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Abstract—In this paper, we investigate software fault 
detection and fault correction processes based on infinite 
server queuing model which incorporate testing effort 
functions. Some researches proposed in the literature to 
study fault detection and fault correction processes. 
However, most of them do not consider the amount of 
resources consumed during fault detection and fault 
correction processes. The consumption amount of resources 
is usually depicted by testing effort functions which can 
largely influence fault detection speed and the time to 
correct a fault detected. Therefore, we will show that new 
models incorporate testing effort functions into the fault 
detection and fault correction processes. In additional, we 
study how to use queuing models to explain the fault 
detection and fault correction processes during software 
development. Parameters are estimated and experiments on 
actual fault data sets are illustrated. The results show that 
the proposed models in this paper can estimated the number 
of initial faults better than the model without testing effort 
functions. 
 
Index Terms—software reliability, fault detection process, 
fault correction process, testing effort function, queuing 
model 
 

I.  INTRODUCTION 

Software reliability represents a user-oriented view of 
software quality, which is defined as the probability of 
fault-free software operation for a specified period of 
time in a specified environment [1]. To evaluate and 
predict software reliability, many mathematical models 
called software reliability growth models (SRGMs) have 
been proposed to help software engineers to manage 
software debugging process quantitatively [2-5]. Non-
homogeneous Poisson process (NHPP) models, as a class 
of SRGMs, are extensively used. Moreover, NHPP 
SRGMs have been quite successful tools in practical 
software reliability engineering [2]. 

These SRGMs were developed based on the common 
assumptions that faults detected are corrected 

immediately and no new faults are introduced during 
software debugging process [2-5]. In practice, it is not the 
case. Each fault is reported, diagnosed, corrected, and 
then verified [6]. There is a considerable time delay 
between fault detection and fault correction processes. 
The time to correct a fault depends on the complexity of 
the fault, the skill of the debugging team, the available 
man power, and the software development environment 
and so on. Therefore, the time delay between the fault 
detection and fault correction is not negligible. In the past, 
some research activities showed how to use queuing 
theory to explain software debugging process [7-11]. For 
example, Wallace and Coleman [8] modeled the time 
delay between fault detection and correction by the 
concept of a fault correction queuing service with 
exponentially distributed delay - a highly statistically 
significant empirical result based on Shuttle data. Dohi et 
al. [9] presented an approach to treat both finite and 
infinite software reliability models in a unified modeling 
framework. By introducing an Infinite Server Queuing 
(ISQ) model to describe the software debugging behavior, 
they showed that it can involve representative NHPP 
models with a finite, and an infinite number of faults. 
Gokhale et al. [10] proposed a single-server queue to 
evaluate the fault correction activity and showed the 
benefits of applying multi-priority queuing models to the 
software defect resolution process. In addition, Huang et 
al [11] proposed an extended infinite server queuing 
model with multiple change-points to help managers and 
developers measure software reliability. 

These queuing-based models have achieved a great 
improvement in the accuracy of assessment of software 
reliability, however, the amount of resources consumed 
were ignored during software fault detection and fault 
correction processes. The consumption amount of 
resources is the key elements for developers and 
managers during software debugging phase, which is 
described by testing effort function (TEF) curve. The 
testing effort is measured by the man-power, the number 
of CPU hours, and the number of executed test cases and 
so on [12]. In recent years, researchers have proposed 
SRGMs to describe the relationship among the testing 
time, the amount of testing effort expended, and the 
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number of software faults detected [12-16]. However, the 
influence of testing effort on fault correction process did 
not consider in these models discussed above [17]. Musa 
et al. [2] pointed out the resources that governed the pace 
of software testing were fault identification personnel, 
fault correction personnel and computer time, and the 
fault correction personnel resource had the greatest effect 
on calendar time prediction. Thus, it is reasonable to 
incorporate the amount of resources consumed into 
queuing-based models when describing fault detection 
and fault correction processes. 

In this paper, new SRGMs are derived with 
consideration of TEF during the fault detection and fault 
correction processes. ISQ models are used to describe 
software debugging process, where faults detected and 
fault correction resources are represented as arrival 
customers and infinite servers, respectively. Moreover, 
we assume that fault correction commenced with fault 
detection, i.e., the time delay between fault detection and 
fault correction is equal to fault correction time. The 
proposed models are initially formulated for the generally 
models, and then special models are given to simplify the 
forms of the general models. The new models relax the 
unrealistic assumptions of conventional SRGMs, and thus 
are capable of improving the quality of software 
reliability prediction and assessment. The remainder of 
this paper is organized as follows. Section 2 gives models 
of testing effort functions. Section 3 presents the 
formulation of ISQ with TEFs. Section 4 provides 
numerical examples to illustrate the application of the 
proposed model using a software fault data set. The 
conclusion is summarized in Section 5. 

II.   MODELS OF  TESTING EFFORT FUNCTION 

During software testing phase, it consumes much 
testing effort, such as man power, CPU time, and number 
of test cases [13]. The consumed testing effort can 
indicate how effective software faults are detected. 
Therefore, resources consumption can be modeled by 
various distributions.  

Let ( )tW be the cumulative amount of testing effort 
expenditures in the testing time interval ( ]t,0 and ( )tf be 
the consumption rate of the testing effort expenditures. 
According to the assumptions [13], we get the different 
equation [13]: 

( ) ( ) ( )[ ]tWtf
dt

tdW −×= α                     (1) 

where α  is the total amount of testing effort to be 
eventually consumed. Solving (1), we get 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−= ∫

t
dvftW

0
exp1 να                   (2) 

and ( )tW is the defined as follow [13]: 

( ) ( )∫=
t

dxxwtW
0

                               (3) 

where ( )tw is the current testing effort consumption at 
time t . By assigning different values to ( )tw , we obtain 
different TEF models. In this paper, we will briefly 

review two types of testing effort functions (TEFs): 
Exponentiated Weibull TEF and Logisitic TEF. The 
Exponentiated Weibull TEF has a great flexibility in 
accommodating the forms of the consumption rate 
function and can be used with a wide variety of possible 
expenditure patterns in actual software projects. Although 
the Weibull type curve can fit the data well under the 
general software development environment, it will have 
an apparent peak phenomenon when the shape parameter 
m>3. Therefore, Huang [15] used the testing effort 
consumption using a Logistic curve. 

A.  Exponentiated Weibull TEF 
In recent years, Bokhari and Ahmad used an 

Exponentiated Weibull curve to describe the amount of 
effort spent on testing [14]. The Exponentiated Weibull 
curve includes the Exponential, Rayleigh, Weibull, 
generalized Exponential and generalized Rayleigh (Burr 
Type X) curves. The current testing effort consumption at 
time t is 

( ) ( ) ( )[ ] 11 exp1exp
−− −−−=

θ
ββθαβ mmm tttmtw      (4) 

whereα is the total amount of testing effort expenditures; 
β is the scale parameter, m andθ are shape parameters. 
The cumulative testing effort consumed in ( ]t,0 is 

( ) ( ) ( )[ ]θβα mt
tdxxwtW −−== ∫ exp1

0
            (5) 

We have the following special cases: 
For 1=θ && 1=m , there is an Exponential TEF, and the 
current testing effort consumption at time t is 

( ) ( )ttwex βαβ −= exp                            (6) 
The cumulative testing effort consumed in ( ]t,0 is 

( ) ( )[ ]ttWex βα −−= exp1                         (7) 
For 1=θ && 2=m , there is a Rayleigh TEF, and the 
current testing effort consumption at time t is  

( ) ( )2exp2 tttwr βαβ −=                         (8) 
The cumulative testing effort consumed in ( ]t,0 is 

( ) ( )[ ]2exp1 ttWr βα −−=                        (9) 
For 1=θ , there is a Weibull TEF, and the current testing 
effort consumption at time t is 

( ) ( )mm
we tmttw βαβ −= − exp1                    (10) 

The cumulative testing effort consumed in ( ]t,0 is 

( ) ( )[ ]m
we ttW βα −−= exp1                       (11) 

For 1=m , there is a generalized Exponential TEF, and 
the current testing effort consumption at time t is 

( ) ( ) ( )( ) 1exp1exp −−−−= θββαβθ tttwge          (12) 

The cumulative testing effort consumed in ( ]t,0 is 

( ) ( )[ ]θβα ttWge −−= exp1                        (13) 
For 2=m , there is a generalized Rayleigh TEF, and the 
current testing effort consumption at time t is 

( ) ( ) ( )[ ] 122 exp1exp2
−

−−−=
θ

ββαβθ ttttwgr          (14) 

The cumulative testing effort consumed in ( ]t,0 is 
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( ) ( )[ ]θβα 2exp1 ttWgr −−=                        (15) 

B. Logistic TEF 
Huang et al. [15] found that although a Weibull-type 

curve can well fit the data often used in the field of 
software reliability modeling, it display a “peak” 
phenomenon when the shape parameter 3>m . Hence, 
they modeled the testing effort consumption using a 
Logistic curve [15]. Logistic TEF was originally 
proposed by Parr [16] and it exhibits similar behavior to 
the Rayleigh curve except for the initial stage of the 
project. The Logistic current testing effort consumed at 
time t  is given by 

( ) ( )
( )[ ]2exp1

exp
tA
tAtwl

β
ββα

−+
−=                    (16) 

whereα is the total amount of testing effort expenditures, 
β is the consumption rate of testing effort expenditures, 
and A is a constant. The cumulative testing effort 
consumption in ( ]t,0 is 

( ) ( )tA
tWl β

α
−+

=
exp1

                    (17) 

C.  Comparisons among Different TEF Models 
To compare the performance of different TEFs, the 

actual software fault data set was used to these TEFs. The 
data set, reported by Musa et al. [2], is from the System 
T1 of the Rome Air Development Center (RADC) Project, 
and shown in TableⅠ. The compassion criteria for 
evaluation are described as following [15, 18]: 
(1) ( ) ( )iiii edictedActualPEroredictionEr PrPr −=  

(2) ∑
=

=
n

i

i

n
PE

Bias
1

 

(3) 

( )

1
1

2

−

−
=
∑

=

n

BiasPE
Variation

n

i
i

 

(4) 
( )

22

Pr

VariationBias

RMSPEroredictionErSquare Root Mean 

+=
 

The comparisons among Logistic TEF 、 Exponential 
Weibull TEF and Generalized Exponential TEF are 
illustrated in TableⅡ and Figs.1-2. Figs.1-2 illustrate the 
comparisons between the observed actual software fault 
data and the data estimated by the Exponential Weibull 
TEF and Logistic TEF. The computed the PEi, Bias, 
Variation, and RMSPE based on the actual data set are 
shown in TableⅡ. Figs 1-2 and Table Ⅱ show that (1) 
the Logistic TEF and Exponential Weibull TEF yield a 
batter fit for the data set chosen; (2) the Logistic TEF and 
Exponential Weibull TEF are adopted for further analysis. 
 
 
 
 

TABLE I.   
SYSTEM T1 OF THE ROME AIR DEVELOPMENT CENTER PROJECT 

Weeks CPU 
hour 

Identified 
Faults 

Corrected 
faults 

1 0.00917 2 1 
2 0.010 0 1 
3 0.003 0 0 
4 0.023 1 1 
5 0.041 1 1 
6 0.004 2 0 
7 0.025 1 1 
8 0.302 9 2 
9 0.973 13 6 
10 0.020 2 4 
11 0.450 11 1 
12 0.250 2 14 
13 0.94 11 5 
14 1.34 14 19 
15 3.32 18 19 
16 3.56 12 10 
17 2.66 12 12 
18 3.77 15 20 
19 3.40 6 12 
20 2.40 3 2 
21 1.80 1 5 

TABLE II.   
COMPARISON RESULTS FOR DIFFERENT TEF BASED ON SYSTEM T1 

TEF PE21 Bias Variation RMSPE 
Logistic 0.2035 -0.0746 0.4354 0.4417 

Exponential 
Weibull 0.4666 -0.0431 0.4553 0.4573 

Generalized 
Exponential 0.6431 0.0800 0.5229 0.5290 

 

 
Figure 1. Observed/estimated current testing effort by  

Exponentiated Weibull TEF vs. time 
 

 
Figure 2. Observed/estimated current testing effort by  

Logistic TEF vs.time 
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Ⅲ.   PROPOSED MODELS FRAMEWORK 

This section studies how to integrate testing effort into 
the fault detection and fault correction processes. The 
formulation of the proposed model is based on the 
following assumptions [2-5, 7, 11, 15]: 
(1) The fault detection process follows a NHPP. 
(2) The software is subject to faults at random times, 

caused by the manifestation of remaining faults in 
the system. 

(3) Testing effort expenditures are described by an EW 
curve or a Logistic curve. 

(4) The mean number of faults detected in the time 
interval ( ]ttt Δ+, by the current testing effort is 
proportional to the mean number of remaining faults 
in the system. 

(5) The fault correction time is non-negligible so that the 
number of corrected faults lags behind total number 
of detected faults. 

(6) The proposed queuing model for describing fault 
detection and correction processes is an ISQ with 
NHPP arrival and general service time distribution. 

(7) No new faults are introduced, when faults are 
corrected. 

Based on assumptions (1)-(3), we have 
( )

( ) ( ) ( )[ ]tmatb
twdt

tdm
d

d −×=× 1               (18) 

where ( )tmd is the expected number of faults detected by 
time t , a is the expected total number of faults, ( )tb is the 
fault detection rate per unit detection effort, and ( )tw  is 
the current effort expenditure at time t . Furthermore we 
have 

( ) ( ) ( ) ( ) ( )

dt

dsswsbad

dt

dsswsbtmd
tt

d ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∫∫ 00

expexp
   (19) 

Solving Eq. (19) under boundary condition ( ) 00 =dm , we 
get 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−= ∫

t
d dsswsbatm

0
exp1              (20) 

 ( ) bsb = , ( ) ( ) ( )[ ] 11 exp1exp
−− −−−=

θ
ββθαβ mmm

ew tttmtw  

( ) ( ) ( )[ ]( ) ( )[ ]( )tbWabWtbWatm ewewewd
*exp10exp1 −−=+−−=  (21) 

 ( ) bsb = , ( ) ( )
( )[ ]2exp1

exp
tA
tAtwl

β
ββα

−+
−=  

( ) ( ) ( )[ ]( ) ( )[ ]( )tbWabWtbWatm llld
*exp10exp1 −−=+−−=    (22) 

Let ( )tNd , ( )tN c be the cumulative number of faults 
detected and faults corrected by time t , respectively. We 
assume that there are n  faults detected and k  faults 
completely corrected in ( ]t,0 . We have 

( ) ( ){ }
( ) ( ){ } ( ){ }

( ) ( ) ( )( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( ) ( )( )[ ] ( ) ( )( )[ ]
( )!

1exp1
!

exp

!
exp1

!!
!

Pr|Pr
,Pr

kn
tptmtptm

k
tptmtptm

n
tmtmtptp

knk
n

ntNntNktN
ntNktN

d
kn

dd
k

d

d
n

dknk

ddc

dc

−
−−−×−=

−×−
−

=

====
==

−

− (23) 

So, we obtain 

( ){ } ( ) ( )[ ] ( ) ( )[ ]
!

exp
Pr

k
tptmtptm

ktN d
k

d
c

−
==           (24) 

The mean value function of ( )tNc is given by 
( )[ ] ( ) ( ) ( )tptmtmtNE dcc ×==                     (25) 

where ( )tmc  is the expected number of faults corrected 
by time t  and ( )tp  is the probability that a fault detected 
will be completely corrected in ( ]t,0 . Let 1T , 2T denote 
fault detection time and fault correction time in ( ]t,0 , 
respectively. Moreover, let ( )•G is the cumulative 
distribution function of the service time. We obtain 

( ) { }

{ } { }

( ) { }∫
∫

∫

=−=

=−≤=

=∩−≤=

t

t

t

dTtG

dTtTP

dTtTPtp

0
1

0
12

0
12

Pr

Pr

τττ

τττ

τττ

               (26) 

The probability that a fault is detected at timeτ is 

{ } ( )
( )tm

TP
d

d τλτ ==1                            (27) 

Substituting (26) and (27) into (25), we can get  

( ) ( ) ( )∫ −=
t

dc dtGtm
0

ττλτ                      (28a) 

                  ( ) ( )∫ −=
t

d dmtg
0

τττ                     (28b) 

where ( )•g is the probability density function of the 
service time. 

It is well known that human queue service time can be 
approximated with an exponential distribution [7]. 
Moreover, Musa et al. [2]  pointed out that a real software 
fault data to illustrate that the exponential distribution is a 
reasonable model for the distributions of fault correction 
times. Hence, we assume that the service time is 
exponential distribution [11]. That is 

( ) ( )ttG η−−= exp1                      (29a) 
( ) ( )ttg ηη −= exp                        (29b) 

where η is the service rate. That is to say, η is fault 
correction rate, and is a constant. In reality, fault 
correction rate strongly depends on the skill of debuggers 
or programmers, the amount of faults detected, and the 
number of correction resource consumed and so on. 
Particularly, the influence of resource on fault correction 
should be considered in correction process. Thus, we treat 
the fault correction rate as the time-dependent behavior of 
testing effort expenditures to interpret. So, the service 
rate can be obtained 
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( ) ( )twt ηη =                               (30) 
where ( )tη  is time-dependent fault correction rate 
function per unit effort at time t . Substituting (28b) and 
(21), and (22), we can obtain respectively 

( ) ( ) ( ) ( ) ( )( )∫ +−=
t

ewewewdc dxxWtWxwxmtm
0

exp ηηη (31) 

( ) ( ) ( ) ( ) ( )( )∫ +−=
t

llldc dxxWtWxwxmtm
0

exp ηηη (32) 

IV.   NUMERICAL EXAMPLE 

A. Data Description and Comparison Criteria 
The real data set is from the System T1 of the RADC 

Project in [2] and shown in TableⅠ. System T1 was used 
for a real time command and control application. The size 
of software was about 21700 object instructions. It took 
21 weeks’ testing, 25.3 CPU hours, 9 programmers, and 
136 software faults corrected.  

To give quantitative comparisons, some criteria were 
used to judge the performance of the proposed model. 
The comparison criteria are the MSE and R-squared 
which are defined as follows [2]. 
(1) Mean Squared Errors (MSE) 

( )( )∑
=

−=
n

i
ii tmm

n
MSE

1

2ˆ1                  (33) 

(2) R-squared 

( )( )

( )∑

∑

=

=

−

−
=− n

i
i

n

i
i

mm

mtm
squaredR

1

2

1

2ˆ

 ,  ∑
=

=
n

i
im

n
m

1

1    (34) 

where im is the total number of fault detected by it , and 
( )itm̂  is the estimated cumulative number of faults by 

time it obtained from the fitted mean value function. The 
lower MSE value means the better goodness-of-fit of the 
mode. The R-squared can take on any value between 0 
and 1, with a value closer to 1 indicating a better fit. 

B.  Performance Analysis 
This section evaluates the performance of proposed 

models and several existing models. First of all, 
parameters of selected models are estimated and the 
related mean value functions are obtained. Secondly, all 
the selected models are compared with each other based 
on objective criteria. In the past, fault detection and 
correction resources are not considered as separate 
resources, and the data sets of effort are not treated as 
separate. So, we assumed the detection effort and the 
correction effort were called testing effort. According to 
the comparisons among various TEFs are illustrated in 
section 2, the Exponentiated Weibull TEF and Logistic 
TEF are chosen to fit the actual software fault data set 
curve. The parameters θβα ,,, m and A in TEFs can be 
estimated by least squares estimation. The estimators 
for θβα ˆ,ˆ,ˆ,ˆ m and Â are investigated for testing 

effort iw spent at testing time ( )21,,2,1=iti  and are 
listed in Table Ⅲ.  

TABLE III.   
THE ESTIMATED PARAMETERS OF EW TEF AND LOGISTIC TEF 

TEF Estimated Parameters 

Exponentiated Weibull 
TEF[14] 

â =26.83, β̂ =6.165e-9, θ̂  =0.95, 

m̂ =6.5508 

Logistic TEF[13] â =29.1065, β̂ =0.493515, Â =4624.89

Using the estimated parameters θβα ˆ,ˆ,ˆ,ˆ m and Â , the 
other parameters a , b and η can be estimated by the 
method of least squares estimation. Table Ⅳ compares 
the performance of various SRGMs for the actual fault 
data set investigated in this paper. Due to the limitations 
of paper size, only 2 models [13, 19] are used for detailed 
discussions. In [13], Huang et al. proposed a SRGM 
incorporated the Logistic TEF. However, the time to 
correct a fault is negligible. In [19], Lo developed a 
general framework of the fault detection and fault 
correction processes, but the amount of resources 
consumed was ignored during these two processes. These 
have better performance as shown in Table Ⅳ. As shown 
in Table Ⅳ, the proposed models in this paper provide 
the lower value of MSE and the highest value of R-square 
than other models. Figs.3-4 plotted the actual fault data 
and the estimated mean value function up to time t . Fig.3 
show that the Exponentiated Weibull TEF incorporates 
into ISQ SRGM. Fig.4 show that the Logistic TEF 
incorporates into ISQ SRGM. From Figs. 3-4, we can see 
that these models fit the observed data better, and predict 
the future behavior well for this actual fault data set. Thus, 
from these simulation/comparison results, the proposed 
model performs appreciably better than the others.  

V.   CONCLUSION 

Many resources are consumed by a software 
development project. Most papers assumed that the 
consumption rate of testing resource expenditures during 
the testing and debugging phase is a constant or even do 
not consider such testing effort. In reality, software 
reliability models should be developed by incorporating 
different testing-effort functions. In this paper, we have 
shown how to apply infinite server queuing models with 
TEFs to model the fault detection and correction 
processes. New SRGMs with an Exponentiated Weibull 
TEF and a Logistic TEF are proposed that can consider 
the influence of resources on software debugging phase, 
and enhance the prediction and assessment of software 
reliability. Experiments are performed based on real 
software fault data set. Comparing with some selected 
SRGMs, experimental results show that the proposed 
models give a better fit to the observed data. 
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TABLE IV.   
 COMPARISON RESULTS OF DIFFERENT SRGMS FOR DATA SET 

Models Estimated 
Parameters MSE R-square 

( )tmd  in Equation 
(21) 

( )tmc  in Equation 
(31) 

 

â =139.6 

b̂ =0.1297
η̂ =0.8794

MSEd= 
42.94 

MSEc= 
60.4762 

R-squared= 
0.9826 

R-squarec= 
0.9745 

( )tmd  in Equation 
(22) 

( )tmc  in Equation 
(32) 

â =141.3 

b̂ =0.1293
η̂ =0.8628

MSEd= 
32.17 

MSEc= 
58.6667 

R-squared= 
0.9869 

R-squarec= 
0.9753 

Huang  et al.[13] 
â =138.026

b̂ =0.1451
MSE= 
62.41 

R-square= 
0.9758 

Lo  [19] 

â =133.119

b̂ =0.1597
ĉ =0.7825

MSE= 
58.70 

R-square= 
0.9812 

 

 
Figure 3. Observed/estimated cumulative number of faults using 

the Exponentiated Weibull TEF 
 

 
Figure 4. Observed/estimated cumulative number of faults using  

the Logistic TEF 
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