dataset. It was decided to use one analogy for the 
predictions, i.e., a number that minimized the MMRE and 
gave relatively reasonable results for the measures. 
 

The dataset was split according to application type: 
“Supporting” applications are the systems which support 
the internal (shared) services in any organization. These 
applications are not linked directly to the organization 
mission and vision; rather they enhance the efficiency, 
effectiveness, and the performance of the supporting 
services. Those systems share similar features across the 
government departments.   

“Core” applications exist to help to achieve the 
mission and vision of the organizations and to satisfy 
their core purpose. The features of these applications are 
unique. Organizations with a similar line of business 
could share similar features.   

Next, the (core-support) models were intended to 
measure predictive accuracy (MMRE, Pred25) with and 
without cultural and leadership characteristics in the split 
cases. The functionalities of these systems are different 
and should be treated separately. The analogy showed 
significant differences between cases for the support 
systems of the cases including cultural and leadership 
characteristics which improved the analogy. The core 
applications improved the analogy by 50 percent when 

 

Bootstrap 
samples

x*B

s(x*1) s(x*2) s(x*B)

seboot(s(x*))

Bootstrap 
x)

Bootstrap Estimate of 
the Std. Error of s(x)

datasetx=(x1,x2,…,xn)

x*1 x*2 x*B

s(x*1) s(x*2) s(x*B)

seboot(s(x*))seboot(s(x*))

x)

x)

x=(x1,x2,…,xn)

x*1 x*2

replications of s(

A

EA

E
EE

MRE
-

=
E

EA

E
EE

MER
-

=

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1359

© 2013 ACADEMY PUBLISHER



the two highest effort cases were removed. There are 19 
core projects and 17 support projects in which there are 
no missing values for the dependent variable. 

In the presence of correlated independent variables, the 
regression coefficient may not be meaningful. The 
negative coefficients in equations do not reflect the true 
effects of independent variables. The fitting accuracy of 
the model is presented in Table 8 and Table 9. In order to 
evaluate the predictive accuracy, the jack-knife procedure 
was used. Then two different MMRE were calculated: 

 
1. The "fitting" MMRE: this is calculated by the 

regression procedure in SPSS. The 
"Unstandardized" predicted values are computed 
for the data that were used to fit the model and 
these are in fact the predicted logarithm of the 
efforts. The computed MREs are therefore given 
by: 

)(

)(

effortLNe

effortLNepredictede −

 

Next, the mean of all MREs gives the MMRE. 
 

2. The "predictive" MMRE: this is computed when 
the jack-knife procedure is applied and it can be 
also be computed in SPSS by the "deleted" 
residuals. These residuals (say r) are computed 
as the differences r =ln(effort) - predict; but here 
the prediction is made for each case when this is 
deleted from the data. So by computing first:  
Predicted = ln(effort) - r  

 
The jack-knife MRE is: 

MRE=  
)(

)(

effortLNe

effortLNepredictede −  

 
The mean and median of all MRE is the predictive 

MMRE.  After calculating both MMRE and MMER, the 
corresponding pred25 measure for them. 

 

 

TABLE VIII.   
ACCURACY MEASURES FOR THE LINEAR REGRESSION MODEL  

(SUPPORT SYSTEMS) 

  MMRE MdMRE MMER MdMER predMRE25 predMER25
Regression Fitting 

Accuracy 20% 17% 21% 19% 79% 68% 

Predictive 
Accuracy  56% 47% 57% 45% 16% 26% 

EbA best 
model (n=8) 

Predictive 
Accuracy 129 % 120% 69% 68% 16% 17% 

TABLE IX.   
ACCURACY MEASURES FOR THE LINEAR REGRESSION MODEL  

(CORE SYSTEMS) 

  MMRE MdMRE MMER MdMER predMRE25 predMER25
Regression Fitting 

Accuracy 24% 17% 25% 21% 74% 74% 

Predictive 
Accuracy  42% 28% 44% 30% 37% 42% 

EbA best 
model (n=9) 

Predictive 
Accuracy 102% 101% 62% 62% 22% 22% 

 
The comparison of the two models shows that the 

linear regression model outperforms EBA for all support 
and core systems measures. On the other hand, analysis 
of the completed projects, including leadership and 
cultural attributes appears to provide better results. 
Regression and analogy performed better when cases 
were split and selected as core and support systems.  

Two methods for estimating the actual effort and total 
cost both for core and support system projects were 
presented and their accuracy was evaluated. Results 
suggest that better estimates are obtained when cultural 
and leadership attributes are included in the estimation 
model. Specifically, the estimation of actual effort and 
cost accuracy improved drastically for both support and 
core systems, when leadership and cultural attributes 

were added. Total cost may be used as alternative 
evaluation for software effort estimation due to its 
importance and significance in predicting the cost model. 

The fitting accuracy of the model is presented in Table 
10. In order to evaluate the predictive accuracy, the jack-
knife procedure was used. After applying linear 
regression on the project’s leadership characteristics and 
project team culture attributes separately, it was 
concluded that a representative model for the dependent 
variable LNTotalCost could not be built.  
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TABLE X.   
ACCURACY MEASURES FOR THE LINEAR REGRESSION MODEL (LNTOTALCOST) 

  MMRE MdMRE MMER MdMER predMRE25 predMER25
Regression Fitting 

Accuracy 57.37% 39.32% 53.53% 41.36% 29.00% 24.00% 

Predictive 
Accuracy  72.07% 43.35% 68.33% 49.37% 21.95% 21.95% 

EbA best 
model (n=7) 

Predictive 
Accuracy 79.65% 49.13% 76.55% 52.96% 24.39% 34.15% 

 
 

Estimation by analogy (EBA) is another technique for 
the prediction of a dependent variable. Various neighbors 
were tried out and the results of the jack-knife procedure 
are presented in Table 11. As observed, the optimal 

number of neighbors varies according to the accuracy 
measure that needs to be optimized. It would appear that 
'7 neighbors' is a good choice for the construction of an 
EBA model. 

 

TABLE XI.   
PREDICTIVE ACCURACY MEASURES FOR THE EBA MODEL (LNTOTALSKILLCOST) 

 
 
 

The comparison of the two models shows that the 
linear regression model outperforms EBA for MMRE, 
MdMRE, MMER and MdMER, whereas the opposite is 
true for the remaining measures. On the other hand, the 
parametric and non-parametric tests do not provide a 
statistically significant difference between these measures. 

Assume y is a new case with actual effort 582. 
Regarding the evaluation of the predictive accuracy for 
EBA method, the jack-knife procedure was adopted [21]. 
First of all, take the absolute value of (actual – estimate) / 
actual. After applying analogy to estimate the last project 
(jack-knife y), analogy finds case 1 to be the most similar 
and reports that 320 is the estimate. However, the true 
value is 582. So, the relative error for analogy is (320 – 
582) / 582. The MER will be calculated based on the 

procedure (actual – estimate) / estimate. So, the MER is abs((582 – 320) / 320) for the first project (see Table 12). 
In order to select the appropriate number of analogies 

the jack-knife technique was applied from one up to ten 
analogies and the MMRE, MRE, and pred25 accuracy 
measures were calculated for each of the cases in the 
whole dataset. It was decided to use one analogy for the 
predictions, i.e. a number that minimized the MMRE and 
gave relatively reasonable results for the measures. The 
values of the effort for the selected cases were: 320, 105, 
138, 324, 600, 750, 1250, 1295, and 1300. It appeared 
that '9 neighbors' is a reasonable choice for the 
construction of the EBA model. 

 
 

TABLE XII.   
THE EXAMPLE FOR THE DATASE 

No of 
Neighbors

MMRE MdMRE MMER MdMER predMRE25 predMER25

1 101.21% 67.34% 168.48% 63.68% 17.07% 17.07%
2 86.26% 52.34% 95.37% 52.99% 31.71% 26.83%
3 87.44% 55.17% 96.74% 58.34% 24.39% 21.95%
4 80.52% 56.65% 87.55% 53.40% 24.39% 24.39%
5 82.16% 55.41% 82.12% 57.97% 17.07% 19.51%
6 84.63% 54.43% 80.54% 62.73% 26.83% 24.39%
7 79.65% 49.13% 76.55% 52.96% 24.39% 34.15%
8 83.03% 53.23% 78.60% 52.89% 24.39% 24.39%
9 90.94% 58.60% 78.09% 49.24% 19.51% 21.95%
10 101.20% 58.33% 74.24% 45.16% 24.39% 21.95%
11 125.62% 64.80% 78.99% 52.94% 19.51% 21.95%
12 137.85% 78.91% 81.32% 55.49% 19.51% 21.95%
13 141.94% 79.94% 80.95% 55.19% 21.95% 19.51%
14 149.54% 80.75% 82.68% 56.84% 17.07% 17.07%
15 147.01% 80.36% 80.06% 56.82% 14.63% 19.51%
16 144.00% 73.10% 78.36% 55.52% 17.07% 19.51%
17 148.19% 71.72% 79.45% 56.80% 14.63% 17.07%
18 159.23% 73.38% 78.28% 60.85% 12.20% 17.07%
19 161.07% 75.69% 75.63% 62.47% 12.20% 14.63%
20 170.66% 75.14% 78.18% 62.33% 7.32% 9.76%
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The execution of the macro using Minitab gave: s(x) = 
600 and seෝ ୠ୭୭୲ሺsሺx∗ሻሻ = 348. How good is this estimate? 
Compare it to Se୊෡൫θ෠∗൯ , which is obtained from the 
sampling distribution of sሺx∗ሻ	bootstrap replications (see 
Table 13). 

TABLE XIII.   
THE BOOTSTRAP ESTIMATE 

 
This section computes the standard of the bootstrap 

median based on all possible bootstrap samples, 9ଽ 
samples [7]. 

 
 
 
The results are given in Table 14: 

TABLE XIV.   
THE SAMPLING DISTRIBUTION OF THE SAMPLE MEDIAN 

 
 
The previous distribution gives	Se୊෡൫θ෠∗൯ = 349.5 which 

is very close to the bootstrap estimate obtained earlier. To 
have more insight about these estimates, histograms were 
constructed of the 200 replications used in the bootstrap 
estimate and the histogram of 200 observations generated 
from the previous distribution of sሺx∗ሻ. These turned out 
to be similar (see Figure 8). 
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Figure 8.  Simulated histogram and Bootstrap histogram of the median distribution 

 
The Bootstrap estimate of the median bias was used to 

estimate the bias of the sample median (which is 600 here, 
as seen earlier). A Minitab macro (bootstrap bias), was 
written to display the bias bootstrap replications along 
with the sample median and its bootstrap estimate of the 
bias. The execution of the macro bootstrap bias gave bıas෢ ୠ୭୭୲ሺsሺx∗ሻሻ = 18.5 which is the bootstrap estimate of 

the median bias. The Bootstrap estimate of the bias is as 
shown (see Table 15): 

 

TABLE XV.   
THE BOOTSTRAP BIAS ESTIMATE 

OrgNo Project
Org
Size

Org
LOB

Org
Type

Duration
Mon

Tools
Lang DBMS

Decision
Making

Commu-
nications

Team
Exp

Both
C/L

Actual
Effort MRE MER

29 Telematics system M 60 4 2 16 1 2 7.0 7.8 6.0 1.00 320 45.0% 81.9%
28 E-Archive 4,000 2 3 11 1 2 8.0 8.3 6.0 0.50 1,300 123.4% 55.2%
38 Well Prognosis 2,296 7 2 7 3 3 7.8 7.8 6.8 0.48 600 3.1% 3.0%
4 Fuder (Data Manage 1,200 7 1 53 5 2 8.0 8.0 8.0 0.44 138 76.3% 321.7%
34 Al Ain Muncipality e 2,000 2 1 12 1 1 7.3 5.5 6.0 0.42 1,250 114.8% 53.4%
40 Daman Insurance Ap 2,296 7 2 4 2 2 7.8 8.0 6.8 0.40 324 44.3% 79.6%
30 Project Bus. Env. 200 8 1 24 2 1 7.3 7.8 6.0 0.40 1,295 122.5% 55.1%
15 Database Applicatio 16,000 2 2 6 2 2 7.0 8.0 7.0 0.39 750 28.9% 22.4%
1 Financial (JD Edwar 1,900 7 2 5 3 3 8.0 9.0 8.0 0.37 105 82.0% 454.3%
24 ERP 1,500 2 2 7 1 1 8.3 8.0 7.5 0.37 1,200 106.2% 51.5%

32 Planning and Devlop 167 2 1 16 1 1 7.5 7.5 7.5 6.0 582

  1     600    348.742

Bootstrap
Estimate

Row  median  of se

x(i) p(i)
320 0.0014493
105 0.0289240
138 0.1144725
324 0.2206611
600 0.2689862
750 0.2206611

1250 0.1144725
1295 0.0289240
1300 0.0014493
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