
Aspect-Oriented Program Testing: An Annotated
Bibliography

1Abdul Azim Abdul Ghani and 2Reza Meimandi Parizi

Department of Information System
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia

{1azim@fsktm.upm.edu.my, 2r.m.parizi@gmail.com}

Abstract—Research in aspect-oriented software testing has
resulted in many approaches as reported in literature. A few
papers have devoted to literature survey in this field of
research. However, the survey only focuses on certain
selected topic and particular approaches rather than
providing a comprehensive set of references that cover most
of the work related to aspect-oriented software testing as a
whole. In this case, there is no work yet reported in the
literature to tackle this shortage. Therefore, in this paper a
collection of 81 references drawn from journals, conference
and workshop proceedings, thesis, and technical reports on
the subject of testing aspect-oriented software is presented.
Each reference is accompanied by a summary of important
finding. The aim when selecting the references was to cover
as many related articles starting from the first work on the
subject in 2002 until the year 2011. For this reason, the
bibliography is intended to help the researcher or
practitioner, who is relatively new, in gathering information
on the subject. The bibliography is organized according to
the following sections: general introduction; background on
the subject; issues in testing aspect-oriented software; fault
models and types; testing coverage criteria; aspect-oriented
testing techniques; and automated support for testing
aspect-oriented software.

Index Terms—Software testing, Testing survey, Aspect-
oriented programming (AOP), AOP testing

I. INTRODUCTION

Building large and complex software applications is a
challenging task for software engineers. Besides adhering
to complex functionalities, software engineers need to
build software applications that conform to non-
functionality requirements such as quality factors of
software. Coping with complexity and achieving quality
software is a major issue in building software
applications. One of the fundamental principles in
software engineering for handling the issue is the
separation of concerns principle, for a better modularity
of code. Typically, a concern is a feature or required
property that is specified in a requirement model for the
software. The principle states that any complex problem
can be more easily dealt with if it is subdivided into
different kinds of concerns that can be solved
independently in different modules.

Over the years, software engineering has experienced
an evolution of various types of development paradigms
and programming languages that have offered useful
mechanisms to handle modularity. The introduction of
the procedural programming paradigm has provided
software engineers with abstraction mechanisms for them
to structure the software into separate but cooperating
modules. The emergence of object-oriented programming
(OOP) paradigm enhances further the ability of software
engineers to design and to program with modularity in
mind using object-oriented features such as class,
inheritance, delegation, encapsulation and polymorphism.
Nevertheless, practically, these programming paradigms
are inherently unable to modularize all concerns of
interest for complex software systems since some
concerns crosscut a broader set of modules, known as
crosscutting concerns, which could not be easily
specified in single modules. Aspect-oriented
programming paradigm is the next that emerges to
enhance software development in better handling of
separation of concerns.

Aspect-oriented programming (AOP) [82] is a
technology that was first introduced in the middle of
1990s at the Xerox Palo Alto Research Center. The
purpose of AOP is to improve separation of concerns by
providing explicit concepts to modularize the crosscutting
concerns. AOP uses some improved
abstractions/constructs to represent concerns that crosscut
the program modules. Some examples of typical
crosscutting concerns are security, synchronization
policies, and logging, that span the entire systems. Ideally,
each crosscutting concern can be designed and
implemented independently. AOP separates crosscutting
concern from the rest of the code (core concern) into
named modules called aspects. It is claimed that by doing
this, the cohesion and reusability of the classes that
implement the core concerns will be increased, thus will
increase the overall quality of software.

However, AOP alone to increase the quality of
software does not guarantee developers and programmers
from introducing mistakes. As consequence aspect-
oriented programs produced will not be error free. Its new
concepts, e.g. constructs and properties, bring new
challenges and aspect-related faults not present when
testing other types of programs. In other words, testing

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1281

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1281-1300

aspect-oriented programs could not be directly performed
using the current testing techniques used on other
programming paradigms, e.g. object-oriented. Thus
testing remains as an important activity in aspect-oriented
software development.

Over the years, testing aspect-oriented programs has
gained considerable interest from researchers. Over 80
research literature items on this topic have been identified
in which the research conducted are generally related to
either: (i) new testing approaches that are being leveraged
or extended based on traditional techniques; or (ii) new
testing criteria with respect to fault types due to aspect-
oriented concepts. A few of the literature
[13][38][48][64][69] are dedicated to reviews and
surveys on the topic, however none of these studies
provides a comprehensive set of references that cover
most of the work related to aspect-oriented software
testing as a whole. In this regard, this bibliography has
grown out to make an inventory of testing aspect-oriented
programs and provides references to researchers working
in this topic. The papers listed are annotated with
summaries, which in turn are cross-referenced to related
papers. References 1 to 81 are directly related to testing
aspect-oriented programs, while the rest of the references
are used as the background for the topic.

The rest of this paper is organized as follows: Section
II presents the background on the topic consisting of
software testing and aspect-oriented programming
concepts; Section III discusses issues on testing aspect-
oriented programs; Section IV presents the fault models
and fault types for aspect-oriented programs; Section V
discusses coverage criteria for testing aspect-oriented
programs; Section VI presents the techniques that have
been proposed; Section VII presents automated tools for
testing aspect-oriented program; Section VIII presents
empirical studies conducted in testing aspect-oriented
programs, and Section IX presents concluding remarks.

II. BACKGROUND

This section provides general information consisting of
concepts and terminology on aspect-oriented
programming, AspectJ language, and terminology and
techniques in software testing.

A. Aspect-oriented Programming Concepts
This sub-section introduces the concepts and idea

behind aspect-oriented programming. It briefly describes
basic concepts that are introduced in this programming
paradigm [87]. The detailed description on the concept
could also be obtained from the AspectJ Team webpage
located at http://www.eclipse.org/aspectj/doc/released/
progguide/index.html. The webpage also contains the
programming guide for AspectJ language, which is the
most commonly used AOP language in practice.

AOP is a programming paradigm that allows for
separation of crosscutting concerns. AOP supports the
implementation of crosscutting concern into named
modules called aspects that each of them encapsulates a
crosscutting concern. An aspect is similar to class in
object-oriented programming (OOP). Besides having the

properties of a class in OOP, an aspect encapsulates the
behavior, and state of a crosscutting concern. In AOP
languages, aspects can only be invoked at well-defined
points in the execution of a program. These points are
called join points. Examples of joint points are calling or
execution of methods, access to an attribute, and
initialization of an object. Join points can be determined
in a pointcut or pointcut designator. A pointcut describes
a set of join points where an advice needs to be invoked.

An advice is a method-like construct that contains
behavior to execute at a matched joint point. For example,
this might be the security code to do authentication and
access control. The advice is woven into the join points
when a pattern of a pointcut is matched. In other words,
an advice is used to express the crosscutting actions that
must take place within the method body at the matched
join point. There are three kinds of advices: before advice,
after advice, and around advice.

Since there are aspect and non-aspect code (i.e. base
code) in a program, the aspect code must be run properly
with the non-aspect code. This can be realized through
aspect weaving. Aspect weaving is the process by which
behavior on aspects are merged to the core concern code
to yield a working system. Several mechanisms for
weaving have been defined depending on AOP languages.
These include statically compiling the advice together
with base code, dynamically inserting aspects when
loading code, and modifying the system interpreter to
execute aspects. For example, in AspectJ aspect weaving
composes the code of the base code and the aspects to
ensure that applicable advice runs at the appropriate join
points. Fig. 1 shows the generic AOP process.

Figure 1. Generic AOP process.

B. AspectJ Language
AspectJ, an extension of Java language, is developed

to support aspect-oriented programming. It is the most
popular AOP language to date and most of the aspect-
oriented testing papers base their work on AspectJ
language. AspectJ realizes crosscutting constructs in AOP
by offering common crosscutting constructs, dynamic
crosscutting construct, and static crosscutting constructs
[87]. These constructs are the basis for forming the
building block of AspectJ programs. Common
crosscutting constructs consist of join point, pointcut, and

1282 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

1. public class Point {
2. protected int x, y;
3. public Point(int _x, int _y) {
4. x = _x;
5. y = _y;
 }
6. public int getX() {
7. return x;
 }
8. public int getY() {
9. return y;
 }
10. public void setX(int _x) {
11. x = _x;
 }
12. public void setY(int _y) {
13. y = _y;
 }
14. public void printPosition() {
15. System.out.println("Point at
 (" + x + "," + y + ")");
 }
16. public static void main(String[]

 args) {
17. Point p = new Point(1, 1);
18. p.setX(2);
19. p.setY(2);
 }
 }
20. class Shadow {
21. public static final int offset = 10;
22. public int x, y;

23. Shadow(int x, int y) {
24. this.x = x;
25. this.y = y;
26. public void printPosition() {
 System.out.println("Shadow at
 (" + x + "," + y + ")");
 }
 }

27. aspect PointShadowProtocol {
28. private int shadowCount = 0;
29. public static int getShadowCount(){
30. return PointShadowProtocol.
 aspectOf().shadowCount;
 }
31. private Shadow Point.shadow;
32. public static void associate(Point p,
 Shadow s){
33. p.shadow = s;
 }
34. public static Shadow getShadow(Point p) {
 return p.shadow;
 }
35. pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
36. pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
37. pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

38. after(int x, int y, Point p) returning :
 setting(x, y, p) {
39. Shadow s = new Shadow(x,y);
40. associate(p,s);
41. shadowCount++;
 }
42. after(Point p): settingX(p) {
43. Shadow s = new getShadow(p);
44. s.x = p.getX() + Shadow.offset;
45. p.printPosition();
46. s.printPosition();
 }
47. after(Point p): settingY(p) {
48. Shadow s = new getShadow(p);
49. s.y = p.getY() + Shadow.offset;
50. p.printPosition();
51. s.printPosition();
 }
 }

 (a) base code (b) aspect code

Figure 2. A sample AspectJ program.

advice. Dynamic crosscutting construct is achieved
through the support of advice that modifies the behavior
of a program. Whereas, static crosscutting constructs are
in the form of intertype declarations and weave-time
declarations, modify the static structure of a program. In
terms of aspect-oriented program testing, the interests are
in testing the behavior of dynamic crosscutting construct.

The related keywords in AspectJ are aspect,
before, after, and around advice, and
pointcut. An aspect can contain the code specifying
pointcuts, different kinds of advice, and intertype
declarations (an aspect declares another types; can be an
interface, a class or an aspect). pointcut is used to
define a named pointcut for join point in a program. The
keywords before, after, and around advice are
method-like constructs consisting of code used to specify
crosscutting behavior at join points. A before advice
executes its body before executing the body of the

matched join point. An after advice executes its body
after executing the body of the matched join point. An
around advice body surrounds the match join point. It
may change the execution of the matched join point body,
or may even replace the matched join point body.
Example program written in AspectJ, taken from [3], in
Fig. 2 shows the related constructs.

The program in the figure is divided into two parts: (a)
the base code and (b) the aspect code. The base code
contains the classes Point and Shadow at line 1 and
20 respectively, whereas, the aspect code contains the
aspect PointShadowProtocol at line 27. In the figure,
the aspect PointShadowProtocol defines three
pointcuts that are setting at line 35, settingX at
line 36, and settingY at line 37. The aspect
PointShadowProtocol also specifies three kinds of
after advice which are attached to their corresponding
pointcuts setting, settingX, and settingY as
shown at line 38, 42, and 47 respectively.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1283

© 2013 ACADEMY PUBLISHER

C. Software Testing
Software testing is an important activity in any

software development process. It is an ‘umbrella’ to all
phases in the process. However, there is no single
agreeable definition for software testing. Software testing
is claimed as a process of executing a program with the
intention to find faults [83]. It is also defined to involve
any activity aimed at evaluating an attribute or capability
of a program or system and determining that it meets with
its required results [85]. Another definition given is as
evaluating software by observing its execution [86].
Nevertheless, the essence of software testing is to execute
the program with a particular set of input and observing
the actual output produced then comparing the output
produced with the expected output. In other words, it is to
determine the quality of a software system by analyzing
the results of running it. This particular set of program
input along with the corresponding expected output is
called a test case. The test cases are generated by using
testing techniques.

There are many testing techniques and methods used
with different purposes and thus, they are classified
differently [88]. Readers may refer to [83][84][85][86]
for detail information of the techniques and methods.
However, for the benefit of readers who are not familiar
with the techniques, a brief account of the techniques is
given.

Functional testing technique derives its test cases by
analyzing the program’s input and output from the
program specification, without considering the
implementation details of the program. With the
advanced in object orientation and models in software
engineering, there has been a growth in model-based
testing. Model-based testing is considered as a type of
functional testing technique. In model-based testing,
design models used for designing are the basis for
performing testing. These models can be used to
represent the desired behavior of the System Under Test
(SUT). Examples of such models are finite state machine,
statecharts, and decision tables. State-based testing is one
of the model-based testing techniques in which test cases
are derived from a state model that describes systems
requirements and functionality.

Structural testing technique, on the other hand derives
its test cases from the knowledge of program’s
implementation, e.g. control flow path or use of specific
data items. Techniques come under this classification are
control flow testing technique and data flow testing
technique. Control flow testing technique requires
knowledge of control flow structure from source code.
The control flow structure provides paths in a program to
be selected for testing purposes. Data flow testing
technique requires knowledge from source code to select
paths in a program according to sequences of events
related to data state. However, structural information can
also be gathered from design or specification artifact.
Thus, it is convenient to also classify testing technique as
code-based technique if the test data are generated with
the knowledge from source-code.

Another classification is mutation testing technique.
This technique focuses on modeling faults by means of
mutation operators for specific languages. A series of
mutants is produced when each mutation operator is
applied to a program. Test cases are generated to examine
the mutated versions of the program. Fault-based testing
is another classification to show that the program is not
incorrect. If a program has limited potential for being
incorrect, then test data demonstrate correctness when
they show the potential is not realized. The means of
specifying incorrectness taken here is to define potential
faults for program constructs which is what is done in
mutation testing. Other technique that is used in software
testing is random testing technique. The technique
produces randomly generated test cases.

Besides the techniques mentioned previously, software
testing is usually performed at three levels:

(1) Unit testing, the smallest units produced by the
implementation are tested in isolation. This testing
level aims to find fault in the logic and
implementation.

(2) Integration testing, the interactions between among
the units are tested to find faults in the logic and the
interfaces.

(3) System testing, the assembly or integration of all
sub-systems of a system is tested to verify that the
system is adequately assembled in producing the
expected functions and performance. This level of
testing looks at design and specification problems.

(4) Acceptance testing, the completed system is user-
tested to verify the software does what the users
want.

(5) Regression testing, the updated version of system is
tested after changes are made to the system to
ensure it still possess the functionality it had before
the changes.

Theoretically to exhaustively test a program is not
possible since the number of potential inputs for most
programs is effectively infinite. Thus, coverage criteria
are used to decide which inputs are to be included in a
test. A coverage criterion is a rule or collection of rules
that impose test requirements on a test set. Types of
coverage criteria are determined by the techniques and
models used in testing the software.

One goal of software testing is to automate as much as
possible in order to reduce testing cost, minimize human
errors, and make regression test easier. Testing
automation [73] consists of a) automated test input
generation and selection, b) automated test oracle, and c)
automated test execution. In automated test input
generation and selection, tools are used to generate test
data as specified by testing techniques in which coverage
criteria are the determinants for producing the test data.
Automated test oracle will check the correctness of the
tests. The runtime behavior of the program under test is
automatically checked with respect to the generated test
inputs. In automated test execution, a framework allows
test to be executed. The framework executes the tests and
collects the test results by means of oracles.

1284 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

III. ISSUES IN TESTING ASPECT-ORIENTED PROGRAMS

Aspect-oriented programming paradigm has brought
along with it new concepts and properties that extend the
capabilities of other programming paradigms. In AOP,
separate aspects are defined to contain crosscutting
actions, that later are woven into classes that represent the
core concerns of the system. Because of that, testing
aspect-oriented software could not be directly performed
using current testing techniques used on other
programming paradigms. Such concepts and properties
pose new challenges and issues regarding testing. The
followings are the issues [2][48][69] [81] faced in testing
aspect-oriented programs:
• Aspects do not have independent identity. Aspects

depend on the context of their use in a program with
respect to the base classes. Thus, an aspect could not be
separately tested as a unit. The aspect needs to be
woven together with its base classes to generate
executable code before testing it.

• Aspects can be tightly coupled to their woven

context. Aspects are often tightly coupled with their
woven classes. Thus, any change to these classes will
likely impact the aspects.

• Control and data dependencies are not readily

apparent from the source code of aspects or classes.
The nature of weaving process results in difficulty in
comprehension of control and data dependencies by
developers. Thus, relating failures to corresponding
faults becomes difficult.

• Interaction between classes and aspects results in

emergent behavior. The root cause of a fault may lie in
a class, or an aspect, or it may be as a side effect of a
particular weave order of multiple aspects. Thus,
resulting is potential faults that are difficult to diagnose.

• Behavioral changes due to foreign aspects. The use of

foreign aspects in a software system can introduce
unexpected and undesired behavior. Thus, they can
affect program correctness, comprehension, and
maintenance.

• Interference of aspects can result conflicting

behavior. The introduction of different types of
changes by aspects into a software system produces
different types of interferences that the aspects can
cause.

• Problems in pointcut descriptors (PCDs) if they are

wrongly formulated. Faults will be injected due to
wrong formulation of PCDs by developers. This
introduces additional behavior or fails to be applied to
related join points.

Besides the above issues, other issues that can

influence aspect-oriented program testing are undisclosed

type of errors or bug patterns, and recurring or
symptomatic issues [48][69].

The above issues have resulted in many attempts by
researchers in proposing new or extended techniques for
testing aspect-oriented programs. The traditional testing
techniques, while applicable to certain extends in testing
core classes, are not directly applicable to test aspects. In
the following sections, work on testing techniques on
aspect-oriented programs is described.

IV. FAULT MODELS AND FAULT TYPES FOR ASPECT-
ORIENTED PROGRAMS

A fault model determines the types of faults that
components of a system under test most likely to have.
The AOP fault model helps in understanding how faults
and failures occur in aspect-oriented programs. Almost
all approaches described in the next section have their
proposed methods work on certain fault models or types.
The first work on fault model for aspect-oriented
programs is the contribution of [2]. The fault model
proposed is based on the nature of faults and unique
properties of AOP which are related to structural and
behavioral properties. However, the challenge is, when a
failure occurs, diagnosing the failure and detecting source
of fault would not be trivial. Source of fault is a location
in a program that a fault may have occurred. The
potential sources of faults in an AOP program are listed
below [2]:

• A fault resides in a portion of the core concern not

affected by an aspect.
• A fault resides in code that is related to an aspect,

isolated from the woven process.
• A fault is related to an emergent property created from

interactions of one aspect with the primary abstraction
• A fault is related to an emergent property created from

interactions of multiple aspects with the primary
abstraction.

It is important to note that, some of the issues listed in

Section III (i.e. 1-3) are resulting from the nature of AO
paradigm and its associated properties (i.e. obliviousness).
This can make it to say that not all the above fault sources
can be easily map to the issues list in previous section, for
instance source 3 and 4 can be mapped well to the issues
list whereas other cannot be.

The fault model proposed in [2] has listed different fault
types specifically for AO programs. The fault types are
faults classified based on the characteristics of AOP. They
are:

• Incorrect strength in pointcut patterns
• Incorrect aspect precedence
• Failure to establish expected postconditions
• Failure to preserve state invariants
• Incorrect focus of control flow
• Incorrect changes in control dependencies

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1285

© 2013 ACADEMY PUBLISHER

Additional fault types proposed are pointcut descriptor
related faults [26], bug patterns [40], fault related to
foreign aspects [80], faults related to AspectJ pointcut
[29][30] and advice [31], faults related to intertype
declaration, pointcut, and advice [18], faults related to
interactions among methods and advice by means of the
pointcut expressions defining the join points [37], fault
types related to interactions derived with the help of
interaction model and dependency model [34], fault
types as the basis for the construction of mutation
operators for aspect-oriented program [46] [68], faults
that occur during aspect composition from sequences
diagrams [53], and faults related to state-based aspect
design [71].

The work of [46] has produced comprehensive fault
types. The types are (1) pointcut expressions; (2)
intertype declaration and other declarations; (3) advice
definition and implementation; and (4) base program.
Empirical analysis based on recurring observed scenario
on the fault types has resulted in a more refine categories
[70]. Other types suggested are based on mistakes made
by programmers during refactoring of crosscutting
concerns [78] and a fault model associated with risk
assessment [55]. Other additional fault types can be found
in [17].

Most work on fault type focus mainly on the intuition
that faults may be caused by pointcuts. However, an
empirical study reveals contradiction, in which other
mechanisms such as intertype declaration and advice also
contribute to having faults in aspect-oriented programs
[66]. Besides the empirical studies specific in analyzing
the faults occurrence in aspect-oriented programs, fault
types proposed by various research papers are also used
in empirical studies as identifying factors for
effectiveness of certain testing approaches with respect to
testing criteria. Examples of such study are [74][71][75].

V. COVERAGE CRITERIA FOR TESTING ASPECT-ORIENTED
PROGRAMS

It is nearly impossible to enumerate all inputs for
testing the programs since the number of potential inputs
for most of the programs is so large that it could be
infinite. Because of that, coverage criteria are used to
decide which inputs are to be included in a test. The
effective use of coverage criteria tends to help testers in
uncovering faults in a program. Those criteria are used to
measure the coverage of a test suite in terms of
percentage. Practically, coverage criteria are indicators
for when to stop testing.

In testing techniques and methods used to test software
written in traditional or object-oriented paradigms,
coverage criteria have been so helpful in identifying test
cases. Usually, coverage criteria are related to underlying
models used or approaches in testing a program. However
not all coverage criteria are directly useful for testing
aspect-oriented programs as the nature of aspect-oriented
programs needs different kind of models or extension of
current models for testing. As far as the literature is
concerned, the coverage criteria for testing aspect-
oriented programs fall under code-based criteria, model-

based criteria, or fault-based criteria (mutation testing).
The criteria are described along with their testing
technique or approach. The next section describes the
approaches.

In code-based coverage criteria, aspect-oriented
program source code or Java bytecode is used as the basis
for defining coverage criteria, or some forms of graph
model are the basis for defining the coverage criteria.
Coverage criteria defined based on source code are (1) a
set of aspect coverage criteria which include statement
coverage, insertion coverage (also known as joinpoint
coverage [44] or all-crosscutting-node criteria [32]),
context coverage, and def-use coverage [5][11]; (2)
aspectual branch coverage, interaction coverage, dataflow
coverage, and data coverage [22].

Other perspective of defining coverage criteria is based
on flow graphs. The source code will be mapped into a
graph-based model to describe the control flow model or
data flow model. The most common flow graph to
represent control flow model is control flow graph (CFG)
in which a node represents a statement and an edge
represents a control flow from one node to another. The
data flow model is used to model the flows of the data
values in source code. However, flow graphs are not only
constructed from source code, they could also be
constructed from other modeling artifact such as design
artifact. Then, coverage criteria are defined on those flow
graph models. In the case of aspect-oriented programs,
new flow graph models are proposed to handle the
representation of aspects and their integration to base
programs. Thus, new coverage criteria are defined based
on the proposed graphs.

One such flow graph that is used to define coverage
criteria is aspect-oriented def-use graph model (AODU)
[32]. The model is an extension of the original def-use
model for object-oriented program in which the advice
interactions that occur in aspect-oriented programs are
represented by a set of nodes affected by pieces of advice
called crosscutting nodes. The model is meant for unit
testing aspect-oriented Java programs. Besides the
traditional def-use criteria, the aspect-oriented testing
coverage criteria defined on the model are all-
crosscutting-nodes, all-crosscutting-edges, and all-
crosscutting-uses. AODU graph model has been used as
the basis for other types of models. One such model is
PWDU (PairWise Def-Use) graph [43] [63] that is used to
represent the structure of a pair of units that interacts with
each other in integration testing approach for object-
oriented and aspect-oriented programs. The interacting
units can be: i) when a method calls another, ii) when a
method is affected by an advice, iii) when an advice calls
a method, and iv) when an advice is affected by another
advice. The coverage criteria defined on the model are
all-pairwise-integrated-node, all-pairwise-integrated-
edges, and all-pairwise-integrated-uses. Another model
known as PCCFG (Pointcut-based Control Flow Graph)
is used to define coverage criteria for testing each advice-
pointcut pair [51]. However, this model covers only
control flow pointcut-based criteria. A model called
Pointcut-based Def-Use Graph (PCDU) [74] is used to

1286 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

model both the flow of control and data at join points. An
additional coverage criterion related to data flow between
advice and pointcut is proposed. Another set of testing
coverage criteria for AO software is based on Inter-
procedural Aspect Control Flow Graph (IACFG) [37]
[50]. These coverage criteria cover the interactions
among aspects and classes during integration testing. A
set of dataflow coverage criteria for AO is also defined
using a framed Inter-procedural Control Flow Graph
(ICFG) [65]. It covers interactions that are based on state
variables.

Coverage criteria are also defined based on flow
graphs constructed from aspect-oriented UML models.
Aspect-oriented model may consist of class diagrams,
aspect diagrams, statecharts, collaboration diagrams, and
sequence diagrams. Coverage criteria are proposed by
taking into consideration the integration of aspects in a
collaboration diagram [19]. A control flow graph is used
to modularize the control of the methods involved in the
collaboration. Other coverage criteria proposed are based
on dynamic behavior modeled in an extended statechart
[15]. Those coverage criteria are classified under
transition coverage criterion sequence coverage criterion,
advice execution coverage criterion, and multi-aspect
integration coverage criterion. Besides work that
proposed new set of coverage criteria, existing coverage
criteria for UML diagrams (use case coverage, transition
coverage, state coverage, polymorphic coverage) are used
in test generation of aspect-oriented programs. The
existing coverage criteria are used on aspect flow graph
[6] [9], aspect-object flow tree [47], and aspectual use
cases [42].

VI. TECHNIQUES IN TESTING ASPECT-ORIENTED
PROGRAMS

Various techniques have been proposed by researchers
in testing aspect-oriented programs. There are also a few
categories have been put forward in classifying the
techniques [56][61][64]. This paper takes into
consideration the categories, and focuses on the artifact
that the techniques used as the basis for testing aspect-
oriented programs. The techniques are classified under
code-based testing, model-based testing, fault-based
testing focusing on mutation testing, regression testing
and other approaches.

Code-based testing technique emphasizes the
generation of test data from the knowledge of aspect
implementation which involves the base code and aspect
code. The knowledge obtained from this implementation
is in the form of internal structure that is structurally
represented by using control flow graph or data flow
graph. Most work focus on testing source code written in
AspectJ language as their underlying language. The
earliest work are based on control flow and data flow
models [1][3]. Derivations of the original control flow
and data flow graph models are proposed in testing
aspect-oriented programs. They are aspect-oriented def-
use graph model (AODU) [32], PWDU (PairWise Def-
Use) graph [43] [63], PCCFG (Pointcut-based Control
Flow Graph) [51][52], Pointcut-based Def-Use Graph

(PCDU) [74], Inter-procedural Aspect Control Flow
Graph (IACFG) [37] [50] and Inter-procedural Control
Flow Graph (ICFG) [65].

Model-based testing technique focuses on deriving test
cases partially or fully from aspect-oriented models. The
aspect-oriented models consider the behavior of programs
when aspects are interacting with classes. One of the
techniques is state-based technique in which finite state
machine is extended to include the aspects for describing
the aspectual behavior [8][21][41]. The technique defines
new state model considering aspect-related properties,
from which state transition trees and test cases are
derived. Aspect-oriented state model is an extended
model that is used in MACT (Model-based Aspect/class
Checking and Testing) framework [71] [72] in which
structure-oriented and property-oriented testing strategies
are employed to automatically generate test cases.
Another state-based technique [49] uses an aspect object
state diagram to model crosscut weaving model, which is
transformed into a tree to derive test cases. Other testing
techniques under model-based techniques use extended
UML diagrams as their basis for deriving test cases. The
techniques are based on UML collaboration diagrams [19]
[20] [36], UML state diagrams [15] [60], aspect-oriented
UML design models (consist of class diagrams, aspect
diagrams and sequence diagrams) [9] [47], UML
sequence diagrams [53], and aspectual use cases [42].

Mutation testing technique for aspect-oriented
programs focuses on modeling faults by means of
mutation operators for aspect-oriented languages. A
series of mutants is produced when each mutation
operator is applied to a program. Test cases are generated
to examine the mutated versions of the program. The
mutation testing techniques for testing aspect-oriented
programs include automated generation of mutant for
testing pointcuts [25] [45], testing fault related to pointcut
descriptors [26] [57] [58] [75], automated generation of
mutants for AspectJ programs [62] [67], and definition of
a comprehensive set of mutation operators [5] [11] [46]
[79].

As aspect-oriented program is modified, it is required
to be regression tested so that the changes do not
introduce new faults to the original program. Since the
size of test suite typically keeps growing, regression test
needs to be properly conducted and its test selection
techniques can be employed to reduce cost of testing.
There is work that studied that focus on the regression
testing of aspect-oriented programs [27] [28] [39].
Basically this work depends on structural information of
source code in the form of control flow graph. In [39],
AspectJ Inter-module Graph (AJIG) is proposed to
regression test AspectJ programs. AJIG consists of CFG
and interaction graphs.

Further work in testing techniques for aspect-oriented
programs involves random testing and search-based
testing. In random testing of aspect-oriented programs, an
automated random-based test generation and test
execution [56] [61] and a work on adaptive random
testing for AOP [76] are proposed. In search-based
testing, an optimization approach to automate test data

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1287

© 2013 ACADEMY PUBLISHER

generation for structural coverage of AOP systems is
introduced [54]. Other work is proposing application
specific testing aspects identified as test oracles [7]. It
uses Aspect-Oriented Test Description Language
(AODTL) to build the testing aspects which later is used
to generate test oracles. Double-phase testing method is
proposed to eliminate meaningless test case.

VII. AUTOMATED SUPPORT FOR TESTING ASPECT-
ORIENTED PROGRAMS

Two perspectives on automated testing of aspect-
oriented programs provide roadmap for classifying
automated testing. One perspective is along test-input
generation and selection [33], and the other perspective is
along three levels of automation [73] as mentioned in
Section II.C. In whatever perspectives, automated support
for testing is very important in order to reduce testing
cost, minimize human errors, and make regression test
easier. In addition, as the theory and practice of aspect-
oriented programming is becoming more mature,
automated support for testing such programs is needed.

Since the first work on aspect-oriented software testing,
a very few number of automated approaches have been
proposed. Automated approaches that adopt Java test-
generation tools for generating test data in testing AspectJ
programs are Wrasp [14], Aspectra [22], and Raspect
[23]. Wrasp automatically generates both unit and
integration tests for AspectJ programs focusing on
aspectual behavior and in addition adopts JamlUnit [10]
and AJTE [16]. Aspectra uses a similar approach to
Wrasp, but focuses on automatic generation of test inputs
to test aspectual behavior. Raspect complements Wrasp
and Aspectra in which it detects redundant unit test.
APTE [24] is an automated framework, that tests
pointcuts in AspectJ program, is built on another tool
AJTE [16]. AJTE is a tool to unit test without weaving.
Another new tool is EAT [54] that uses search-based
optimization approach to automate test data generation.

Automated support for mutation testing also has seen a
number of proposed tools. Initially a tool that implement
mutation analysis on pointcut expression [25][45]is
proposed. However, AjMutator [57] tool is proposed to
include more mutation operators as defined in [46]. This
tool works together with AdviceTracer[58] [75], a tool to
specify an oracle that expects the presence and absence of
an advice at a specific point in the base program.
Proteum/AJ [67] is another tool that improves the
previous tools by adding new functionalities such as
mutation operator selection. Another available tool is
MuAspectJ [62] that supports a full range of mutation
operators on AspectJ. It is an extension of MuJava (this
tool is to generate mutant for Java language).

In the perspective of test oracle, an approach that
produces JAOUT tool to generate test codes to serve as
test oracles is proposed [7]. The approach makes use of
Aspect-Oriented Test Description Language (AOTDL) to
help build testing aspects that are translated by JAOUT.
Automated tools are also produced to support the model-
based testing approaches. AJUnit [60], a tool based on
JUnit, is used to generate testing sequences covering an

aspect-class block of code in for UML Statechart
Diagrams. MACT (Model-based Aspect/class Checking
and Testing) [71] is another model-based tool, works as a
framework, to generate test cases from aspect-oriented
state-model.

VIII. EMPIRICAL STUDIES CONDUCTED ON ASPECT-
ORIENTED SOFTWARE TESTING

Empirical studies are becoming more important and
required in validating theories in software engineering. In
the field of software testing, empirical studies have been
used extensively. In this section, empirical studies
conducted in evaluating testing approaches for aspect-
oriented programs are discussed. Lately, detailed
empirical evaluation of the aspect-oriented testing
approaches is getting more attention from researchers that
was nearly neglected in earlier research work. Lately,
detailed empirical evaluation of the aspect-oriented
testing approaches is getting more attention from
researchers that was nearly neglected in earlier research
work. The empirical studies conducted deal with aspect
fault detection capability, practicality or usefulness of the
proposed aspect–oriented testing approaches or their
associated tools.

The first reported experimental work is in [7], to
compare performance of double-phase testing with
conventional testing methods in unit testing. Since the
number of test cases is growing, detecting redundant test
cases is crucial in time consuming. An experimental
study looking at this issue is done when Respect [23]
approach is compared with a technique based on aspect
coverage [4]. An empirical evaluation on Aspectra [22] is
also performed in which wrapper mechanism shows
Aspectra is effective in providing tool support to generate
test input for aspectual branch coverage. In regression
testing perspective, the work of [39], is empirically
evaluated to compare two regression-test-selection
techniques which are Java Interclass Graph technique and
AspectJ Inter-module Graph technique. An empirical
study on ATDG (Automated Test Data Generation), a
search-based testing technique, implemented in EAT is
performed to compare its performance with random
testing [54]. A more recent and thorough empirical
analysis to evaluate fault detection effectiveness and test
effort efficiency of the four existing automated AOP
testing approaches (namely Wrasp, Aspectra, Respect,
and EAT) has been performed by [77].

Empirical evaluation for model-based testing of
aspect-oriented programs can be found in [41] [71] [72]
in which experiments using MACT framework are
performed. The empirical study in [41] shows that state-
based approach is effective in detecting aspect faults. In
addition, another empirical study [71] shows structure-
oriented and property-oriented testing strategies
complement each other in detecting aspect faults.
Subsequent empirical study in this approach investigates
the effectiveness of prioritization of transition coverage
and round-trip strategies in reporting failure [72].

In the perspective of the practicality or usefulness of
approaches or tools, empirical studies conducted show

1288 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

that structural pairwise approach [63] is practical and
useful in integration of object-oriented and aspect-
oriented programs, pointcut-based coverage analysis
based on PCDU [74] is capable to locate related faults,
automated generation of pointcut mutants framework [45]
is valuable assistance to generate effective mutants,
suitability of AjMutator tool [57], AdviceTracer tool [58],
MuAspectJ tool [62], and Proteum/AJ [67] in mutation
analysis. AdviceTracer tool is also empirically compared
with JUnit in evaluation of its ability to detect faults in
pointcut descriptor [75]. Another empirical study based
on UML design models reveals that model-based testing
approach is capable of locating aspect-specific faults
related to advice and pointcut [47].

 As with any empirical study setting in software
engineering, especially in software testing, a set of
subject programs (benchmark programs) to collect data is
needed. For the aforementioned empirical studies in area
of AOP, a range of 1 to 14 subject programs (mostly
written in AspectJ), from small to big size are used (see
Table I).

NonNegative, NonNegativeArg, PushCount,
NullCheck, NullChecker, and Instrumentation are parts of
Stack program. BusinessRuleImpl is a part of banking
program. Most of the subject programs are relatively
small in size except iBATIS, Health Watcher, and Tool
System Demonstrator. Most of the subject programs are
located at:

TABLE I.

LIST OF SUBJECT PROGRAMS USED IN EMPIRICAL STUDIES

Reference # of

Subject Programs
 Subject Programs

[47] 1 Greeting card purchase
[62] 1 Health Watcher
[67] 1 Telecom
[75] 1 Health Watcher
[57] 2 Health Watcher, Auction
[58] 2 Tetris, Auction
[72] 2 Telecom, Cruise Control
[41] 3 Telecom, Cruise Control, Banking
[45] 4 Bean, NullCheck, Tetris, Cona-sim
[71] 4 Telecom, Cruise Control, Banking,

EJBComponents
[39] 7 Bean, Tracing, Telecom, Quicksort, NullCheck,

DCM, LOD
[62] 7 Stack, Subj-obs, Music, Bean, Shape, Point,

Telecom
[77] 7 Figure, Bean, Telecom, ProdLine, LOD,

NullCheck, DCM
[22] 12 NonNegative,Bean, Telecom, PushCount,

NonNegativeArg, Instrumentation,
BusinessRuleImpl, StateDesignPattern
ProdLine, LOD, NullCheck, DCM

[23] 12 As the above
[74] 12 Bean, Stack, Shape, Subj-obs, Banking,

Telecom, Payroll, Music1, Music2,
iBATIS, Health Watcher, Toll System Demonstartor

[54] 14 Figure, PushCount, Instrumentation, Hello,
Quicksort, NonNegative, NullCheck, NullChecker,
Telecom, SavingsAccount, QueueState, ProdLine,
DCM, LOD

• http://www.sable.mcgill.ca/benchmarks/
• http://www.eclipse.org/aspectj/doc/released

/progguide/index.html
• iBATIS is at http://ibatis.apache.org/index.html
• Health Watcher is at

http://www.comp.lancs.ac.uk/~greenwop
/tao/implementation.htm

• Toll System Demonstrator is at http://www.aosd-
europe.net

• Banking system is in [87]

• Stack program is in [89]

IX. CONCLUDING REMARKS

In this paper, a broad survey of literature on aspect-
oriented software testing is given. The topics covered are
issues faced, fault models and types, testing coverage,
testing techniques, automated support, and empirical
studies conducted. For each topic a list of relevant
references is given. The references themselves are fully

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1289

© 2013 ACADEMY PUBLISHER

annotated with a summary of the important findings
discussed in each reference.
In the following tables, a brief analysis of the papers
referenced is provided. Table II shows how many papers
have been published each year. Table III provides an
analysis of where the papers have been published.

TABLE II.

ANALYSIS OF CITED PAPERS BY YEAR

Year Publications
2002 1
2003 1
2004 5
2005 14
2006 11
2007 13
2008 9
2009 12
2010 9
2011 6
Total 81

TABLE III.

ANALYSIS OF CITED PAPERS BY CATEGORY OF PUBLICATION

Category of Publication Publications
Journal

- ISI impact factor
- Non-ISI impact factor

8
4

Conference/Workshop proceedings 58
Technical Report 6
Thesis 3
LNCS/Sigsoft Notes 2

With what said and discussed, we believe the overview

of the work related to entire field of AOP testing
presented in this paper can help the researcher or
practitioner, who is relatively new, in gathering
information on the subject and also provide further
avenues of exploration for interested researchers.

REFERENCES

[1] J. Zhao. Tool support for unit testing of aspect-oriented
software. In Workshop on Tools for Aspect-Oriented
Software Development, Seattle, Washington, USA, 2002.

Presents a data flow based unit testing approach and its
tool support for AOP. It constructs the framed control
flow graph to compute def-use pair of the class and
aspect, and uses the information to perform data flow
testing. The later version of the work is in [3].

[2] R. T. Alexander, J. M. Bieman, and A. A. Andrews.
Towards the systematic testing of aspect-oriented
programs. Technical Report CS-4-105, Colorado State
University, 2004.

Introduces a candidate fault model for AOPs and derives
testing criteria from the candidate fault model. The fault
model is based on interactions that are unique to AOPs.
The authors’ identify four sources of faults. They are: 1)

faults reside in the core concerns and unaffected by
aspects, 2) faults in aspect, independent from the woven
context, 3) faults emerge when one aspect interacts with
a primary abstraction, and 4) faults emerge when one or
more aspect woven together into a primary abstraction.
Six fault types are proposed: incorrect strength in
pointcut patterns, incorrect aspect precedence, failure to
establish expected postconditions, failure to preserve
state invariants, incorrect focus of control flow, and
incorrect changes in control dependencies. This paper is
an initial study in developing an effective approach to
the systematic testing of AOPs.

[3] J. Zhao. Data-flow-based unit testing of aspect-oriented

programs. In Proceedings of the 27th Annual
International Computer Software and Applications
Conference (COMPSAC’03), page 188-197, Dallas,
Texas, December 2003.

Proposes a data-flow-based unit testing approach for
AOPs by combining unit testing and data flow testing
technique to test aspects and classes that may be affected
by one or more aspects. The approach performs three
levels of unit testing; intra-module, inter-module, and
intra-aspect or intra-class. These levels of testing can
handle testing problems that are unique to AOPs. The
technique proposes a structure model to capture artifacts
for testing. This model uses control flow graphs to
compute def-use pair of an aspect or a class being tested.
The information from the computation is used for
selection of tests.

[4] Y. Zhou, H. Ziv, and D. Richardson. Towards a practical

approach to test aspect-oriented software. In Proceedings
of 2004 Workshop on Testing Component-based Systems
(TECOS 2004), September 2004.

This paper proposes an approach to test aspect-oriented
software by adapting traditional unit testing, integration
testing, and system testing. However, it is an initial
approach towards a comprehensive approach to
effectively test aspects. The initial approach consists of
four steps. The first step deals with developing and
testing regular classes in order to isolate and eliminate
non aspect-related errors. The second steps concerns
with separately woven aspects with regular classes, and
the resulting woven aspect is tested for its behavior. In
the third step, multiple aspects are woven together with
classes to form a complex application. In this step
several aspects are integrated and tested. In the final
step, all aspects are woven together with regular classes
as a complete system. The complete system is then tested.
In this paper, testing coverage is defined for how well an
aspect is tested by a set of test cases. The paper suggests
reusing test cases used for testing regular classes for
testing aspects as a means to reduce testing cost. An
algorithm for selecting relevant test cases and
calculating testing coverage is also proposed. A Java
tool is developed in the Eclipse environment for this
approach.

[5] M. Mortensen and R. T. Alexander. Adequate testing of

aspect-oriented programs. Technical Report CS04-110,
Department of Computer Science, Colorado State
University, Fort Collins, Colorado, USA, December
2004.

1290 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Presents a fault-based testing framework consisting of
coverage criteria and mutation testing to define
adequate testing of AOPs. Coverage criteria applied on
aspect structure are statement coverage, insertion
coverage, context coverage, and def-use coverage.
Meanwhile mutation operators used are pointcut
strengthening, pointcut weakening and precedence
changing. The paper demonstrates the application and
benefits gained by using this approach. The authors
identify the need for an integrated tool to test AspectJ
programs.

[6] W. Xu, D. Xu, V. Goel and K. Nygard. Aspect flow

graph for testing aspect-oriented programs.
http://www.cs.ndsu.nodak.edu/`wxu/research/436-
1111jd.pdf. 2004.

Presents a hybrid testing model approach that combines
responsibility-based testing model and an
implementation-based testing model. The paper shows
that the test suits generated by the model are
manageable, code based and executable. The approach
taken is merging class state model and aspect state
model into aspect scope state model (ASSM). An aspect
flow graph (AFG) is generated by combining ASSM with
advice and method data flow graph. Based on the AFG
and the transition tree created, concert and executable
code-based test suites can be derived in terms of
coverage testing criteria.

[7] G. Xu, Z. Yang, H. Huang, Q. Chen, L. Chen, and F. Xu.

JAOUT: Automated generation of aspect-oriented unit
test. In Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04), Shanghai, China.
2004.

Proposes a framework for automating the unit test
generation and test oracles from aspects in AOP. The
approach taken is based on a new concept known as
application-specific aspect. In this concept, aspects for
the same use are gathered into application-related top-
level aspects. The approach makes use of Aspect-
Oriented Test Description Language (AOTDL) to specify
the testing aspects. This then is translated by their
proposed tool, JAOUT/translator, into common aspects
in AspectJ. The tool JAOUT/generator generates the test
classes (serve as test oracles) for JUnit from the AspectJ
programs. Then, the authors use double-phase testing to
filter out the meaningless test cases.

[8] D. Xu, W. Xu and K. Nygard. A State-based approach to

testing aspect-oriented programs. In Proceedings of the
17th International Conference on Software Engineering
and Knowledge Engineering (SEKE’05), July 14-16,
Taiwan. 2005

Proposes an approach to generate test suites for
adequately testing object behavior and interaction
between classes and aspects in terms of message
sequences. The paper presents a model called Aspectual
State Model (ASM), an extension of FREE (Flattened
Regular Expression) state model, to specify classes and
aspects. ASM represents state transition in AOP. The
approach taken is by transforming an ASM to a
transition tree. In the transition tree, each path from the
root to a terminal leaf node is a test requirement

(message sequence). However, the ASM is defined in an
ad hoc manner.

[9] W. Xu and D. Xu. A model-based approach to test

generation for aspect-oriented programs. AOSD2005
Workshop on Testing Aspect-Oriented Programs,
Chicago, USA, March 2005.

Presents an approach to generate tests that are
adequately testing interaction between classes and
aspects based on aspect-oriented UML models. The
approach makes use of the extension to UML models.
These models are class diagrams, aspect diagrams, and
sequence diagrams. The approach firstly weaves advices
on a particular method into a new sequence diagram
(woven sequence diagram). Secondly, by using goal-
oriented reasoning on the woven sequence diagram, a
goal-directed flow graph is generated for certain
coverage criteria. This paper uses polymorphic and
branch coverage. Thirdly, the flow graph is transformed
to a flow tree. Each path from a leaf to the root in the
flow tree is a sequence of requested messages or method
invocations thus, indicates a test case. The paper
provides the related algorithms for each step taken in the
approach. However, the paper is the authors’
preliminary report on their ongoing research on model-
based testing of AOPs.

[10] C. V. Lopes and T. C. Ngo. Unit-testing aspectual

behavior. In Proceedings of the Workshop on Testing
Aspect-Oriented Programs, Chicago, USA, March 2005
This is a position paper to find a solution for unit-testing
aspects. The approach taken is based on JAML (Java
Aspect Markup Language) and JamlUnit (an extension
of JUnit). JamlUnit is a framework for performing unit
testing of aspect written in JAML. The paper shows the
possibility and requirements for formulating clean unit
testing techniques using mock object mechanisms.

[11] M. Mortensen and R. T. Alexander. An Approach for

adequate testing of AspectJ Programs. In Proceedings of
the 1st Workshop on Testing Aspect-Oriented Programs –
in Conjunction with AOSD’2005, Chicago, USA, 14-18
March 2005

Discusses an approach similar to [5], but with lesser
number of applications.

[12] H. Rajan and K. Sullivan. Generalizing AOP for aspect-
oriented testing. In Proceedings of the 4th International
Conference on Aspect-Oriented Software Development
(AOSD’2005), Chicago, USA, 14-18 March 2005.

Proposes a language-centric approach to automate test
adequacy analysis. The approach is called concern
coverage. The idea in this approach is to make use of
declarative aspect-oriented pointcut constructs to
include the code in adequacy criteria. They use the idea
of generalized join point models and pointcut languages,
and generalized advices. These ideas are used to extend
Eos language to become Eos-T. A framework embodies
the ideas is provided to support a testing tool, AspectCov.

[13] S. A. Ali Naqvi, S. Ali, and M. Uzair Khan. An

evaluation of aspect oriented testing techniques. In
Proceedings of the 2005 International Conference on
Emerging Technologies, Islamabad, 17-18 September
2005.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1291

© 2013 ACADEMY PUBLISHER

Presents an evaluation of data-flow-based unit testing
approach [3], aspect flow graph based testing strategy
[6], and state-based testing strategy [8] with respect to
fault model proposed by [2]. The authors found out that
state-based testing strategy of AOPs may produce good
results.

[14] T. Xie, J. Z, D. Marinov, and D. Notkin. Automated test

generation for AspectJ programs. The 1st Workshop on
Testing Aspect-Oriented Programs, 2005.

Proposes a framework, Wrasp, to reduce the manual
testing effort by automating generation of both unit and
integration tests for AspectJ Programs. Wrasp is
developed by leveraging the existing Java test generation
tools such as Parasoft Jtest and JCrasher. For
integration testing, Wrasp synthesizes a wrapper class
for base class and then feeds it the existing test
generation tools. Wrasp takes care of integration of
advised methods, advice, and intertype methods. For unit
testing, Wrasp generates tests to test advice in isolation.

[15] M. Badri, L. Badri, and M. Bourque-Fortin. Generating
unit test sequences for aspect-oriented programs:
towards a formal approach using UML state diagrams. In
Proceedings of the 3rd International Conference on
Information and Communication Technology, Cairo, 5-6
December 2005, pp. 237-253.

Presents a technique for unit test of AOPs based on
dynamic behavior as described by UML statecharts. The
technique taken generates test sequences from an
extended statechart that integrates aspects to the classes.
The test sequences generated in accordance to new
testing criteria that suit the aspectual behaviors. The
strategy of the technique focuses on finding faults in
integration of aspects.

[16] Y. Yamazaki, K. Sakurai, S. Matsuura, H. Masuhara, H.

Hashiura, and S. Komiya. A unit testing framework for
aspects without weaving. In Proceedings of the 1st
Workshop on Testing Aspect-Oriented Programs, March
2005.

Proposes a framework for unit test without weaving an
aspect by describing test cases viewed as description of
aspect in the program. Thus, test cases can directly
verify aspects’ properties such as the advice behavior
and pointcut matching. This framework is possible to be
combined with other framework written in Java through
the use of APIs.

[17] M. Ceccato, P. Tonella and F. Ricca. Is AOP code easier
or harder to test than OOP code? In Proceedings of the
Workshop on Testing Aspect-Oriented Programs,
Chicago, USA, March 2005.

Extends faults type in [2] with incorrect changes in
exceptional control flow, failures due to inter-type
declarations, and incorrect changes in polymorphic calls.
Based on the fault types, this paper describes the
possibility of using incremental testing to allow
separately testing the base code and aspects in
successive steps.

[18] A. V. Deursen, M. Marin, and L. Moonen. A systematic
aspect-oriented refactoring and testing strategy, and its
application to JHotDraw. arXiv:cs/0503015v1 [cs.SE],
March 2005.

Proposes a strategy for adoption of aspect-orientation in
existing software through refactoring and testing.
Refactoring will result in improvement of the internal
structure of a software system without altering its
behavior. The proposed testing strategy, aims to ensure
consistent migration process, consists of an aspect-
oriented fault model and adequacy criteria. The faults
covered are due to inter-type declarations, faults in
pointcuts and faults in advice. The strategy is
implemented in an open source project JHotDraw.

[19] P. Massicotte, L. Badri, and M. Badri. Generating aspects-
classes integration testing sequences: a collaboration
diagram based strategy. In Proceedings of the 3rd ACIS
International Conference on Software Engineering
Research, Management and Applications (SERA’05), pp.
30-37, August 2005.

Proposes a technique to generate test sequences that are
based on dynamic interaction between aspects and
classes for certain testing criteria. The technique focuses
on handling the integration of one or more aspects in
collaboration with a group of objects specified using
UML collaboration diagrams. The testing criteria are:
transition coverage criterion, sequence coverage
criterion, modified sequences coverage criterion, simple
integration coverage criterion and multi-aspects
integration coverage criterion.

[20] P. Massicotte, L. Badri, and M. Badri. Aspects-classes

integration testing strategy: an incremental approach. 2nd
International Workshop on Rapid Integration of
Software Engineering Techniques (RISE 2005), LNCS
3943, 2005, pp. 158-173.

Presents an approach based on specifications described
in a collaboration diagram. The approach consists of
two phases. The first phase uses static analysis to
generate test sequences based on interactions between
aspects and classes. The second phase verifies the
execution of the generated sequences in which aspects
are incrementally integrated to the collaboration
diagrams. The testing criteria as [19] are used.

[21] D. Xu and W. Xu. State-based incremental testing of
aspect-oriented programs. In Proceedings of the 5th
International Conference on Aspect-Oriented Software
Development (AOSD’06), March 20-24, pg. 180-189,
Bonn, Germany, 2006.

This paper is a follow up to the authors’ previous paper.
This paper presents a state-based approach to
incrementally test AOPs. The approach taken is by
incrementally modifying aspects to their base classes. It
describes two perspectives. Firstly, formalizes the
definition of the aspect-oriented state model by extending
the traditional finite state model. Besides that weaving
mechanism for applying an aspect to a base model is
also defined. These facilitate the transformation of
transition tree and generation of abstract test cases for
both base classes and aspect-oriented programs.
Secondly, the investigation of reusing base class tests

1292 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

reveals that majority of base class tests can be reused for
aspects. Several rules for maximizing reuse of base class
tests for aspect are identified. However, slight
modifications to the base class tests are necessary.
Besides the two perspectives, the paper also describes
several types of aspect-specific faults that can be
revealed by the state-based testing.

[22] T. Xie and J. Zhao. A framework and tool supports for
generating test inputs of AspectJ programs. In
Proceedings of the 5th International Conference on
Aspect-Oriented Software Development (AOSD’06),
March 20-24, pg. 190-201, Bonn, Germany, 2006.

Presents a framework known as Aspectra to automate
generation of test inputs for testing aspects in AspectJ.
The framework utilizes a wrapper-synthesis technique to
prepare woven classes for test-generation tools, such as
Rostra and Symstra, based on state exploration. This
approach uses the same process as [14]. To assess the
quality of the generated test input, aspectual branch
coverage and interaction coverage are defined and
measured. Aspectra has been applied on 12 AspectJ
benchmark source code. Their results provide useful
guidance to improve test coverage.

[23] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting
redundant unit tests for AspectJ Programs. In
Proceedings of the 17th International Symposium on
Software Reliability Engineering (ISSRE’06), Raleigh,
NCs, USA, 2006.

 Proposes a framework known as Raspect for detecting
redundancy in unit testing of AspectJ programs. It is a
complementary to Wrasp [14] and Aspectra [22].
Raspect uses partly the same process as in Wrasp and
Aspectra. The difference is where Raspect minimizes the
generated test for detecting and removing redundant.
Three levels of units in AspectJ programs are introduced
and tested: advised method, advice, and intertype
methods. Raspect is an extension of Rostra which detects
redundant test for Java methods. Raspect is evaluated
against [4] and the results show that Raspect can
effectively reduce the size of generated test suites.

[24] P. Anbalagan and T. Xie. APTE: Automated pointcut

testing for AspectJ programs. In Proceedings of the 2nd
Workshop on Testing Aspect-Oriented Programs, pages
27-32, July 2006.

An automated framework to unit test pointcuts in AspectJ
programs with the help of existing framework that
perform unit testing without weaving[16]. This
framework identifies joinpoints that are matched with a
pointcut expression and a set of boundary joinpoints.
The boundary joinpoints are events that do not satisfy a
pointcut expression but are close to the matched
joinpoints. The boundary joinpoints are identified as
those unmatched joinpoint candidates whose distances
from the match joinpoints are less than a predefined
threshold value. The threshold value is the maximum
distance against which the distances of unmatched
joinpoint candidates are compared and is supplied by
the user of the framework. The distance measured
quantifies the deviation of the boundary joinpoint from
the matched ones. The measure used is calculated based
on the Levenshtein algorithm

[25] P. Anbalagan and T. Xie. Efficient mutant generation
testing of pointcuts in Aspect-oriented programs. In
Proceedings of the 2nd workshop on Mutation Analysis,
2006.

 Proposes a framework that automatically generates
mutants for a pointcut expression and identifies the
mutants that are closely resemble the original expression
(equivalent mutants). The processes taken are identifying
join points that are matched by a pointcut expression,
generating mutants for this pointcut, and indentifying
join points matched by the mutants. Then the mutants
and their matched join points are compared with their
original pointcut. The mutants then are classified into
the same set of join points as neutral, weak, or strong.
The best mutant for a particular set is selected using a
simple heuristics. The classified mutants are ranked to
help developer in choosing a mutant that resembles
closely the original one. The ranking is based on a string
similarity measure- Monge Elkan distance measure. The
framework is able to reduce the total number of mutants
from the initial large number of generated mutants. An
extended version of this paper can be found in [45].

[26] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V.
Lopes. Testing aspect-oriented programming pointcut
descriptors. In Proceedings of the 2nd Workshop on
Testing Aspect-Oriented Programs, pages 33-38, July
2006.

Presents a fault classification for pointcut descriptorsas
introduced by [2] and a two-step strategy in handling the
fault introduced in by pointcut descriptors. The strategy
is a) detecting extra join points selected by by pointcut
descriptors using structural testing, and b) detecting
intended join points that were not selected by pointcut
descriptors using mutation testing.

[27] J. Zhao, T. Xie, and N. Li. Towards regression test
selection for AspectJ Programs. In Proceedings of the 2nd
Workshop on Testing Aspect-Oriented Programs, pages
21-26, July 2006.

Presents a code-base technique to safely regression test
AspectJ programs. The technique makes use of control
flow graphs of an original AspectJ program and its
modified version to detect the dangerous arcs. In order
to facilitate selection of regression tests, a control flow
graph that captures information on aspects is proposed.

[28] G. Xu. A regression tests selection technique for aspect-
oriented programs. In Proceedings of the 2nd Workshop
on Testing Aspect-Oriented Programs, pages 15-20, July
2006.
This position paper defines a new test selection criterion
based on impact of an aspect on main classes for AOPs
to achieve higher precision. The three-phase technique
used to safely selects regression tests based on the
differences of control flow paths of two programs and
uses dynamic analysis to re-select the tests using the new
criterion.

[29] J. S. Baekken and R. T. Alexander. Towards a fault
model for AspectJ programs: Step 1 – pointcut faults. In
Proceedings of the 2nd Workshop on Testing Aspect-
Oriented Programs, pages 1-6, July 2006.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1293

© 2013 ACADEMY PUBLISHER

Presents a fault model for AspectJ pointcut by describing
it through format that contains fault name, fault category,
summary, syntactic form and semantic impact. It
identifies four pointcut fault categories: incorrect
patterns, incorrect choice of primitive pointcut, incorrect
matching of dynamic circumstances, and incorrect
pointcut composition.

[30] J. S. Baekken and R. T. Alexander. A candidate fault
model for AspectJ pointcuts. In Proceedings of the 17th
International Symposium on Software Reliability
Engineering (ISSRE’06), Raleigh, NCs, USA, pg. 169-
178, 2006.

Describes in detail the individual fault types in each
category identified in [29].

[31] J. S. Baekken. A fault model for pointcuts and advice in
AspectJ programs. Master’s thesis, School of Electrical
Engineering and Computer Science, Washington State
Univ., USA, 2006.

Presents a fault model for pointcuts and advice of the
AspectJ programming language. The fault model for
pointcuts has been discussed in [29] and [30]. The thesis
provides a fault/failure analysis in the form of how a
fault found in a pointcut or a piece of advice can cause a
data state in the program to become corrupted, and how
that erroneous data state can propagate to the failure of
the program. Catalog of fault types is identified for the
fault model. Each type of fault is described in terms of
how it appears syntactically in source code and how it
can cause an infection of program state.

[32] O. A. L. Lemos, A. m. R. Vincenzi, J. C. Maldonado, and

P. C. Masiero. Control and data flow structural testing
criteria for aspect-oriented programs. The Journal of
Systems and Software. Vol. 80, issue 6, pp. 862-882,
2007.

Proposes a derivation of a control and data flow model,
named as aspect-oriented def-use graph (AODU), of
AspectJ programs based on static analysis of the Java
bytecode. From AODU , control flow and data flow
based testing criteria for aspect-oriented programs are
defined. This model is used to support structural testing
to unit testing of AspectJ programs.

[33] T. Xie and J. Zhao. Perspective on automated testing of

aspect-oriented programs. In Proceedings of the 3rd
Workshop on Testing Aspect-Oriented Programs, March
12-13, 2007, Vancouver, British Columbia, Canada.

This position paper presents the authors view on
automated testing of aspect-oriented programs. Their
views are classified on three dimensions: testing
aspectual behavior or aspectual composition, unit tests
or integration tests, and test-input generation or test
oracles. The paper presents the techniques for test-input
generation that is based on wrapper mechanism [22] to
leverage the existing Java testing tool for AspectJ
programs, test selection based on coverage information
[3], [22], [23] and mutation testing [25], and runtime
behavior checking with specification.

[34] C. Zhao and R. Alexander. Testing AspectJ programs
using fault-based testing. In Proceedings of the 3rd
Workshop on Testing Aspect-Oriented Programs, pp. 13-
16, March 12-13, 2007, Vancouver, British Columbia,
Canada.

This position paper describes an AspectJ program
testing method based on fault model. The fault model is
derived with the support of dependency model and
interaction model.

[35] C. Zhao and R. Alexander. Testing aspect-oriented

programs as object-oriented programs. In Proceedings of
the 3rd Workshop on Testing Aspect-Oriented Programs,
pp. 23-27, March 12-13, 2007, Vancouver, British
Columbia, Canada.
Discusses the feasibility of testing the woven code using
an object-oriented programs testing method.

[36] P. Massicotte, L. Badri and M. Badri. Towards a tool
supporting integration testing of aspect-oriented
programs. Journal of Object Technology, Vol. 6, No. 1,
pp. 67-89, January-February 2007.

Presents an aspects-classes integration testing strategy
and its associated tool for testing AspectJ programs. The
approach taken in this strategy consists of a) generating
test sequences based on the dynamic interaction between
aspects and classes, and b) verifying the execution of the
selected sequences. This paper is an extension to the
work in [19] and [20].

[37] M. L. Bernardi and G. A. Di Lucca. Testing aspect
oriented programs: an approach based on the coverage of
the interactions among advices and methods. In
Proceedings of the 6th International Conference on the
Quality of Information and Communication Technology,
pp. 65-76, 2007.

Proposes a set of testing coverage criteria based on the
interactions among the advices and the methods. A fault
model is proposed based on the interactions of methods
and advice by means of pointcut expressions defining
join points. The authors make use of the Inter-procedural
Aspect Control Flow Graph that they have previously
developed to define the coverage criteria. The criteria
are adapted from traditional white-box unit testing. The
criteria provide a guideline to define test cases when the
control is passed from classes to aspects, and when a
possible fault is likely to occur.

[38] R. M. Parizi and A. A. Ghani. A survey on aspect-
oriented testing approaches. In Proceedings of the 5th
International Conference on Computational Science and
Applications, pp. 78-85, 2007.

Surveys and compare the effectiveness the testing
approaches on AOP that are data flow-based [3], state-
based [8], aspect flow graph [6], aspectual behavior
[10], and model-based [9]. This is done in terms their
ability to find different kind of faults [2].

[39] G. Xu and A. Rountev. Regression Test Selection for

AspectJ software. In Proceedings of the 29th
International Conference on Software Engineering
(ICSE’07), pp. 65-74, 2007.

1294 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Proposes a control flow representation of the semantics
of AspectJ source code known as AspectJ Inter-module
Graph (AJIG) for regression testing of AOPs. The graph
consists of: a) CFGs that model the control flow for Java
classes, aspects, and relationships between aspects and
classes through non-advice method calls, and b)
interaction graphs that model the interactions between
methods and advices at some specific join points. Two-
phase graph traversal algorithm is developed to identify
the differences between two versions of AspectJ
programs. This approach claims to reduce the number of
test case selection.

[40] S. Zhang and J. Zhao. On identifying bug patterns in

aspect-oriented programs. In Proceedings of the 31st
Annual International Computer Software and
Applications Conference (COMPSAC 2007), Beijing, pp.
431-438, 24-27 July 2007.

Identifies six bug patterns in AspectJ programming
language. The patterns are The Infinite Loop, The Scope
of Advice, The Multiple Advice Invocation, The
Unmatched Join Point, Misuse of getTarget(), and
Introduction Interference. Examples are shown for each
bug patterns. The patterns can be helpful for testing.

[41] W. Xu. Testing aspect-oriented programs with state
models. PhD Dissertation, North Dakota State
University of Agriculture and Applied Science, May
2007.

Presents a state-based approach in modeling and testing
of aspect-oriented programs. The approach taken is by
using extended finite state machines to model classes
and aspects. Some related rules concerning the impacts
of aspects impose on the state transitions of the base
class objects are defined. These are used to compose
aspect models together with their base class models
through weaving process. An incremental testing process
is adopted to locate failures. A series of experiments with
a number of mutants are conducted to evaluate the fault-
detection ability of the approach.

[42] D. Xu and X. He. Generation of test requirements from
aspectual use case. In Proceedings of the 3rd Workshop
on Testing Aspect-Oriented Programs, pp. 17-22, March
12-13, 2007, Vancouver, British Columbia, Canada.

Presents an approach to generate system test
requirements from aspect-oriented use cases. This is
done through formalization of a testable system model
from aspect-oriented use cases. The steps taken are 1)
transforming aspect-oriented use case diagram and
description into aspect-oriented Petri nets, 2) traversing
the woven Petri net according to test coverage criteria to
generate use case sequences. The criteria are use case
coverage, transition coverage, and state coverage.

[43] I. G. Franchin, O. A. L. Lemos, and P. C. Masiero.
Pairwise structural testing of object and aspect-oriented
Java programs. In Proceedings of the 21st Brazilian
Symposium on Software Engineering, pp. 377-393, Porto
Alegre, RS, Brasil. SBC Press. 2007.

Presents a structural integration testing approach for
object-oriented and aspect-oriented Java programs. This
is proposed to handle the testing of the interaction
between pairs of units (methods and advices) with

respect to the correctness of their interface. Based on
Java bytecode data-flow and control-flow model, a
model known as PWDU (PairWise Def-Use) graph is
proposed to represent the control and data-flow of pairs
of units. From PWDU, three testing criteria are defined:
all-pairwise-integrated-nodes, all-pairwise-integrated-
edges, and all-pairwise-integrated-uses. The approach is
implemented in JaBUTi/PW-AJ an extension of JaBUTi
(Java Bytecode Understanding and Testing) family of
testing tool.

[44] F. Wedyan and S. Ghosh. A joinpoint coverage
measurement tool for evaluating the effectiveness of test
inputs for AspectJ programs. In Proceedings of the 19th
International Symposium on Software Reliability
Engineering, pp. 207-212, 10-14 Nov, 2008.

Presents a tool for measuring joinpoint coverage for
AspectJ programs. The approach taken by the tool is by
analyzing the bytecode of the woven classes and aspects
to get joinpoint information. The coverage measures
considered are the coverage in the woven classes and the
coverage for the advice.

[45] P. Anbalagan and T. Xie. Automated generation of

pointcut mutants for testing pointcuts in AspectJ
programs. In Proceedings of the 19th International
Symposium on Software Reliability Engineering, pp.
239-248, 10-14 Nov, 2008.

This is an extended version of the author’s position
paper [25]. More detail discussion on the automated
framework is given. The authors also presents the results
of the empirical study conducted. The results show that
the framework is valuable to assist in generating
effective mutants.

[46] F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation
testing for aspect-oriented programs. In Proceedings of
the 1st International Conference on Software Testing,
Verification, and Validation. pp. 52-61, 9-11 April 2008.

Presents a set of mutation operators for mutation testing
of AspectJ programs. The set is design to model fault
instances of fault types found in [2], [17], [18], [26],
[31], [40]. This paper groups the fault types and
respective operators into related language features. The
operators can be used for other AspectJ-like programs.

[47] D. Xu, W. Xu, and W. E. Wong. Testing aspect-oriented
programs with UML design models. International
Journal of Software Engineering and Knowledge
Engineering, Vol. 18, No. 3, pp. 413-437, 2008.

This is an improved version of paper [9] from the
perspectives of aspect-oriented UML models, model-
based test generation, and test execution. The paper also
discusses the empirical study conducted and the results
show that model-based testing approach able to reveal
fault types such as incorrect advice type, incorrect
pointcut strengths, and incorrect aspect precedence.

[48] M. Amar and K. Shabbir. Systematic review on testing
aspect-oriented programs: Challenges, techniques and
their effectiveness. Master Thesis Software Engineering,
School of Engineering, Blekinge Institute of Technology,
Sweden, August 2008.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1295

© 2013 ACADEMY PUBLISHER

Presents a systematic review of aspect-oriented software
testing from the perspectives of challenges, techniques,
and their effectiveness. The review provides detail state-
of-the-art research on aspect-oriented software testing
from the year 1999 to 2008. The review focuses on
structural testing techniques.

[49] C. H. Liu and C. W. Chang. A state-based testing
approach for aspect-oriented programming. Journal of
Information Science and Engineering, Vol. 24, pp. 11-31,
2008.

Presents a state-based testing approach for AOP. The
approach considers changes in the state-based behavior
introduced by the advices in different aspects. Three
steps are taken by the approach in generating test cases.
Firstly, identify the state variables and transition from
AOP specification or source code. This is done with the
help of object state diagram (OSD) to represent the
state-based behavior of AOP program before aspect
weaving, crosscut weaving model (CWM) to abstract
weaving sequences and to analyze the changes of state
variables after advice weaving. Secondly, capture the
possible transition changes caused by the aspects. This is
done with the help of an aspect object state diagram
(AsOSD). Lastly based on AsOSD, construct a test tree
by integrating the transitions of state variables.

[50] M. Bernardi. Reverse engineering of aspect oriented
systems to support their comprehension, evolution,
testing and assessment. In Proceedings of the 12th
European Conference on Software Maintenance and
Reengineering (CSMR 2008), pp. 290-293, 1-4 April,
Athens, 2008.

Presents a structural testing approach based on an inter-
procedural aspect control flow graph (IACFG). The
IACFG represents the interactions aspects and OO
component of AO system. The IACFG model together
with defined set of coverage criteria are used for testing
AO programs.

[51] O. A. L. Lemos and P. C. Masiero. Integration testing of

aspect-oriented programs: A structural pointcut-based
approach. In Proceedings of the 22nd Brazilian
Symposium on Software Engineering, pp. 49-64, 2008.

Presents a structural integration testing approach for
AspectJ programs. This is proposed to test pieces of
advice at each join point in the AO programs with
respect to pointcut mechanisms. Based on the idea of
pairwise approach [43], A model known as Pointcut-
based Control Flow Graph (PCCFG) is defined to
represent the flow of control between the base units and
pieces of advice (execution regions of AO programs
affected by a pointcut). Two control flow criteria are
defined: all-pointcut-based-advice-nodes and all-
pointcut-advice-edges. The approach is implemented in
JaBUTi/PC-AJ tool.

[52] O. A. L. Lemos and P. C. Masiero. Using structural
testing to identify unintended join points selected by
pointcuts in aspect-oriented programs. In Proceedings of
the 32nd Annual IEEE Software Engineering Workshop
(SEW 2008), pp. 84-93, 15-16 Oct, 2008.

Presents an approach using integration structural
testing to test unintended join point caused by faulty
pointcuts. The contents are basically similar to [51].

[53] C. Babu and H. R. Krishnan. Fault model and test-case
generation for the composition of aspects. SIGSOFT
Software Engineering Notes, Vol. 34, No. 1, pp1-6, 2009.

Proposes a fault model that identifies the faults occurred
during aspect composition from the perspective of design
based on sequence diagrams. Test case generation is
done based on the sequence diagrams. Possible faults
that may occur are incorrect aspect precedence,
incorrect focus of control flow between aspects and
classes, violation of the conditional order of execution of
aspects, and incorrect focus of control flow between
aspects.

[54] M. Harman, F. Islam, T. Xie, and S. Wappler.
Automated test data generation for aspect-oriented
programs. In Proceedings of the 8th International
Conference on Aspect-Oriented Software Development
(AOSD’09), March 2-6, pg. 185-196, Charlottesville,
Virginia, 2009.

Introduces a search-based optimization approach to
generate test data automatically for structural coverage
of aspect-oriented programs. Specifically an approach is
developed to generate test data to cover aspectual
branches (branches inside aspects) based on
evolutionary testing, a search-based software testing
approach. Input-domain reduction technique is used
together with program slicing technique to reduce the
input domain by excluding irrelevant parameter in the
search space to reduce test effort and increase testing
effectiveness. The approach is implemented in a
prototype tool known as EvolutionaryAspectTester (EAT).
Empirical study conducted shows that the optimization
used increases the effectiveness and efficiency by
focusing on aspectual behavior.

[55] N. Kumar, A. Rathi, D. Sosale, and S. N. Konuganti.
Enabling the adoption of aspects – testing aspects: A risk
model, fault model and patterns. In Proceedings of the
8th International Conference on Aspect-Oriented
Software Development (AOSD’09), March 2-6, pp. 197-
206, Charlottesville, Virginia, 2009.

Presents an AOP testing model that consists of a faulty
model, a risk model for assessing related AOP faults, a
testing framework that supports unit test and regression
test, and AOp testing patterns.

[56] R. M. Parizi, A. A. A. Ghani, R. Abdullah, and R. Atan.

Towards a framework for automated random testing of
aspect-oriented programs. In Proceedings of the ISCA
18th International Conference on Software Engineering
and Data Engineering (SEDE 2009), pp. 217-223, 22-24
June, Las Vegas, Nevada, USA, 2009.

This position paper proposes a framework to random
test aspect-oriented programs. The aim is to combine
random testing with AOP testing in automating the test
data generation and execution of testing for aspect-
oriented programs.

1296 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

[57] R. Delamare, B. Baudry, and Y. Le Traon. AjMutator: A
tool for the mutation analysis of AspectJ pointcut
descriptors. In Proceedings of the IEEE International
Conference on Software Testing Verification and
Validation Workshops (ICSTW 2009), pp. 200-204, 1-4
April, Denver, Colorado, 2009.

Presents a tool known as AjMutator for mutation
analysis of pointcut descriptor (PCD) in AspectJ
programs. Mutation operators for PCDs [46] are
considered in the tool. The tool also automatically
classifies the mutant PCDs according to matching of sets
of jointpoints with the mutants to look for equivalent
mutants. The mutant classification is divided into
equivalent mutant, mutant with neglected jointpoint and
mutant with unintended jointpoit.

[58] R. Delamare, B. Baudry, S. Ghosh and Y. Le Traon. A
test-driven approach to developing pointcut descriptors
in AspectJ. In Proceedings of the 2009 International
Conference on Software Testing, Verification and
Validation (ICST ’09), pp. 376-385, 1-4 April, Denver
Colorado, 2009.

Identifies two issues related to testing pointcut
descriptors (PCDs) that lack of specification for
intended joinpoints and inability of JUnit to explicitly
assert the presence or absence of an advice at a given
point in source code. Thus this paper proposes a test-
driven approach to solve the issues. A tool known as
AdviceTracer that extended JUnit is implemented to
specify the expected joinpoints. AjMutator [57] is used to
inject fault into PCDs in order to help validating test
cases produced by AdviceTracer. Experiments conducted
shows that AdviceTracer works better in test-driven
development of PCDs better than plain JUnit.

[59] M. Kumar, A. Sharma, and S. Garg. A study of aspect
oriented testing techniques. In Proceedings of the IEEE
Symposium on Industrial Electronics and Applications
(ISIEA 2009), pp. 996-1001, Oct 4-6, Kuala Lumpur,
Malaysia, 2009.

Analyzes the effectiveness of four testing strategies [3],
[6], [8], [37] with respect to finding different types of
faults as defined in the fault model [2].

[60] M. Badri, L. Badri and M. Bourque-Fortin. Automated
state-based unit testing for aspect-oriented programs: A
supporting framework. Journal of Object Technology,
Vol. 8, No. 3, May-June 2009, pp. 121-146.

Presents a state-based unit testing technique, based on
UML Statechart Diagrams of the classes under test and
the code of related aspect, to integrate one or more
aspects to a class in AspectJ programs. The technique
focuses on aspect-class block of code. As in a associated
tool, AJUnit, is developed to generate testing sequences
covering the block of code. These sequences represent
different scenarios of the statechart diagram with
extension of behavior of related aspects. The tool also
supports the execution and verification of the generated
sequences.

[61] R. M. Parizi, A. A. A. Ghani, R. Abdullah, and R. Atan.
On the applicability of random testing of aspect-oriented

programs. International Journal of Software Engineering
and Its Applications, Vol. 3, No. 3, July, pp.1-19, 2009.

Presents an extension of the earlier paper [56].

[62] A. Jackson and S. Clarke. MuAspectJ: Mutant

generation to support measuring the testability of
AspectJ programs. Technical Report (TCD-CS-2009-38),
ACM, September 2009.

Introduces MuAspectJ, a tool that generates mutants for
AspectJ programs. It is an extension of MuJava. The tool
provides a complete set of mutation operators to cover
both AO and non-AO locations in AspectJ programs. The
operators create faults at the locations in a source code.
The tool is evaluated based on the quality of the mutants
generated by means of location coverage and mutation
density.

[63] O. A. L. Lemos, I. G. Franchin, and P. C. Masiero.
Integration testing of object-oriented and aspect-oriented
programs: A structural pairwise approach for Java.
Science of Computer Programming. Vol. 74, pp. 861-
878, 2009.

Presents an extended version of their earlier paper [43],
in proposing a structural integration testing approach
for object-oriented and aspect-oriented Java programs
to handle the testing of the interaction between pairs of
units (methods and advices). A model called PWDU
(PairWise Def-Use) graph is proposed and used to
represent the control and data-flow of pairs of units, and
its family of testing criteria. Exploratory evaluation
involving experiments conducted to investigate the cost
of application and usefulness of the approach shows that
the criteria are practical and useful.

[64] F. C. Ferrari, E. N. Hohn, and J. C. Maldonado. Testing
aspect-oriented software: Evolution and collaboration
through the years. In Proceedings of LAWASP’09,
Brazilian Computer Society, pp. 24-30, 2009.

Presents a systematic review on general scenario of
research on AO software testing focusing on the
evolution of AOP testing approaches and collaborations
among researchers in AO testing community. A total of
51 studies have been selected from the year 2002 and
2009. The paper shows that structural and fault-based
testing strategies have reached the highest maturity level.
However, there is still lack of collaboration among
researchers.

[65] F. Wedyan and S. Ghosh. A dataflow testing approach
for aspect-oriented programs. In Proceedings of the 2010
IEEE 12th International Symposium on High Assurance
Systems Engineering (HASE 2010), pp. 64-73, 2010.

Presents a dataflow testing approach for AOPs that is
based on class state variables. The approach uses
framed Interprocedural Control Flow Graph (ICFG) [3].
Based on class state variables, five types of Definition-
Use Association are classified from which six state
variable test criteria are proposed. The approach has
been implemented in a tool known as DCT-AJ to
measure the dataflow coverage for a test suite. Cost-
effectiveness studies conducted shows that the dataflow
criteria were more effective than block coverage criteria.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1297

© 2013 ACADEMY PUBLISHER

[66] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E.

Figueiredo, N. Cacho, F. Lopes, N. Temudo, L. Silva, S.
Soares, A. Rashid, P. Msiero, T. Batista, and J.
Maldonado. An exploratory study of fault-proneness in
evolving aspect-oriented programs. In Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering (ICSE’10), pp. 65-74, 2-8 May, Cape Town,
South Africa, 2010.

Presents an exploratory analysis on fault-proneness of
AOPs of three real world AO systems from different
application domains. The analysis concerns with AOP
obliviousness properties and mechanisms that are
pointcuts, advices and intertype declarations. The
methods used for the analysis are through testing and
static analysis. These are performed by developers and
independent testers. Firstly, the result confirms that the
lack of awareness between base and aspectual modules
leads to incorrect implementation. Secondly, the current
AOP mechanisms show similar fault-proneness in
overall systems and concern specific implementation, not
only pointcuts. Lastly, it is found out that there is a direct
proportional between the number of faults associated
with a concern and the number of AOP mechanisms
implementing the concerns.

[67] F. C. Ferrari, A. Rashid, E. Y. Nakagawa, and J. C.

Maldonado. Automating the mutation testing of aspect-
oriented Java programs. In Proceedings of the 5th
Workshop on Automation of Software Test (AST’10), pp.
51-58, 3-4 May, Cape Town, South Africa, 2010.

Introduces a tool known as Proteum/AJ to automate the
mutation testing of aspect-oriented AspectJ programs.
The tool supports a set of requirements that defines the
functionalities identified for mutation testing. The tool is
also able to overcome limitation faced by previous tools
[45] [57]. The tool implements a set of mutation
operators defined in [46].

[68] M. Singh and S. Mishra. Mutant generation for aspect-

oriented programs. Indian Journal of Computer Science
and Engineering, Vol. 1, No. 4, pp. 409-415, 2010.

Presents an extension to the fault types defined in [46].
Based on the fault types, a set of mutation operators is
specified. It also proposes a framework to implement the
faults types and mutation operators.

[69] R. M. L. M. Moreira, A. C. R. Paiva, and A. Aguiar.

Testing aspect-oriented programs. In Proceedings of the
5th Iberian Conference on Information Systems and
Technologies, pp. 1-6, 16-19 June, Santiago de
Compostela, 2010.

Presents a perspective on software quality issues
introduced by AOP, identifies key issues in testing AOP,
and reviews state-of-the-art of the proposed solutions.

[70] F. C. Ferrari, R. Burrows, O. A. L. Lemos, A. Garcia,

and J. C. Maldonado. Characterising faults in aspect-
oriented programs: Towards filling the gap between
theory and practice. In Proceedings of the 2010 Brazilian
Symposium on Software Engineering, pp. 50-59, Sept
27- Oct 1, 2010.

Presents results of a study (using testing and code
analysis) that quantify and categorize faults in AOPs.
Fine-grained fault taxonomy refined from [46] is
proposed in the study. The faults are extracted from
three AO systems. The results show that a subset of fault
types stood out when compared to faults within a specific
category. The results also show the most recurring fault
types and how they are introduced to the code.

[71] D. Xu, O. El-Ariss, W. Xu, and L. Wang. Testing aspect-

oriented programs with finite machines. Journal of
Software Testing, Verification and Reliability,
doi: 10.1002/stvr.440, 2010.

Presents MACT (Model-based Aspect Checking and
Testing) framework, based on finite state models, for
testing the conformance of aspect-oriented programs
against their aspect-oriented state models. MACT
provides notations for describing aspect-oriented
properties at UML state machine. MACT offers
structure-oriented and property-oriented testing
strategies for generating aspect tests from aspect-
oriented state model. The structure-oriented strategy
derives tests for structural coverage criteria which are
state coverage, transition coverage, and round-trip. The
property-oriented strategy produces tests from the
counterexamples of model checking. Strategies used are
checking an aspect-oriented state model against trap
properties and checking mutants of aspect models. The
capabilities of the strategies in detecting faults are
evaluated through mutation analysis of AOPs against the
fault model. Results show that both strategies are
complement to each other in detecting many aspect
faults.

[72] D. Xu and J. Ding. Prioritizing state-based aspect tests.
In Proceedings of the 3rd International Conference on
Software Testing, Verification, and Validation, pp. 265-
274, 6-10 April, 2010.

Explores the prioritization of aspect tests, in incremental
testing fashion, for aspect-oriented programs against
their state model with transition coverage and round-trip
coverage. Prioritization is done to report the failure
earlier and to reduce test execution time. The
prioritization is based on how aspects do the
modifications base classes. The extent of modification
which is the number of new and changed components in
state transition identifies the priority of testing. Higher
number of changes means higher priority for test
generation. Test generation is done in Model-based
Aspect Checking and Testing (MACT) framework [71].
Cases studies conducted to evaluate the effectiveness of
the prioritization using finite state machines through
mutation analysis of AspectJ programs show that
prioritization has accelerated failure report.

[73] R. M. Parizi and A. A. A. Ghani. A theoretical

evaluation of automated aspect-oriented programs testing
approaches. In Proceedings of the Annual International
Conference on Software Engineering (SE 2010), pp.
S11- S19, 2010.

Presents an overview and theoretical evaluation of
approaches on automated AOP testing. The approaches
surveyed are categorized as automated test generation
and selection (Wrasp [14], Aspectra [22], Raspect [23],

1298 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

APTE [24], and EAT [54]), automated test oracle (Pipa),
and automated test execution (aUnit). The comparison is
based on the following criteria; test type, test scope,
automation level, and tool support.

[74] O. A. L. Lemos and P. C. Masiero. A poincut-based

coverage analysis approach for aspect-oriented programs.
Journal of Information Sciences, Vol. 181, pp. 2721-
2746, 2011.

Presents a coverage analysis approach for exercising
statements, branches, and def-use pairs of each advice at
each affected join point. A control- and data-flow model,
named as PointCut-based Def-Use Graph (PCDU), is
proposed based on Java bytecode resulted from the
compilation of AspectJ programs. From PCDU, two
control-flow testing criteria (all-pointcut-based-advice-
nodes and all-pointcut-based-advice-edges) and one
data-flow testing criteria (all-pointcut-based-uses) are
also proposed. The approach is implemented in
JaBUTi/PC-AJ tool. Theoretical, empirical and
exploratory studies were conducted and they show
evidence that the approach is feasible and effective.

[75] A. Delamare, B. Baudry, S. Ghosh, S. Gupta, and Y. Le

Traon. An approach for testing pointcut descriptors in
AspectJ. Journal of Software Testing, Verification and
Reliability, Vol. 21, pp. 215-239, 2011.

Presents an extension of their previous work in [57] and
[58]. It focuses on the development of AdviceTracer [58],
a tool to handle monitoring and storage of information
related to the execution of advices, and AjMutator [57]
to inject mutants by inserting faults in the PCDs.
Detailed discussion on motivation and challenges for
testing PCDs are also given. Empirical study conducted
is of a larger scale as compared to their previous work
[58]. The empirical study evaluates the effectiveness and
utility of AdviceTracer with JUnit, in comparison with
pure JUnit, for writing test cases in AspectJ PCDs.
Results from the study shows that AdviceTracer produces
simpler test cases (easier to write) and detect more faults
than pure JUnit.

[76] R. M. Parizi and A. A. A. Ghani. On the preliminary

adaptive random testing of aspect-oriented programs. In
Proceedings of the 6th International Conference on
Software Engineering Advances (ICSEA 2011),
Barcelona, Spain, pp. 49-57, 23-29 October, 2011.

Investigates the opportunities that adaptive random
testing (ART) can provide to aspect-oriented
programming. The investigation focuses on three
perspectives; that are category and choice, object-based,
and coverage-based. The perspectives are analyzed
based on their underlying techniques and different
distance measures, and their applicability to AOP. This
is a preliminary investigation on the applicability of ART
for AOP.

[77] R. M. Parizi, A. A. A. Ghani, R. Abdullah, and R. Atan.

Empirical evaluation of the fault detection effectiveness
and test effort efficiency of the automated AOP testing
approaches. Journal of Information and Software
Technology, Vol. 53, pp. 1062-1083, 2011.

 Presents an empirical evaluation of the existing
automated AOP testing approaches through
experimentation. The automated AOP testing
approaches concerned are Wrasp [14], Aspectra [22],
Raspect [23], and EAT [54]. The focus of the evaluation
is test input generation and selection strategies of the
approaches with respect to effectiveness in detecting
faults and required effort to detect the faults. The study
makes use of mutation analysis on the four approaches
through a process known as M-process. Adaptive
AjMutator tool, an extension of AjMutator [57], is
developed to generate mutants in the process. Results of
the study reveal that EAT is more effective, but not
significant for all approaches. In the case of test effort
efficiency, Wrasp shows the lowest amount of test effort.
Whereas EAT exhibits the highest amount of test effort.
This means EAT is the most effective but with less
efficient.

[78] P. Alves, A. Santos, E. Figueiredo, and F. Ferrari. How

do programmers learn AOP? An exploratory study of
recurring mistakes. In Proceedings of 5th Latin-American
Workshop on Aspect-Oriented Software Development
(LA-WASP.11), Sao Paolo, Brazil, 26 September, 2011.

Reports the results of a series of experiments in
characterizing mistakes made by novice and junior
programmers. The results show that mistakes recur by
programmers with specific background.

[79] F. C. Ferrari, A. Rashid, and J. C. Maldonado. Design of
mutant operators for the AspectJ language. Technical
Report Version 1.0, Computing Department, Federal
University of Sao Carlos, Brazil, December 2011.

Provides the mutation operators for AspectJ language.
Originally the operators are proposed in [46]. The
operators are grouped into into pointcut descriptor
(PCD), intertype declaration (ITD), and advices.

[80] N. McEachen and R. Alexander. Distributing classes
with woven concerns – An exploration of potential fault
scenarios. In Proceedings of the 4th International
Conference on Aspect-oriented Software Development
(AOSD’05), Chaicago, Illinois, pp. 192-200, 14-18
March 2005.

Explores the potential faults that could occur with
respect to foreign aspects in AspectJ version 1.2. A
foreign aspect is an aspect woven into a class or set of
classes with the resultant bytecode being imported by
another party not having access to the aspect code. The
problem occurs because of unboubded pointcut and
partial weaving.

[81] A. Restivo and A. Aguiar. Towards detecting and
solving aspect conflicts and interferences using unit tests.
Workshop SPLAT’07, Vancouver, British Columbia,
Canada, 12-13 March 2007.

Presents a methodology that uses unit testing to detect
conflicts and interferences introduced by aspects.

[82] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1299

© 2013 ACADEMY PUBLISHER

(ECOOP’97), Jyvaskyla, Finland, pp. 220-242, 9-13
June, 1997.

Reports on early development of aspect-oriented
programming done at Xerox Palo Alto Research Center.

 [83] G. J. Myers. The art of software testing, Wiley, New
York, 1979.

Classical book on software testing and still has its
influence today. A new version was revised and updated
by Tom Badgett, Todd Thomas, and Corey Sandler. The
version was published in 2004. The updated version
contains examples of current programming languages,
testing for extreme programming and e-commerce.

[84] B. Beizer. Software Testing Techniques. Second edition.
1990

A very comprehensive book on the testing techniques.
Many testing techniques are enumerated and discussed
in detail such as domain testing, data-flow testing,
transaction-flow testing, syntax testing, logic-based
testing, etc.

[85] W. Hetzel and B. Hetzel. The complete guide to software
testing. 2nd edition, John Wiley and Son, Inc. New York,
1991.

Presents a new perspective on software testing as a life
cycle activity. It covers the concepts and principles of
testing, offering detailed discussions of testing
techniques, methodologies and management viewpoints.
This is a revised edition of its 1988’s edition featuring
new chapters on testing methodologies such as ANSI
standard-based testing and a survey of testing practices.

[86] P. Amman and J. Offutt. Introduction to Software
Engineering. Cambridge University Press, New York,
2008.

Presents techniques related to dynamic or execution-
based testing. The approach taken in organizing the
presentation of the techniques is software testing
coverage criteria since software testing is based on
satisfying coverage criteria. The coverage criteria
concerned are based on graphs, logical expressions,
input space, and syntax structures.

[87] R.Laddad. AspectJ in Action: A Practical Aspect-Oriented
Programming. Manning Publications Co. New York.
2003.

The book explains the AOP methodology and AspectJ
language. It also presents examples of how AspectJ is
used as solution to common concerns such as logging,
policy enforcement, resource pooling, business rules,
thread-safety, authentication and authorization, as well
as transaction management. Its new edition was
published in 2009.

[88] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25
years of testing technique experiments. Journal of
Empirical Software Engineering, Vol. 9, pp. 7-44, 2004.

Analyzes the maturity level of the knowledge about
testing techniques.

[89] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs, in:
ACM SIGSOFT Foundation of Software Engineering,
Newport Beach/CA, ACM Press, USA, pp. 147-158,
2004.

In the perspective of this annotated bibliography, Stack
program inside this paper has been used as one of the
subjects for experimentation conducted by researchers.

Abdul Azim Abdul Ghani received the
B.Sc. in Mathematics/Computer
Science from Indiana State University,
USA in 1984 and M.Sc. in Computer
Science from University of Miami,
USA in 1985. He joined University
Putra Malaysia in 1985 as a lecturer in
Computer Science. He received the
Ph.D in Software Engineering from
University of Strathclyde in 1993. He is

a Professor at the Department of Information System,
University Putra Malaysia. His research interests are Software
engineering, Software measurement, Software testing, and
Aspect-oriented programming (AOP).

Reza Meimandi Parizi is a researcher
in the Department of Software
Engineering at University of Malaya.
His research interests in software
engineering include automated software
testing, aspect-oriented programming,
software traceability, and empirical
studies. He holds a Ph.D degree in
Software Engineering from the

Universiti Putra Malaysia.

1300 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

