
Software Reliability Analysis using Queuing-
based Model with Testing Effort

Nan Zhang

Department of Computer Science and Technology, Harbin Institution of Technology, Harbin, China
Email: zn_ftcl@hit.edu.cn

Gang Cui and Hongwei Liu

Department of Computer Science and Technology, Harbin Institution of Technology, Harbin, China
Email: cg@ftcl.hit.edu.cn

Abstract—In this paper, we investigate software fault
detection and fault correction processes based on infinite
server queuing model which incorporate testing effort
functions. Some researches proposed in the literature to
study fault detection and fault correction processes.
However, most of them do not consider the amount of
resources consumed during fault detection and fault
correction processes. The consumption amount of resources
is usually depicted by testing effort functions which can
largely influence fault detection speed and the time to
correct a fault detected. Therefore, we will show that new
models incorporate testing effort functions into the fault
detection and fault correction processes. In additional, we
study how to use queuing models to explain the fault
detection and fault correction processes during software
development. Parameters are estimated and experiments on
actual fault data sets are illustrated. The results show that
the proposed models in this paper can estimated the number
of initial faults better than the model without testing effort
functions.

Index Terms—software reliability, fault detection process,
fault correction process, testing effort function, queuing
model

I. INTRODUCTION

Software reliability represents a user-oriented view of
software quality, which is defined as the probability of
fault-free software operation for a specified period of
time in a specified environment [1]. To evaluate and
predict software reliability, many mathematical models
called software reliability growth models (SRGMs) have
been proposed to help software engineers to manage
software debugging process quantitatively [2-5]. Non-
homogeneous Poisson process (NHPP) models, as a class
of SRGMs, are extensively used. Moreover, NHPP
SRGMs have been quite successful tools in practical
software reliability engineering [2].

These SRGMs were developed based on the common
assumptions that faults detected are corrected

immediately and no new faults are introduced during
software debugging process [2-5]. In practice, it is not the
case. Each fault is reported, diagnosed, corrected, and
then verified [6]. There is a considerable time delay
between fault detection and fault correction processes.
The time to correct a fault depends on the complexity of
the fault, the skill of the debugging team, the available
man power, and the software development environment
and so on. Therefore, the time delay between the fault
detection and fault correction is not negligible. In the past,
some research activities showed how to use queuing
theory to explain software debugging process [7-11]. For
example, Wallace and Coleman [8] modeled the time
delay between fault detection and correction by the
concept of a fault correction queuing service with
exponentially distributed delay - a highly statistically
significant empirical result based on Shuttle data. Dohi et
al. [9] presented an approach to treat both finite and
infinite software reliability models in a unified modeling
framework. By introducing an Infinite Server Queuing
(ISQ) model to describe the software debugging behavior,
they showed that it can involve representative NHPP
models with a finite, and an infinite number of faults.
Gokhale et al. [10] proposed a single-server queue to
evaluate the fault correction activity and showed the
benefits of applying multi-priority queuing models to the
software defect resolution process. In addition, Huang et
al [11] proposed an extended infinite server queuing
model with multiple change-points to help managers and
developers measure software reliability.

These queuing-based models have achieved a great
improvement in the accuracy of assessment of software
reliability, however, the amount of resources consumed
were ignored during software fault detection and fault
correction processes. The consumption amount of
resources is the key elements for developers and
managers during software debugging phase, which is
described by testing effort function (TEF) curve. The
testing effort is measured by the man-power, the number
of CPU hours, and the number of executed test cases and
so on [12]. In recent years, researchers have proposed
SRGMs to describe the relationship among the testing
time, the amount of testing effort expended, and the

This work is supported by the National High Technology Research

and Development Plan of China under Grant No.2008AA01A201
Corresponding author: Nan Zhang

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1301

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1301-1307

number of software faults detected [12-16]. However, the
influence of testing effort on fault correction process did
not consider in these models discussed above [17]. Musa
et al. [2] pointed out the resources that governed the pace
of software testing were fault identification personnel,
fault correction personnel and computer time, and the
fault correction personnel resource had the greatest effect
on calendar time prediction. Thus, it is reasonable to
incorporate the amount of resources consumed into
queuing-based models when describing fault detection
and fault correction processes.

In this paper, new SRGMs are derived with
consideration of TEF during the fault detection and fault
correction processes. ISQ models are used to describe
software debugging process, where faults detected and
fault correction resources are represented as arrival
customers and infinite servers, respectively. Moreover,
we assume that fault correction commenced with fault
detection, i.e., the time delay between fault detection and
fault correction is equal to fault correction time. The
proposed models are initially formulated for the generally
models, and then special models are given to simplify the
forms of the general models. The new models relax the
unrealistic assumptions of conventional SRGMs, and thus
are capable of improving the quality of software
reliability prediction and assessment. The remainder of
this paper is organized as follows. Section 2 gives models
of testing effort functions. Section 3 presents the
formulation of ISQ with TEFs. Section 4 provides
numerical examples to illustrate the application of the
proposed model using a software fault data set. The
conclusion is summarized in Section 5.

II. MODELS OF TESTING EFFORT FUNCTION

During software testing phase, it consumes much
testing effort, such as man power, CPU time, and number
of test cases [13]. The consumed testing effort can
indicate how effective software faults are detected.
Therefore, resources consumption can be modeled by
various distributions.

Let ()tW be the cumulative amount of testing effort
expenditures in the testing time interval (]t,0 and ()tf be
the consumption rate of the testing effort expenditures.
According to the assumptions [13], we get the different
equation [13]:

() () ()[]tWtf
dt

tdW −×= α (1)

where α is the total amount of testing effort to be
eventually consumed. Solving (1), we get

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−= ∫

t
dvftW

0
exp1 να (2)

and ()tW is the defined as follow [13]:

() ()∫=
t

dxxwtW
0

 (3)

where ()tw is the current testing effort consumption at
time t . By assigning different values to ()tw , we obtain
different TEF models. In this paper, we will briefly

review two types of testing effort functions (TEFs):
Exponentiated Weibull TEF and Logisitic TEF. The
Exponentiated Weibull TEF has a great flexibility in
accommodating the forms of the consumption rate
function and can be used with a wide variety of possible
expenditure patterns in actual software projects. Although
the Weibull type curve can fit the data well under the
general software development environment, it will have
an apparent peak phenomenon when the shape parameter
m>3. Therefore, Huang [15] used the testing effort
consumption using a Logistic curve.

A. Exponentiated Weibull TEF
In recent years, Bokhari and Ahmad used an

Exponentiated Weibull curve to describe the amount of
effort spent on testing [14]. The Exponentiated Weibull
curve includes the Exponential, Rayleigh, Weibull,
generalized Exponential and generalized Rayleigh (Burr
Type X) curves. The current testing effort consumption at
time t is

() () ()[] 11 exp1exp
−− −−−=

θ
ββθαβ mmm tttmtw (4)

whereα is the total amount of testing effort expenditures;
β is the scale parameter, m andθ are shape parameters.
The cumulative testing effort consumed in (]t,0 is

() () ()[]θβα mt
tdxxwtW −−== ∫ exp1

0
 (5)

We have the following special cases:
For 1=θ && 1=m , there is an Exponential TEF, and the
current testing effort consumption at time t is

() ()ttwex βαβ −= exp (6)
The cumulative testing effort consumed in (]t,0 is

() ()[]ttWex βα −−= exp1 (7)
For 1=θ && 2=m , there is a Rayleigh TEF, and the
current testing effort consumption at time t is

() ()2exp2 tttwr βαβ −= (8)
The cumulative testing effort consumed in (]t,0 is

() ()[]2exp1 ttWr βα −−= (9)
For 1=θ , there is a Weibull TEF, and the current testing
effort consumption at time t is

() ()mm
we tmttw βαβ −= − exp1 (10)

The cumulative testing effort consumed in (]t,0 is

() ()[]m
we ttW βα −−= exp1 (11)

For 1=m , there is a generalized Exponential TEF, and
the current testing effort consumption at time t is

() () ()() 1exp1exp −−−−= θββαβθ tttwge (12)

The cumulative testing effort consumed in (]t,0 is

() ()[]θβα ttWge −−= exp1 (13)
For 2=m , there is a generalized Rayleigh TEF, and the
current testing effort consumption at time t is

() () ()[] 122 exp1exp2
−

−−−=
θ

ββαβθ ttttwgr (14)

The cumulative testing effort consumed in (]t,0 is

1302 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

() ()[]θβα 2exp1 ttWgr −−= (15)

B. Logistic TEF
Huang et al. [15] found that although a Weibull-type

curve can well fit the data often used in the field of
software reliability modeling, it display a “peak”
phenomenon when the shape parameter 3>m . Hence,
they modeled the testing effort consumption using a
Logistic curve [15]. Logistic TEF was originally
proposed by Parr [16] and it exhibits similar behavior to
the Rayleigh curve except for the initial stage of the
project. The Logistic current testing effort consumed at
time t is given by

() ()
()[]2exp1

exp
tA
tAtwl

β
ββα

−+
−= (16)

whereα is the total amount of testing effort expenditures,
β is the consumption rate of testing effort expenditures,
and A is a constant. The cumulative testing effort
consumption in (]t,0 is

() ()tA
tWl β

α
−+

=
exp1

 (17)

C. Comparisons among Different TEF Models
To compare the performance of different TEFs, the

actual software fault data set was used to these TEFs. The
data set, reported by Musa et al. [2], is from the System
T1 of the Rome Air Development Center (RADC) Project,
and shown in TableⅠ. The compassion criteria for
evaluation are described as following [15, 18]:
(1) () ()iiii edictedActualPEroredictionEr PrPr −=

(2) ∑
=

=
n

i

i

n
PE

Bias
1

(3)

()

1
1

2

−

−
=
∑

=

n

BiasPE
Variation

n

i
i

(4)
()

22

Pr

VariationBias

RMSPEroredictionErSquare Root Mean

+=

The comparisons among Logistic TEF 、 Exponential
Weibull TEF and Generalized Exponential TEF are
illustrated in TableⅡ and Figs.1-2. Figs.1-2 illustrate the
comparisons between the observed actual software fault
data and the data estimated by the Exponential Weibull
TEF and Logistic TEF. The computed the PEi, Bias,
Variation, and RMSPE based on the actual data set are
shown in TableⅡ. Figs 1-2 and Table Ⅱ show that (1)
the Logistic TEF and Exponential Weibull TEF yield a
batter fit for the data set chosen; (2) the Logistic TEF and
Exponential Weibull TEF are adopted for further analysis.

TABLE I.
SYSTEM T1 OF THE ROME AIR DEVELOPMENT CENTER PROJECT

Weeks CPU
hour

Identified
Faults

Corrected
faults

1 0.00917 2 1
2 0.010 0 1
3 0.003 0 0
4 0.023 1 1
5 0.041 1 1
6 0.004 2 0
7 0.025 1 1
8 0.302 9 2
9 0.973 13 6
10 0.020 2 4
11 0.450 11 1
12 0.250 2 14
13 0.94 11 5
14 1.34 14 19
15 3.32 18 19
16 3.56 12 10
17 2.66 12 12
18 3.77 15 20
19 3.40 6 12
20 2.40 3 2
21 1.80 1 5

TABLE II.
COMPARISON RESULTS FOR DIFFERENT TEF BASED ON SYSTEM T1

TEF PE21 Bias Variation RMSPE
Logistic 0.2035 -0.0746 0.4354 0.4417

Exponential
Weibull 0.4666 -0.0431 0.4553 0.4573

Generalized
Exponential 0.6431 0.0800 0.5229 0.5290

Figure 1. Observed/estimated current testing effort by

Exponentiated Weibull TEF vs. time

Figure 2. Observed/estimated current testing effort by

Logistic TEF vs.time

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1303

© 2013 ACADEMY PUBLISHER

Ⅲ. PROPOSED MODELS FRAMEWORK

This section studies how to integrate testing effort into
the fault detection and fault correction processes. The
formulation of the proposed model is based on the
following assumptions [2-5, 7, 11, 15]:
(1) The fault detection process follows a NHPP.
(2) The software is subject to faults at random times,

caused by the manifestation of remaining faults in
the system.

(3) Testing effort expenditures are described by an EW
curve or a Logistic curve.

(4) The mean number of faults detected in the time
interval (]ttt Δ+, by the current testing effort is
proportional to the mean number of remaining faults
in the system.

(5) The fault correction time is non-negligible so that the
number of corrected faults lags behind total number
of detected faults.

(6) The proposed queuing model for describing fault
detection and correction processes is an ISQ with
NHPP arrival and general service time distribution.

(7) No new faults are introduced, when faults are
corrected.

Based on assumptions (1)-(3), we have
()

() () ()[]tmatb
twdt

tdm
d

d −×=× 1 (18)

where ()tmd is the expected number of faults detected by
time t , a is the expected total number of faults, ()tb is the
fault detection rate per unit detection effort, and ()tw is
the current effort expenditure at time t . Furthermore we
have

() () () () ()

dt

dsswsbad

dt

dsswsbtmd
tt

d ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∫∫ 00

expexp
 (19)

Solving Eq. (19) under boundary condition () 00 =dm , we
get

() () () ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−= ∫

t
d dsswsbatm

0
exp1 (20)

 () bsb = , () () ()[] 11 exp1exp
−− −−−=

θ
ββθαβ mmm

ew tttmtw

() () ()[]() ()[]()tbWabWtbWatm ewewewd
*exp10exp1 −−=+−−= (21)

 () bsb = , () ()
()[]2exp1

exp
tA
tAtwl

β
ββα

−+
−=

() () ()[]() ()[]()tbWabWtbWatm llld
*exp10exp1 −−=+−−= (22)

Let ()tNd , ()tN c be the cumulative number of faults
detected and faults corrected by time t , respectively. We
assume that there are n faults detected and k faults
completely corrected in (]t,0 . We have

() (){ }
() (){ } (){ }

() () ()() ()[] ()[]

() ()[] () ()[] () ()()[] () ()()[]
()!

1exp1
!

exp

!
exp1

!!
!

Pr|Pr
,Pr

kn
tptmtptm

k
tptmtptm

n
tmtmtptp

knk
n

ntNntNktN
ntNktN

d
kn

dd
k

d

d
n

dknk

ddc

dc

−
−−−×−=

−×−
−

=

====
==

−

− (23)

So, we obtain

(){ } () ()[] () ()[]
!

exp
Pr

k
tptmtptm

ktN d
k

d
c

−
== (24)

The mean value function of ()tNc is given by
()[] () () ()tptmtmtNE dcc ×== (25)

where ()tmc is the expected number of faults corrected
by time t and ()tp is the probability that a fault detected
will be completely corrected in (]t,0 . Let 1T , 2T denote
fault detection time and fault correction time in (]t,0 ,
respectively. Moreover, let ()•G is the cumulative
distribution function of the service time. We obtain

() { }

{ } { }

() { }∫
∫

∫

=−=

=−≤=

=∩−≤=

t

t

t

dTtG

dTtTP

dTtTPtp

0
1

0
12

0
12

Pr

Pr

τττ

τττ

τττ

 (26)

The probability that a fault is detected at timeτ is

{ } ()
()tm

TP
d

d τλτ ==1 (27)

Substituting (26) and (27) into (25), we can get

() () ()∫ −=
t

dc dtGtm
0

ττλτ (28a)

 () ()∫ −=
t

d dmtg
0

τττ (28b)

where ()•g is the probability density function of the
service time.

It is well known that human queue service time can be
approximated with an exponential distribution [7].
Moreover, Musa et al. [2] pointed out that a real software
fault data to illustrate that the exponential distribution is a
reasonable model for the distributions of fault correction
times. Hence, we assume that the service time is
exponential distribution [11]. That is

() ()ttG η−−= exp1 (29a)
() ()ttg ηη −= exp (29b)

where η is the service rate. That is to say, η is fault
correction rate, and is a constant. In reality, fault
correction rate strongly depends on the skill of debuggers
or programmers, the amount of faults detected, and the
number of correction resource consumed and so on.
Particularly, the influence of resource on fault correction
should be considered in correction process. Thus, we treat
the fault correction rate as the time-dependent behavior of
testing effort expenditures to interpret. So, the service
rate can be obtained

1304 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

() ()twt ηη = (30)
where ()tη is time-dependent fault correction rate
function per unit effort at time t . Substituting (28b) and
(21), and (22), we can obtain respectively

() () () () ()()∫ +−=
t

ewewewdc dxxWtWxwxmtm
0

exp ηηη (31)

() () () () ()()∫ +−=
t

llldc dxxWtWxwxmtm
0

exp ηηη (32)

IV. NUMERICAL EXAMPLE

A. Data Description and Comparison Criteria
The real data set is from the System T1 of the RADC

Project in [2] and shown in TableⅠ. System T1 was used
for a real time command and control application. The size
of software was about 21700 object instructions. It took
21 weeks’ testing, 25.3 CPU hours, 9 programmers, and
136 software faults corrected.

To give quantitative comparisons, some criteria were
used to judge the performance of the proposed model.
The comparison criteria are the MSE and R-squared
which are defined as follows [2].
(1) Mean Squared Errors (MSE)

()()∑
=

−=
n

i
ii tmm

n
MSE

1

2ˆ1 (33)

(2) R-squared

()()

()∑

∑

=

=

−

−
=− n

i
i

n

i
i

mm

mtm
squaredR

1

2

1

2ˆ

 , ∑
=

=
n

i
im

n
m

1

1 (34)

where im is the total number of fault detected by it , and
()itm̂ is the estimated cumulative number of faults by

time it obtained from the fitted mean value function. The
lower MSE value means the better goodness-of-fit of the
mode. The R-squared can take on any value between 0
and 1, with a value closer to 1 indicating a better fit.

B. Performance Analysis
This section evaluates the performance of proposed

models and several existing models. First of all,
parameters of selected models are estimated and the
related mean value functions are obtained. Secondly, all
the selected models are compared with each other based
on objective criteria. In the past, fault detection and
correction resources are not considered as separate
resources, and the data sets of effort are not treated as
separate. So, we assumed the detection effort and the
correction effort were called testing effort. According to
the comparisons among various TEFs are illustrated in
section 2, the Exponentiated Weibull TEF and Logistic
TEF are chosen to fit the actual software fault data set
curve. The parameters θβα ,,, m and A in TEFs can be
estimated by least squares estimation. The estimators
for θβα ˆ,ˆ,ˆ,ˆ m and Â are investigated for testing

effort iw spent at testing time ()21,,2,1=iti and are
listed in Table Ⅲ.

TABLE III.
THE ESTIMATED PARAMETERS OF EW TEF AND LOGISTIC TEF

TEF Estimated Parameters

Exponentiated Weibull
TEF[14]

â =26.83, β̂ =6.165e-9, θ̂ =0.95,

m̂ =6.5508

Logistic TEF[13] â =29.1065, β̂ =0.493515, Â =4624.89

Using the estimated parameters θβα ˆ,ˆ,ˆ,ˆ m and Â , the
other parameters a , b and η can be estimated by the
method of least squares estimation. Table Ⅳ compares
the performance of various SRGMs for the actual fault
data set investigated in this paper. Due to the limitations
of paper size, only 2 models [13, 19] are used for detailed
discussions. In [13], Huang et al. proposed a SRGM
incorporated the Logistic TEF. However, the time to
correct a fault is negligible. In [19], Lo developed a
general framework of the fault detection and fault
correction processes, but the amount of resources
consumed was ignored during these two processes. These
have better performance as shown in Table Ⅳ. As shown
in Table Ⅳ, the proposed models in this paper provide
the lower value of MSE and the highest value of R-square
than other models. Figs.3-4 plotted the actual fault data
and the estimated mean value function up to time t . Fig.3
show that the Exponentiated Weibull TEF incorporates
into ISQ SRGM. Fig.4 show that the Logistic TEF
incorporates into ISQ SRGM. From Figs. 3-4, we can see
that these models fit the observed data better, and predict
the future behavior well for this actual fault data set. Thus,
from these simulation/comparison results, the proposed
model performs appreciably better than the others.

V. CONCLUSION

Many resources are consumed by a software
development project. Most papers assumed that the
consumption rate of testing resource expenditures during
the testing and debugging phase is a constant or even do
not consider such testing effort. In reality, software
reliability models should be developed by incorporating
different testing-effort functions. In this paper, we have
shown how to apply infinite server queuing models with
TEFs to model the fault detection and correction
processes. New SRGMs with an Exponentiated Weibull
TEF and a Logistic TEF are proposed that can consider
the influence of resources on software debugging phase,
and enhance the prediction and assessment of software
reliability. Experiments are performed based on real
software fault data set. Comparing with some selected
SRGMs, experimental results show that the proposed
models give a better fit to the observed data.

ACKNOWLEDGMENT

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1305

© 2013 ACADEMY PUBLISHER

This work is supported by and the National high Tech
Research and Development Plan of China under Grant
No.2008AA01A201

TABLE IV.
 COMPARISON RESULTS OF DIFFERENT SRGMS FOR DATA SET

Models Estimated
Parameters MSE R-square

()tmd in Equation
(21)

()tmc in Equation
(31)

â =139.6

b̂ =0.1297
η̂ =0.8794

MSEd=
42.94

MSEc=
60.4762

R-squared=
0.9826

R-squarec=
0.9745

()tmd in Equation
(22)

()tmc in Equation
(32)

â =141.3

b̂ =0.1293
η̂ =0.8628

MSEd=
32.17

MSEc=
58.6667

R-squared=
0.9869

R-squarec=
0.9753

Huang et al.[13]
â =138.026

b̂ =0.1451
MSE=
62.41

R-square=
0.9758

Lo [19]

â =133.119

b̂ =0.1597
ĉ =0.7825

MSE=
58.70

R-square=
0.9812

Figure 3. Observed/estimated cumulative number of faults using

the Exponentiated Weibull TEF

Figure 4. Observed/estimated cumulative number of faults using

the Logistic TEF

REFERENCES
[1] American Institute of Aeronautics and Astronautics,

Recommended Practice for Software Reliability.
ANSI/AIAA R-013-1992, Feb 1993.

[2] J. D. Musa, A. annino, and K. Okumoto, Software
Reliability, Measurement, Prediction and Application.
New York: McGram Hill, 1987.

[3] M. Xie, Software Reliability Modeling. World Scientific
Publishing Company, 1991.

[4] M. R. Lyu, Handbook of Software Reliability Engineering.
New York: McGram Hill, 1996.

[5] H. Pham, Software Reliability. New York: Springer-Verlag,
2000.

[6] M. Haug, E. W. Olsen, and L. Consolini, Software quality
approaches: testing, verification and validation. Berlin:
Springer, 2001.

[7] K. S. Trivedi, Probability and statistics with reliability,
queuing, and computer science application. 2nd ed. John
Wiley and Sons, 2002.

[8] D. Wallace and C. Coleman, “Application and
improvement of software reliability models,” Technical
Report, Software Assurance Technology Center, NASA
Goddard Space Flight Center, 2001.
http://satc.gsfc.nasa.gov/support/index.php.

[9] T. Dohi, S. Osaki, and K. S. Trivedi, “An infinite server
queuing approach for describing software reliability
growth: unified modeling and estimation framework,” Proc.
of the 11th Asia-Pacific Software Engineering Conference
(APSEC 04), Korea, pp.110-119, 2004.

[10] S. S. Gokhale and R. E. Mullen, “Queuing models for field
defect resolution process,” Proc. of the 17th IEEE
International Symposium on Software Reliability
Engineering (ISSRE 06), USA, pp.353-362, 2006.

[11] C. Y. Huang and T. Y. Huang, “Software reliability
analysis and assessment using queuing models with
multiple change-points,” Computers and Mathematics with
Applications, vol. 60, pp. 2015-2030, 2010.
doi:10.1016/j.camwa.2010.07.039

[12] S. Yamada, J. Hishitani, and S. Osaki, “Software reliability
growth with a Weibull test-effort: a model & application,”
IEEE Transactions on Reliability, vol. 42, pp.100-105,
1993. doi: 10.1109/24.210278

[13] C. Y. Huang, S. Y. Kuo, and I. Y. Chen, “Analysis of a
software reliability growth model with logistic testing-
effort function,” Proc. of the 8th International Symposium
on Software Reliability Engineering (ISSRE 1997), USA,
pp. 378-388, 1997.

[14] N. Ahmad, M.U. Bokhari, S.M.K. Quadri, and M.G.M.
Khan, “The Exponentiated Weibull software reliability
growth model with various testing-efforts and optimal
release policy,” International Journal of Quality
&Reliability Management; vol. 25, pp. 211-235, 2008.
doi: 10.1108/02656710810846952

[15] C. Y. Huang and S. Y. Kuo, “Analysis of incorporating
Logistic testing-effort function into software reliability
modeling,” IEEE Transactions on Reliability; vol. 51, pp.
261-270, 2002. doi: 10.1109/32.624305

[16] F. N. Parr, “An alternative to the Rayleigh curve for
software development effort,” IEEE Transactions on
Software Engineering, vol. 6, pp. 291-296, 1980.
doi:10.1109/TSE.1980.230475

[17] R. Peng, Q. P. Hu, S. H. Ng, and M. Xie, “Testing effort
dependent software FDP and FCP models with
consideration of imperfect debugging,” Proc. of the 4th
International Conference on Secure Software Integration

1306 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

and Reliability Improvement (SSIRI 2010), Singapore,
pp.141-146, 2010.

[18] K. Pillai and V.S.S. Nair, “A model for software
development effort and cost estimation,” IEEE
Transactions Software Engineering, vol. 23, pp. 485-497,
1997. doi:10.1109/32.624305

[19] J.H. Lo, “An integrated framework of the modeling of
fault-detection and fault-correction processes in software
reliability analysis,” Proc. of IEEE International
Conference on Industrial Informatics (INDIN 2008), Korea,
pp. 557-562, 2008.

Nan Zhang was born in 1980 in China.
In 2003, she received her B.S. degree in
Department of Computer Science and
Technology from Harbin Institute of
Technology at Harbin. She earned her
M.S. degree in 2008 in Computer
Application for Northeast Forestry
University at Harbin. She is currently a
Ph.D. candidate in Department of

Computer Science and Technology at Harbin Instituted of
Technology. Her main research interests include software
testing, software reliability evaluation, fault tolerance
computing and mobile computing.

Gang Cui was born in 1947 in China. He earned his M.S.
degree in 1989 and B.S. degree in 1976, both in Computer
Science and Technology from Harbin Institute of Technology at
Harbin. He is currently a professor and Ph.D. supervisor in
School of Computer Science and Technology at Harbin Institute
of Technology. He is a member of technical committee of fault
tolerant computing of the computer society of China. His main
research interests include fault tolerance computing, mobile
computing, software testing. Prof. Cui has implemented several
projects from the National 863 High-Tech Project and has won
1 First Prize, 2 Second Prizes and 3 Third Prizes of the Ministry
Science and Technology Progress. He is a senior member of the
CCF. He has published over 50 papers and one book.

Hongwei Liu was born in 1971 in China. He received the
B.Sc., M.Sc., and Ph.D. degrees of engineering of computer
architecture from the Harbin Institute of Technology,
Heilongjiang China, in 1994, 2000, and 2004, respectively. He
is currently a professor and Ph.D. supervisor in School of
Computer Science and Technology at Harbin Institute of
Technology. He is a member of technical committee of fault
tolerant computing of the computer society of China. His main
research interests are fault-tolerant computing, software
reliability evaluation, software testing. He is a senior member of
the CCF. He has published over 60 papers.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1307

© 2013 ACADEMY PUBLISHER

