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Abstract— Formal concept analysis (FCA) is a valid tool
for data mining and knowledge discovery, which identifies
concept lattices from binary relations. Given a nonempty
finite set A of binary attributes, one obtains a maximal
binary relation Rmax based on a relation schema S(A).
Firstly, we analyze concepts in Rmax and the concept lattice
L(Rmax), and there are some important results as follows:
for any two concepts in Rmax, the union of their intents
is an intent of some concept in Rmax, and further the
intent of their supremum is the union of their intents;
for any two concepts in Rmax, if one of them is not a
sub-concept or super-concept of the other one, then the
union of their extents is not an extent of any concept
in Rmax; L(Rmax) is a complemented distributive lattice.
Secondly, we provide the structural connection between
L(R) and L(Rmax): for any relation R based on S(A),
there is a supremum-preserving order-embedding map from
L(R) to L(Rmax), and conversely, there is an infimum-
preserving order-preserving map from L(Rmax) to L(R),
which is generally not a surjective homomorphism. Thirdly,
we propose two algorithms to extract concepts in R from
L(Rmax), which are respectively based on intents and
extents of concepts, and prove their soundness. These results
have already been used to analyze the data in architectual
engineering and medical science.

Index Terms— concept lattices; relation schemas; maximal
binary relations; order-preserving maps

I. INTRODUCTION

FCA[6] is an effective data analysis technique, which
automatically generates hierarchies called concept lattices
from contexts. Recently, concept lattices have already
been successfully applied to a wide range of scientific
disciplines such as knowledge discovery [1, 3, 4, 5, 8-
11, 15, 18], information retrieval [2, 13, 16, 19], software
engineering [12, 20], rough set theory [17, 21, 23, 25],
and knowledge ontology [7, 14].

As many practical applications involve binary data, this
paper discusses the concept lattices of binary relations
(contexts). Given a nonempty finite set A of binary
attributes, one obtains a maximal binary relation Rmax

on a relation schema S(A). This paper mainly analyzes
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concepts in Rmax and the concept lattice of Rmax. Gen-
erally, given a relation R based on S(A), for any two
concepts in R, the union of their intents may not be
an intent of any concept in R. However, compared with
general relations, Rmax is a special one, and thereby it
has more properties, and this paper obtains the following
results: for any two concepts in Rmax, the union of their
intents is an intent of some concept in Rmax, and further
the intent of their supremum is the union of their intents;
for any two concepts in Rmax, if one of them is not a
sub-concept or super-concept of the other one, then the
union of their extents is not an extent of any concept in
Rmax; L(Rmax) is a complemented distributive lattice.
The connection among three concepts in Rmax is also
considered. For any relation R based on S(A), R is
a sub-relation of Rmax, and their concept lattices have
the following structural connection: there is a supremum-
preserving order-embedding map from L(R) to L(Rmax),
and conversely, there is an infimum-preserving order-
preserving map from L(Rmax) to L(R), which is gen-
erally not a surjective homomorphism. Furthermore, this
paper provides two equivalent algorithms to extract all
concepts in R from L(Rmax).

This paper is organized as follows. Section 2 gives
some necessary notions. Section 3 discusses concepts in
Rmax and the concept lattice of Rmax. Section 4 firstly
analyzes the connection between the concept lattice of R
and the concept lattice of Rmax, and secondly provides
two algorithms to extract concepts in R from the concept
lattice of Rmax. Section 5 concludes the paper.

II. PRELIMINARIES

In FCA, a context K = (G,M, I) consists of two
sets G and M and a relation I between G and M . The
elements of G and M are respectively called objects and
attributes. For any g ∈ G and m ∈ M , (g,m) ∈ I (or
gIm) implies that the object g possesses the attribute m
[6]. The relation I induces two maps fK and hK between
the power set P(G) of G and the power set P(M) of M .
For a set X ∈ P(G) of objects, fK(X) is defined as:

fK(X) = {m ∈M : ∀g ∈ X(gIm)},
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which is the set of attributes common to the objects in
X . Correspondingly, for a set Y ∈ P(M) of attributes,
hK(Y ) is defined as:

hK(Y ) = {g ∈ G : ∀m ∈ Y (gIm)},

which is the set of objects which have all attributes in Y .
Given a context K = (G,M, I), for any X ∈ P(G)

and Y ∈ P(M), the pair (X,Y ) is called a (formal)
concept if fK(X) = Y and hK(Y ) = X , where X and
Y are respectively called the extent and the intent of the
concept. The set of all concepts of K is denoted by L(K).
If (X1, Y1), (X2, Y2) ∈ L(K) are concepts, (X1, Y1) is
called a sub-concept of (X2, Y2), provided that X1 ⊆ X2

(which is equivalent to Y2 ⊆ Y1), denoted by (X1, Y1) ⊑
(X2, Y2). In this case, (X2, Y2) is a super-concept of
(X1, Y1). The relation ⊑ is an order on L(K), called the
hierarchical order of the concepts. The hierarchical order
produces a lattice structure in L(K), called the concept
lattice of the context K, also denoted by L(K). L(K) is
also a complete lattice in which infimum and supremum
are given by [6]:∧

t∈T

(At, Bt) = (
∩
t∈T

At, fKhK(
∪
t∈T

Bt)),

∨
t∈T

(At, Bt) = (hKfK(
∪
t∈T

At),
∩
t∈T

Bt),

where T is an index set, and infimum and supremum
respectively represent the largest common sub-concept
and the small common super-concept of some concepts.

Actually, a binary relation in relation databases is a
context in FCA. A binary relation R based on a relation
schema S(A) can be represented by a triple (U,A, I),
where U is a nonempty set of tuples, A is a set of binary
attributes, and I is a map from U × A to {0, 1} such
that for any (r, a) ∈ U × A, I(r, a) = 1 ⇔ rIa. In the
following sections, we write r(a) = 1 instead of I(r, a) =
1, and use ⊓ and ⊔ instead of

∧
and

∨
, respectively. For

every concept in a relation, the extent and the intent of
the concept are closely connected by the map I , and each
of the parts determines the other and thereby the concept.
The next descriptions state further rules of this interaction:
Given a relation R = (U,A, I), X,X1, X2 ⊆ U are sets
of tuples, then

• X1 ⊆ X2 ⇒ fR(X2) ⊆ fR(X1)
• X ⊆ hRfR(X)
• fR(X) = fRhRfR(X)
• X ⊆ hR(Y )⇔ Y ⊆ fR(X)
• fR(X1 ∪X2) = fR(X1) ∩ fR(X2)
• fR(X1) ∪ fR(X2) ⊆ fR(X1 ∩X2)
• X1 ⊆ X2 ⇒ hRfR(X1) ⊆ hRfR(X2).

Dually, Y, Y1, Y2 ⊆ A are sets of attributes, then

• Y1 ⊆ Y2 ⇒ hR(Y2) ⊆ hR(Y1)
• Y ⊆ fRhR(Y )
• hR(Y ) = hRfRhR(Y )
• hR(Y1 ∪ Y2) = hR(Y1) ∩ hR(Y2)
• hR(Y1) ∪ hR(Y2) ⊆ hR(Y1 ∩ Y2)
• Y1 ⊆ Y2 ⇒ fRhR(Y1) ⊆ fRhR(Y2).

III. THE MAXIMAL RELATION BASED ON A GIVEN
RELATION SCHEMA AND ITS CONCEPT LATTICE

Given a nonempty finite set A of binary attributes,
we obtain a maximal relation Rmax = (Umax, A, Imax),
which is based on the schema S(A). The maximality of
Rmax can be described as follows: for any attribute a ∈ A,
there are two tuples r1, r2 ∈ Umax such that r1(a) = 1
and r2(a) = 0, and for any relation R = (U,A, I), there
is U ⊆ Umax. For any X ⊆ Umax and Y ⊆ A, the pair
(X,Y ) is a concept in Rmax, if there are:

fRmax

(X) = {a ∈ A : ∀r ∈ X(r(a) = 1)} = Y,
hRmax

(Y ) = {r ∈ Umax : ∀a ∈ Y (r(a) = 1)} = X.

The concept lattice of Rmax is denoted by L(Rmax). By
the maximality of Rmax, there is a tuple, which has all
attributes in A, and therefore the extent of the smallest
concept in Rmax is not empty, i.e., hRmax

(A) ̸= ∅.
Obviously, for any two concept in Rmax, the intersection
of their extents is not empty.

Generally, given a binary relation R = (U,A, I), a
subset of A may not be an intent of any concept in R.
However, for Rmax, each subset of A is an intent of some
concept in Rmax. In other words, for any nonempty subset
Y ⊆ A and attribute a /∈ Y , there exists a tuple r ∈ Umax,
which has all attributes in Y , but does not have a.
Proposition 3.1. For every set Y ⊆ A, Y is an intent of
some concept in Rmax. Obviously, there are 2|A| concepts
in Rmax, where 2|A| is the number of all subsets of A.
Proof: For any Y ⊆ A, we must show that
fRmax

hRmax

(Y ) = Y . There are the following cases:
Case 1: if Y = ∅, then the proposition holds.
Case 2: if Y = A, then the proposition holds.
Case 3: if Y ̸= ∅, A. We have that Y ⊆

fRmax

hRmax

(Y ). Conversely, assume that there exists an
attribute a ∈ fRmax

hRmax

(Y ) but a /∈ Y . As a ∈
fRmax

hRmax

(Y ), we have that:

a ∈ fRmax

hRmax

(Y )
⇔ ∀r ∈ hRmax

(Y )(r(a) = 1)
⇔ ∀r(∀b ∈ Y (r(b) = 1)→ r(a) = 1).

This means that for any tuple r ∈ Umax, if r has all
attributes in Y , then r also has the attribute a. However,
the result does not hold in Rmax. In fact, we can construct
a tuple r′ as follows: for any attribute b ∈ A,

r′(b) =

 1 if b ∈ Y
0 if b = a
0 else

Obviously, r′ ∈ Umax has all attributes in Y , but r′ does
not have the attribute a. This leads to a contradiction.
Therefore, Y is an intent of some concept in Rmax, i.e.,
each subset of A is an intent of some concept, and hence
there is 2|A| concepts in Rmax.
Example 3.1. Given a set A = {a, b, c} of binary
attributes, based on the schema S(A), we obtain the

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1309

© 2013 ACADEMY PUBLISHER



maximal binary relation Rmax as follows:

Rmax =

a b c
r1 1 1 1
r2 1 1 0
r3 1 0 1
r4 1 0 0
r5 0 1 1
r6 0 1 0
r7 0 0 1
r8 0 0 0

The concept lattice of Rmax is shown in Figure 1. In
order to make the above proposition more clearer, we
label the extents and the intents of all concepts in the
concept lattice. From the figure, we easily obtain the
following results: for any two concepts, the intersection
of their intents is not empty; each subset of A is an intent
of some concept, and there are 23 = 8 concepts.

ca, b, c
r1

cb, c
r1, r5

ca, b
r1, r2

ca, c
r1, r3

ca
r1, r2, r3, r4

cb
r1, r2, r5, r6

cc
r1, r3, r5, r7

c
r1, r2, r3, r4, r5, r6, r7, r8

Figure 1. The concept lattice of Rmax in example 3.1

About concepts in Rmax, we have further the following
results: for any concepts (X1, Y1) and (X2, Y2), the set of
attributes common to the tuples in X1 ∩X2 is equivalent
to Y1∪Y2, which means that the intent of their supremum
is the union of their intents; for any concepts (X1, Y1),
(X2, Y2) and (X3, Y3), the set of attributes common to
the tuples in X1 ∩ (X2 ∪X3) is equivalent to Y1 ∪ (Y2 ∩
Y3), and the set of attributes common to the tuples in
X1∪ (X2∩X3) is equivalent to Y1∩ (Y2∪Y3), as shown
in the next proposition.
Proposition 3.2. For any concepts (X1, Y1), (X2, Y2),
(X3, Y3) ∈ L(Rmax), there are

• fRmax

(X1 ∩X2) = Y1 ∪ Y2

• hRmax

fRmax

(X1 ∪ (X2 ∩X3))
= hRmax

fRmax

(X1 ∪X2) ∩ hRmax

fRmax

(X1 ∪X3)
• fRmax

(X1 ∩ (X2 ∪X3)) = Y1 ∪ (Y2 ∩ Y3)
• fRmax

(X1 ∪ (X2 ∩X3)) = Y1 ∩ (Y2 ∪ Y3)
• hRmax

fRmax

(X1 ∩ (X2 ∪X3))
= X1 ∩ hRmax

fRmax

(X2 ∪X3).

Proof: Firstly, if Y1 ∪Y2 = ∅, then the proposition holds.
We assume that Y1∪Y2 ̸= ∅. For any attribute a ∈ Y1∪Y2,
we have that a ∈ Y1 or a ∈ Y2. For any tuple r ∈ X1∩X2,
there are r ∈ X1 and r ∈ X2. Because (X1, Y1) and

(X2, Y2) are concepts in Rmax, there are r(a) = 1, and
thereby a ∈ fRmax

(X1 ∩ X2), and consequently Y1 ∪
Y2 ⊆ fRmax

(X1 ∩X2). Conversely, fRmax

(X1 ∩X2) ⊆
Y1 ∪ Y2 also holds. Or else, there exists an attribute a ∈
fRmax

(X1 ∩X2) but a /∈ Y1 ∪ Y2. We construct a tuple
r as follows: for any attribute b ∈ A:

r(b) =

 1 if b ∈ Y1 ∪ Y2

0 if b = a
0 else

Because (X1, Y1) and (X2, Y2) are concepts, r ∈ X1 and
r ∈ X2, and hence r ∈ X1∩X2. Because a ∈ fRmax

(X1∩
X2), r(a) = 1, which is not consist to r(a) = 0.

Secondly, by the rules described in section 2, there are

hRmax

fRmax

(X1 ∪ (X2 ∩X3))
= hRmax

(fRmax

(X1 ∪ (X2 ∩X3)))
= hRmax

(fRmax

(X1) ∩ fRmax

(X2 ∩X3))
= hRmax

(fRmax

(X1) ∩ (fRmax

(X2) ∪ fRmax

(X3)))
= hRmax

(Y1 ∩ (Y2 ∪ Y3))
= hRmax

((Y1 ∩ Y2) ∪ (Y1 ∩ Y3))
= hRmax

(Y1 ∩ Y2) ∩ hRmax

(Y1 ∩ Y3)
= hRmax

(fRmax

(X1) ∩ fRmax

(X2))∩
hRmax

(fRmax

(X1) ∩ f(X3))
= hRmax

fRmax

(X1 ∪X2) ∩ hRmax

fRmax

(X1 ∪X3).

Thirdly, because X2 ∪ X3 may not be an extent, we
do not directly use the above results. We show that
fRmax

(X1) ∪ (fRmax

(X2) ∩ fRmax

(X3)) ⊆ fRmax

(X1 ∩
(X2 ∪X3)). Actually, there are

X1 ∩ (X2 ∪X3) ⊆ X1

⇒ fRmax

(X1) ⊆ fRmax

(X1 ∩ (X2 ∪X3))
X1 ∩ (X2 ∪X3) ⊆ X2 ∪X3

⇒ fRmax

(X2 ∪X3) ⊆ fRmax

(X1 ∩ (X2 ∪X3)),

Hence, there are

fRmax

(X1) ∪ (fRmax

(X2) ∩ fRmax

(X3))
= fRmax

(X1) ∪ fRmax

(X2 ∪X3)
⊆ fRmax

(X1 ∩ (X2 ∪X3)).

Conversely, fRmax

(X1 ∩ (X2 ∪ X3)) ⊆ fRmax

(X1) ∪
(fRmax

(X2)∩fRmax

(X3)) = Y1∪(Y2∩Y3) also holds. Or
else, there exists an attribute a ∈ fRmax

(X1∩ (X2∪X3))
but a /∈ Y1 ∪ (Y2 ∩ Y3) = (Y1 ∪ Y2) ∩ (Y1 ∪ Y3), and
thereby a /∈ Y1 ∪ Y2 or a /∈ Y1 ∪ Y3. Therefore, there are
the following cases:

Case 1: a /∈ Y1 ∪ Y2 but a ∈ Y1 ∪ Y3. We construct a
tuple r1 as follows: for any attribute b ∈ A,

r1(b) =

 1 if b ∈ Y1 ∪ Y2

0 if b = a
0 else

Obviously, r1 ∈ X1 ∩ (X2 ∪ X3). However, r1(a) = 0,
which leads to a contradiction.

Case 2: a /∈ Y1 ∪ Y3 but a ∈ Y1 ∪ Y2. We construct a
tuple r2 as follows: for any attribute b ∈ A,

r2(b) =

 1 if b ∈ Y1 ∪ Y3

0 if b = a
0 else

1310 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER



Obviously, r2 ∈ X1 ∩ (X2 ∪ X3). However, r2(a) = 0,
which leads to a contradiction.

Case 3: a /∈ Y1 ∪ Y2 and a /∈ Y1 ∪ Y3. We have that
a /∈ Y1 ∪Y2 ∪Y3, and construct a tuple r3 as follows: for
any attribute b ∈ A,

r3(b) =

 1 if b ∈ Y1 ∪ Y2 ∪ Y3

0 if b = a
0 else

Obviously, r3 ∈ X1 ∩ (X2 ∪ X3). However, r3(a) = 0,
which leads to a contradiction.

Fourthly, in fact,

fRmax

(X1 ∪ (X2 ∩X3))
= fRmax

(X1) ∩ fRmax

(X2 ∩X3)
= fRmax

(X1) ∩ (fRmax

(X2) ∪ fRmax

(X3))
= Y1 ∩ (Y2 ∪ Y3).

Fifthly, by the rules described in section 2, there are

X1 ∩ hRmax

fRmax

(X2 ∪X3)
= X1 ∩ hRmax

(fRmax

(X2) ∩ fRmax

(X3))
= hRmax

(Y1) ∩ hRmax

(Y2 ∩ Y3)
= hRmax

(Y1 ∪ (Y2 ∩ Y3))
= hRmax

(fRmax

(X1) ∪ (fRmax

(X2) ∩ fRmax

(X3)))
= hRmax

fRmax

(X1 ∩ (X2 ∪X3)).

Corollary 3.1. For any two concepts (X1, Y1), (X2, Y2) ∈
L(Rmax), there is (X1, Y1)⊓ (X2, Y2) = (X1 ∩X2, Y1 ∪
Y2).
Proof: For any (X1, Y1), (X2, Y2) ∈ L(Rmax), there are

(X1, Y1) ⊓ (X2, Y2)
= (X1 ∩X2, f

Rmax

hRmax

(Y1 ∪ Y2))
= (X1 ∩X2, f

Rmax

(hRmax

(Y1) ∩ hRmax

(Y2)))
= (X1 ∩X2, f

Rmax

(X1 ∩X2))
= (X1 ∩X2, f

Rmax

(X1) ∪ fRmax

(X2))
= (X1 ∩X2, Y1 ∪ Y2).

As mentioned above, for every set Y ⊆ A, A−Y is an
intent of some concept in Rmax. Thus, for any concept
(X,Y ) in Rmax, (hRmax

(A−Y ), A−Y ) is also a concept
in Rmax, which is called the complementary concept of
(X,Y ), denoted by ∼ (X,Y ).
Proposition 3.3. L(Rmax) is a complemented distributive
lattice.
Proof: Firstly, L(Rmax) is a complemented lattice. Be-
cause each subset of A is an intent, for any concept
(X,Y ) ∈ L(Rmax), (hRmax

(A − Y ), A − Y ) is the
complement concept of (X,Y ). It is easily inferred that
the infimum and the supremum of a concept and its com-
plementary concept are respectively the largest concept
and the smallest concept in Rmax.

Secondly, L(Rmax) is a distributive lattice. On the one
hand, for any concepts (X1, Y1), (X2, Y2), (X3, Y3) ∈

L(Rmax), there are

(X1, Y1) ⊔ ((X2, Y2) ⊓ (X3, Y3))
= (X1, Y1) ⊔ (X2 ∩X3, Y2 ∪ Y3)(By Corollery 3.1)
= (hRmax

fRmax

(X1 ∪ (X2 ∩X3)), Y1 ∩ (Y2 ∪ Y3))
= (hRmax

fRmax

(X1 ∪ (X2 ∩X3)), (Y1 ∩ Y2) ∪ (Y1 ∩ Y3))
= (hRmax

fRmax

(X1 ∪X2) ∩ hRmax

fRmax

(X1 ∪X3),
(Y1 ∩ Y2) ∪ (Y1 ∩ Y3))

= (hRmax

fRmax

(X1 ∪X2), Y1 ∩ Y2)⊓
(hRmax

fRmax

(X1 ∪X3), Y1 ∩ Y3)
= ((X1, Y1) ⊔ (X2, Y2)) ⊓ ((X1, Y1) ⊔ (X3, Y3)).

On the other hand, for any concepts (X1, Y1), (X2, Y2),
(X3, Y3) ∈ L(Rmax), there are

(X1, Y1) ⊓ ((X2, Y2) ⊔ (X3, Y3))
= (X1, Y1) ⊓ (hRmax

fRmax

(X2 ∪X3), Y2 ∩ Y3)
= (X1 ∩ hRmax

fRmax

(X2 ∪X3), Y1 ∪ (Y2 ∩ Y3))
= (hRmax

fRmax

(X1 ∩ (X2 ∪X3)), (Y1 ∪ Y2) ∩ (Y1 ∪ Y3))
= (hRmax

fRmax

((X1 ∩X2) ∪ (X1 ∩X3)),
(Y1 ∪ Y2) ∩ (Y1 ∪ Y3))

= (X1 ∩X2, Y1 ∪ Y2) ⊔ (X1 ∩X3, Y1 ∪ Y3)
= ((X1, Y1) ⊓ (X2, Y2)) ⊔ ((X1, Y1) ⊓ (X3, Y3)).

Hence, L(Rmax) is a a distributive lattice.
By using the above propositions, we have the following

corollary.
Corollary 3.2. For any concepts (X,Y ), (X1, Y1),
(X2, Y2) ∈ L(Rmax), there are

• ∼∼ (X,Y ) = (X,Y )
• ∼ ((X1, Y1) ⊔ (X2, Y2))

=∼ (X1, Y1)⊓ ∼ (X2, Y2)
• ∼ ((X1, Y1) ⊓ (X2, Y2))

=∼ (X1, Y1)⊔ ∼ (X2, Y2)
• (X,Y ) ⊔ (∼ (X,Y ) ⊓ (X1, Y1))

= (X,Y ) ⊔ (X1, Y1)
• (X,Y ) ⊓ (∼ (X,Y ) ⊔ (X1, Y1))

= (X,Y ) ⊓ (X1, Y1) and
• (X1, Y1) ⊑ (X2, Y2)
⇔∼ (X2, Y2) ⊑∼ (X1, Y1).

For any two concepts in Rmax, the union of their intents
is an intent of some concept. However, the union of their
extents generally does not result in an extent.
Proposition 3.4. For any concepts (X1, Y1), (X2, Y2) ∈
L(Rmax), if (X1, Y1) ̸⊑ (X2, Y2) and (X2, Y2) ̸⊑
(X1, Y1), then X1 ∪X2 is not an extent of any concept
in Rmax.
Proof: For any X ⊆ Umax, we have that X ⊆
hRmax

fRmax

(X). Because X is an extent of some concept
in Rmax if and only if X = hRmax

fRmax

(X), we only
need show that X1 ∪ X2 ⊂ hRmax

fRmax

(X1 ∪ X2).
Because

(X1, Y1) ̸⊑ (X2, Y2) and (X2, Y2) ̸⊑ (X1, Y1)
⇔ X1X2 and X2X1

⇔ Y2Y1 and Y1Y2

⇔ Y1 ∩ Y2 ⊂ Y2 and Y1 ∩ Y2 ⊂ Y1,

there exist an attribute a1 ∈ Y1−Y1∩Y2 and an attribute
a2 ∈ Y2 − Y1 ∩ Y2. Thereby, we construct a tuple r as
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follows: for any attribute a ∈ A,

r(a) =


1 if a ∈ Y1 ∩ Y2,
0 if a = a1,
0 if a = a2,
0 else.

Obviously, r ∈ hRmax

(Y1 ∩ Y2) = hRmax

fRmax

(X1 ∪
X2). By the construction of r, we have that r(a1) = 0
and r(a2) = 0, and thereby r /∈ X1 and r /∈ X2, and
consequently r /∈ X1 ∪X2.

IV. THE CONNECTION BETWEEN CONCEPTS IN Rmax

AND CONCEPTS IN R

Firstly, we discuss the structural connection between
the concept lattice of a sub-relation and the concept
lattice of the maximal relation. Secondly, we provide two
algorithms to extract concepts in R from L(Rmax).

A. The connection between concept lattice L(Rmax) and
concept lattice L(R)

Given a relation R based on the schema S(A), for any
concept (X,Y ) in R, there is a concept (hRmax

(Y ), Y )
in Rmax. Thus, there exists a map σ1 from L(R) to
L(Rmax), which keeps the intents unchanged.
Proposition 4.1. For any concept (X,Y ) ∈ L(R),

σ1((X,Y )) = (hRmax

(Y ), Y )

is a supremum-preserving order-embedding map.
Proof: Firstly, it is easily inferred that σ1 is a map from
L(R) to L(Rmax). Secondly, σ1 is order-embedding: for
any concepts (X1, Y1), (X2, Y2) ∈ L(R), there are

(X1, Y1) ⊑ (X2, Y2)
⇔ Y2 ⊆ Y1

⇔ (hRmax

(Y1), Y1) ⊑ (hRmax

(Y2), Y2)
⇔ σ1((X1, Y1)) ⊑ σ1((X2, Y2)).

Thirdly, σ1 is supremum-preserving: for any concepts
(X1, Y1), (X2, Y2) ∈ L(R), there are

σ1((X1, Y1) ⊔ (X2, Y2))
= σ1((h

R(Y1 ∩ Y2), Y1 ∩ Y2))
= (hRmax

(Y1 ∩ Y2), Y1 ∩ Y2)
= (hRmax

(fRmax

hRmax

(Y1) ∩ fRmax

hRmax

(Y2)), Y1 ∩ Y2)
= (hRmax

fRmax

(hRmax

(Y1) ∪ hRmax

(Y2)), Y1 ∩ Y2)
= (hRmax

(Y1), Y1) ⊔ (hRmax

(Y2), Y2)
= σ1((X1, Y1)) ⊔ σ1((X2, Y2)).

However, σ1 is not an infimum-preserving map, as
shown in the following example:

Example 4.1. Given the following relation R =
(U,A, I), R is a sub-relation of Rmax in example 3.1,
where U = {r4, r6, r7}:

R =

a b c
r4 1 0 0
r6 0 1 0
r7 0 0 1

There are concepts ({r4}, {a}) and ({r6}, {b}) in R, and
the supremum of them is the following concept:

({r4}, {a}) ⊓ ({r6}, {b}) = (∅, {a, b, c}).

Because
σ1(({r4}, {a})) = ({r1, r2, r3, r4}, {a}),
σ1(({r6}, {b})) = ({r1, r2, r5, r6}, {b}),
σ1((∅, {a, b, c})) = ({r1}, {a, b, c}),

there are
σ1(({r4}, {a}) ⊓ ({r6}, {b}))

= σ1((∅, {a, b, c}))
= ({r1}, {a, b, c})
̸= ({r1, r2}, {a, b})
= ({r1, r2, r3, r4}, {a}) ⊓ ({r1, r2, r5, r6}, {b})
= σ1(({r4}, {a})) ⊓ σ1(({r6}, {b})).

Conversely, given a concept (X,Y ) in Rmax, for the
relation R, X ∩U is the largest set of tuples which have
all attributes in Y , and hence (X ∩ U, fR(X ∩ U)) is
a concept in R. Thus, we can construct a map σ2 from
L(Rmax) to L(R), as shown the next proposition:
Proposition 4.2. For any concept (X,Y ) ∈ L(Rmax),

σ2((X,Y )) = (X ∩ U, fR(X ∩ U))

is a surjective infimum-preserving order-preserving map
from L(Rmax) to L(R).
Proof: Firstly, it is easily inferred that σ2 is a map from
L(Rmax) to L(R). Secondly, σ2 is order-preserving: for
any (X1, Y1), (X2, Y2) ∈ L(Rmax), we have that

(X1, Y1) ⊑ (X2, Y2)
⇔ X1 ⊆ X2

⇒ X1 ∩ U ⊆ X2 ∩ U
⇒ fR(X2 ∩ U) ⊆ fR(X1 ∩ U)
⇔ (X1 ∩ U, fR(X1 ∩ U)) ⊑ (X2 ∩ U, fR(X2 ∩ U))
⇔ σ2((X1, Y1)) ⊑ σ2((X2, Y2)).

Thirdly, σ2 is surjective: for any concept (X,Y ) in R,
we obtain a concept (hRmax

(Y ), Y ) in Rmax. It is easily
inferred that hRmax

(Y ) ∩ U = X , and then

σ2((h
Rmax

(Y ), Y ))
= (Rmax(Y ) ∩ U, fR(hRmax

(Y ) ∩ U))
= (X,Y ).

Fourthly, σ2 is infimum-preserving: for any concepts
(X1, Y1), (X2, Y2) ∈ L(Rmax), we easily infer that
(X1 ∩ U, fR(X1 ∩ U)) and (X2 ∩ U, fR(X2 ∩ U)) are
concepts in R, and there are

σ2((X1, Y1) ⊓ (X2, Y2))
= σ2((X1 ∩X2, Y1 ∪ Y2))
= (X1 ∩X2 ∩ U, fR(X1 ∩X2 ∩ U))
= ((X1 ∩ U) ∩ (X2 ∩ U), fR(X1 ∩X2 ∩ U))
= ((X1 ∩ U) ∩ (X2 ∩ U), fR((X1 ∩ U) ∩ (X2 ∩ U)))
= ((X1 ∩ U) ∩ (X2 ∩ U),

fR(hRfR(X1 ∩ U) ∩ hRfR(X2 ∩ U)))
= ((X1 ∩ U) ∩ (X2 ∩ U),

fR(hR(fR(X1 ∩ U) ∪ fR(X2 ∩ U))))
= (X1 ∩ U, fR(X1 ∩ U)) ⊓ (X2 ∩ U, fR(X2 ∩ U))
= σ2((X1, Y1)) ⊓ σ2((X2, Y2)).
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However, σ2 is not supremum-preserving, that is, σ2 is
not a homomorphism, see the next example:
Example 4.2. Given the following relation R = (U,A, I),
R is a sub-relation of Rmax in example 3.1., where U =
{r3, r4, r5}:

R =

a b c
r3 1 0 1
r4 1 0 0
r5 0 1 1

The concept lattice of the relation is as follows:

ba, b, c
bb, c
r5

ba, c
r3

ba
r3, r4

bc
r3, r5

b
r3, r4, r5

There are the following concepts in Rmax:

(X1, Y1) = ({r1, r2}, {a, b})
(X2, Y2) = ({r1, r3}, {a, c}),

and the supremum of them is the following concept

(X1, Y1) ⊔ (X2, Y2) = ({r1, r2, r3, r4}, {a}).

Because U = {r3, r4, r5}, there are

σ2((X1, Y1)) = (∅, {a, b, c})
σ2((X2, Y2)) = ({r3}, {a, c})
σ2((X1, Y1) ⊔ (X2, Y2)) = ({r3, r4}, {a}),

and thereby

σ2((X1, Y1) ⊔ (X2, Y2))
= ({r3, r4}, {a})
̸= ({r3}, {a, c})
= (∅, {a, b, c}) ⊔ ({r3}, {a, c})
= σ2((X1, Y1)) ⊔ σ2((X2, Y2)).

Generally, there is not a surjective homomorphism from
L(Rmax) to L(R). For example, for Rmax in example 3.1.
and R in example 4.1, there does not exist a surjective
homomorphism from L(Rmax) to L(R).

B. Extracting concepts in R from concept lattice
L(Rmax)

In this section, we provide two algorithms to extract
concepts in R from the concept lattice of Rmax, which
are equivalent. One is based on extents, which means that
for any extent X in Rmax, X ∩U is an extent in R, and
the other is based on intents, which means that for any
intent Y in Rmax, if there is no any attribute depending
on Y in R, then Y is also an intent in R. By using these

two algorithms, one can easily extract all concepts in R.

Algorithm 1 (based on extents)
Input : a relation R = (U,A, I) and

the concept lattice L(Rmax)
Output : all concepts in R
Process :
1. Σ← {}
2. For all concepts (X,Y ) ∈ L(Rmax), Let [(X,Y )]R

= {(X ′, Y ′) ∈ L(Rmax)|X ′ ∩ U = X ∩ U}
3. Σ← [(X,Y )]R
4. For any [(X,Y )]R ∈ Σ, (X ∩ U, YR) ∈ L(R), where

YR =
∪

(X′,Y ′)∈[(X,Y )]R
Y ′.

Algorithm 1 is sound, as shown in the following propo-
sition:
Proposition 4.3. Given a relation R = (U,A, I), for
any concept (X,Y ) ∈ L(Rmax), let (Xi, Yi)(i =
1, . . . , k)∈L(Rmax) be all concepts such that Xi ∩ U =
X ∩ U ̸= ∅, where k is some natural number. Then
(X ∩ U,

∪k
i=1 Yi) is a concept in R.

Proof: We must show that hR(
∪k

i=1 Yi) = X ∩ U and
f (R)(X ∩ U) =

∪k
i=1 Yi.

Firstly, hR(
∪k

i=1 Yi) = X ∩ U . On the one hand, for
any tuple r ∈ X ∩ U , we have that r ∈

∩k
i=1 Xi. For

any attribute a ∈
∪k

i=1 Yi, there exists some Yj such
that a ∈ Yj . Because (Xj , Yj) is a concept in Rmax,
r(a) = 1 holds in R. Hence, r ∈ hR(

∪k
i=1 Yi), and

thereby X ∩ U ⊆ hR(
∪k

i=1 Yi). On the other hand, for
any tuple r ∈ hR(

∪k
i=1 Yi) ⊆ U , then for any attribute

a ∈
∪k

i=1 Yi, there is I(r, a) = Imax(r, a) = 1, i.e.,
r(a) = 1, and hence r ∈

∩k
i=1 Xi ∩ U = X ∩ U .

Therefore, hR(
∪k

i=1 Yi) ⊆ X ∩ U .

Secondly, f (R)(X ∩ U) =
∪k

i=1 Yi. For any a ∈∪k
i=1 Yi, there exists some Yj such that a ∈ Yj . For any

tuple r ∈ X ∩ U = Xj ∩ U , there is r ∈ Xj . Because
(Xj , Yj) is a concept in Rmax, r(a) = 1 holds in R, and
hence

∪k
i=1 Yi ⊆ f (R)(X ∩ U). Conversely, in order to

show that f (R)(X ∩U) ⊆
∪k

i=1 Yi, we assume that there
exists an attribute a ∈ f (R)(X ∩ U) but a /∈

∪k
i=1 Yi,

and hence (
∪k

i=1 Yi) ∪ {a} is an intent of some concept
in Rmax. For any tuple r ∈ U , if r has all attributes in
(
∪k

i=1 Yi)∪{a}, then r has all attributes in
∪k

i=1 Yi, and
hence r ∈

∩k
i=1 Xi, and further r ∈ (

∩k
i=1 Xi) ∩ U =

X ∩ U . It is easily inferred that X ∩ U is the largest set
of tuples having all attributes in (

∪k
i=1 Yi) ∪ {a}. Let

hRmax

((
∪k

i=1 Yi) ∪ {a}) = X = (X ∩ U) ∪X0,

where X0

∩
U = ∅, and X0 is the set of tuples having all

attributes in (
∪k

i=1 Yi) ∪ {a}. Hence, X ∩ U = X ∩ U ,
and further

∩k
i=1 Xi ⊆ X . However, by using

∪k
i=1 Yi ⊂

(
∪k

i=1 Yi)∪{a}, we have that X ⊂
∩k

i=1 Xi, which leads
to a contradiction.
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Algorithm 2 (based on intents)
Input : a relation R = (U,A, I) and

the concept lattice L(Rmax)
Output : all concepts in R
Process :
For all concepts (X,Y ) ∈ L(Rmax),

If for any attribute a ∈ A− Y,
R ̸|= Y ⇒ a,

Then (X ∩ U, Y ) is a concept in R.

Algorithm 2 is sound, as shown in the following propo-
sition:
Proposition 4.4. For any concept (X,Y ) ∈ L(Rmax),
(X ∩ U , Y ) is a concept in R if and only if for any
attribute a /∈ Y , there is R ̸|= Y ⇒ a.
Proof: (⇒) Because (X ∩ U , Y ) is a concept in R,
Y = fRhR(Y ). Assume that there exists an attribute
a /∈ Y such that R |= Y ⇒ a, where R |= Y ⇒ a
means that for any tuple in U , if r has all attributes in Y ,
then r also has the attribute a. Because

R |= Y ⇒ a
⇔ ∀r(∀a′ ∈ Y (r(a′) = 1)→ r(a) = 1)
⇔ ∀r ∈ hR(Y )(r(a) = 1)
⇔ a ∈ fRhR(Y ),

a ∈ fRhR(Y ) = Y , which leads to a contradiction.
(⇐) Assume that (X ∩ U, Y ) is not a concept in R.

Because X ∩ U is an extent of some concept in R, we
have that fR(X∩U) ̸= Y , and further Y ⊂ fR(X∩U) =
fRhR(Y ). Hence, there exists an attribute a ∈ fRhR(Y )
but a /∈ Y , and we have that

a ∈ fRhR(Y )
⇔ ∀r ∈ hR(Y )(r(a) = 1)
⇔ ∀r(∀a′ ∈ Y (r(a′) = 1)→ r(a) = 1)
⇔ R |= Y ⇒ a,

which is not consist to R ̸|= Y ⇒ a.
Actually, Algorithm 1 and Algorithm 2 are equivalent.

Proposition 4.5. Given a relation R = (U,A, I), for any
concepts (X1, Y1), (X2, Y2) ∈ L(Rmax), if X1 ⊂ X2

then X1 ∩ U = X2 ∩ U if and only if for any attribute
a ∈ Y1 − Y2, R |= Y2 ⇒ a holds.
Proof: (⇒) Assume that there exists an attribute a ∈
Y1−Y2 such that R ̸|= Y2 ⇒ a. Then there exists a tuple
r ∈ U , which has all attributes in Y2 but r(a) = 0. On
the one hand, r ∈ X2 follows directly from (X2, Y2) ∈
L(Rmax), and further r ∈ X2 ∩ U = X1 ∩ U , and hence
r ∈ X1. On the other hand, (X1, Y1) is a concept in
Rmax, so r(a) = 1. This leads to a contradiction. Hence,
for any attribute a ∈ Y1 − Y2, R |= Y ⇒ a.
(⇐) Assume that X1∩U ⊂ X2∩U . Then there exists

a tuple r ∈ X2 ∩ U but r /∈ X1 ∩ U , and hence r /∈ X1.
Because r ∈ X2 ∩U and (X2, Y2) is a concept, r has all
attributes in Y2, and further r has all attributes in Y1, and
hence r ∈ X1, which leads to a contradiction.

V. CONCLUSION

In this paper, we firstly analyzed concepts in Rmax and
the concept lattice L(Rmax), and obtained some important
results, which generally do not hold for other relations.
Secondly, for any relation R based on the schema S(A),
we discussed the structural connection between L(Rmax)
and L(R). Thirdly, we provided two equivalent algorithm
to extract concepts in R from L(Rmax). Actually, our
methods can be applied to analyze non-binary relations.

Several problems remain to be investigated. Because
real world applications often include imprecise and uncer-
tain information, one of the interesting problems is how to
capture information on uncertainty and imprecision along
with precise values in databases. The future works will
focus on these questions and connections among concept
lattices of relations, and our methods can be used to some
applications such as model and classification [22, 24].
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