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Abstract—with the diversification of hardware platforms, 
software compatibility issue has become increasingly 
prominent. Virtual machine with dynamic binary 
translation system is the key technology to solve this 
problem. This paper designs an operating system kernel 
level virtual machine with binary translation systems (KBT) 
which is embedded into kernel space as a kernel module. 
KBT reduces the number of virtual layers of the computer 
system, and introduces further optimization strategies using 
kernel mode advantages. Experiment results improves that, 
KBT’s efficiency is higher than existing binary translation 
systems about 25%. KBT also has some interfaces to 
support kernel module translation systems to run complex 
software, which are hard to run upon existing user space 
virtual machines. 
 
Index Terms—virtual machine, binary translation, 
operating system, kernel space, kernel module, virtual layer. 
 

I.  INTRODUCTION 

At present, with the innovation of computer 
architecture, Software compatibility issue has become 
increasingly prominent. Virtual machine (VM) can run 
binary format software on different architectures without 
any modification of source code, thus becomes the key 
technology to solve this problem[1]. 

The key technology to run software on different 
architectures is binary translation which can translate an 
instruction stream based on one ISA (Instruction System 
Architecture) into the corresponding instruction stream 
based on another ISA[2]. There are two kinds of binary 
translation systems: static binary translation system and 
dynamic binary translation system. Interactive virtual 
machines always use dynamic translation system, which 
translates instructions dynamically during execution of 
programs. 

Traditional computer hardware and software systems 
can be divided into different virtual layers: hardware 
layer, operating system layer and application layer(Fig.1 
(a)). A virtual machine which run an entire operation 
system (such as VMware[3], QEMU[5][6], virtualbox[4]) 
adds two additional virtual layers into the computer 

system(Fig.1 (b)): virtual machine layer and guest 
operation system layer, each virtual layer causes 
additional performance loss. On the other hand, a virtual 
machine with dynamic binary translation systems needs 
translate instructions during the execution of the program, 
and maintains runtime instructions management 
mechanism which causes large number of performance 
overhead. With the increasing of software systems’ 
complexity, how to reduce the performance overhead of 
dynamic translation systems becomes an important 
issue[4]. 

 

 
Figure 1: computer systems’ virtual layers. The left figure shows virtual 
layers of computer systems without any virtual machine, the right figure 

shows virtual layers of computer systems with virtual machines. 
 

Traditional virtual machines with dynamic binary 
translation systems run upon host operation systems (such 
as widely used open source software QEMU), these 
virtual machines have some advantages, such as, clean 
hierarchy, easy to use, easy to be migrated from one 
compute to another. But, because of the virtual layers 
added by these VMs, the entire computer system’s 
performance is reduced significantly. For high-
performance applications, such as complex interactive 
multimedia applications and large-scale scientific 
computing software, these VMs usually fail in 
performance. At the same time, some complex software 
may have modules embedded in operating system kernel, 
such as the hardware driver modules of multimedia 
players. Traditional user level virtual machines are hard 
to run this kind of software. 

To resolve this problem, we considered lowering the 
layer of the virtual machine, and merging the virtual 
machine with host operating system. The virtual machine 
with dynamic binary translation systems becomes a 
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kernel module of the operating system, and runs in kernel 
mode. This strategy can significantly improve the 
performance of the entire computer system, and can also 
support kernel module translation systems which translate 
software’s kernel modules. This paper designed an 
operating system kernel level virtual machine with binary 
translation systems (KBT), KBT is embedded into 
operating system kernel space as a kernel module, and 
only a simple boot module stays in user space which 
boots and passes information to operating system kernel. 
KBT reduces the number of virtual layers of the computer 
system with virtual machines (Fig. 2). At the same time, 
further optimization strategies using kernel mode 
advantages were introduced to improve the performance 
of the computer system.  We also designed some 
interfaces to support kernel module translation systems to 
run complex application software. 

 

Figure 2: virtual layers of a computer system with a virtual machine. 
The left figure shows virtual layers of user space virtual machines, the 

right figure shows virtual layers of operating system kernel space virtual 
machines. 

 
The remainder of this paper is as follows. In section II, 

we introduce existing widely used virtual machines, 
discuss their advantages and disadvantages. In section III, 
we introduce the design and structure of KBT. The 
experiment results and analysis are drawn in section IV. 

  

II.  EXISTING VIRTUAL MACHINES 

VMware is a widely used business virtual machine. It 
provides an abstraction of x86 PC hardware to run 
multiple operating systems at the same time. As a 
business system used by millions of users, VMware has 
high stability and efficiency. But, because it has no 
dynamic binary system, it can’t run operating systems on 
different ISA, such as MIPS. So it can’t be used to solve 
the software compatibility problem.  

Virtualbox is a powerful x86 virtualization software 
which is freely available as an Open Source Software 
under the terms of the GNU General Public License 
(GPL). It has comparative performance with VMware. It 
also has no dynamic binary systems, so is not a solution 
to software compatibility problem. 

QEMU is a multi-host, multi-target virtual machine. It 
can run on multiple host ISA, such as X86， X86-64, 
MIPS, PowerPC and so on, and it can emulate multiple 
guest ISA too[6]. So it can be used to resolve software 
compatibility problem. QEMU is an Open Source 
Software and runs upon host operating systems. As 
discussed before, this kind of virtual machines add 
additional virtual layers to computer system (Fig. 1),   
translate instructions during the execution of the program, 
and maintain runtime instruction management mechanism, 

so their efficiency are not very high and can’t run 
complex software smoothly. At the same time, as a user 
space virtual machine, QEMU can’t run applications with 
kernel modules.  

DigitalBridge[8] is a binary translation system which 
can also run on different host ISA, and can emulate 
different guest ISA. It is also a user space binary 
translator and has similar mechanism with QEMU. How 
to optimize the efficiency and how to translate kernel 
modules are problems needed to be resolved. 

Kernel-based Virtual Machine (KVM)[9], is a 
subsystem of Linux operating system which leverages 
virtualization extensions of commodity x86 processors to 
add a virtual machine monitor capability to Linux. Using 
KVM, multiple virtual machines can run on Linux 
operating system. This is an operating system level 
virtualization system which can run in kernel space. But 
it has no dynamic binary translation module so can’t be 
used to solve software compatibility problem.  

The relationship of above virtual machine systems are 
shown by Fig. 3. From Fig. 3 we can see that KBT is the 
only virtual machine running in kernel space which can 
handle software compatibility problem, and KBT is also 
the only system which can run complex applications with 
kernel modules. 

 

 
Figure 3: classification of virtual machines 

 

III.  DESIGN OF KBT 

A.  Advantages of Kernel Space 
Modern operating systems have two run levels: user 

space and kernel space, corresponding to different CPU 
privilege levels. Take x86 CPU for example, it has four 
privilege levels from 0 to 3, when a process runs in user 
space, the CPU runs on privilege level 3, and when a 
process runs in kernel space, the CPU runs on privilege 
level 0. Different privilege levels have different 
restrictions, for example, the IN and OUT instructions 
used to input and output information to hardware ports 
can be used on privilege level 0, but can’t be used on 
privilege level 3. Normally, only the operating system 
kernel runs in kernel space, other processes run in user 
space. When a process running in user space wants to 
communicate with hardware ports, it must request an 
operating system service and trap into the kernel. Existing 
virtual machines with dynamic binary translation systems 
run in user space, such as QEMU. 

Compared with processes running in the user space, 
kernel space processes have many advantages in 
efficiency. Such as, for a virtual machine running in the 
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user space, the guest process’ kernel requests must be 
encapsulated by the virtual machine, and then trap into 
the kernel, this usually has significantly performance loss. 
Modern operating systems support the multiple processes 
schedule mechanism, user space virtual machines can 
only take limited time slices allocated by the operating 
system to run guest processes. Of cause, for common 
users, multiple processes schedule mechanism can bring 
about significantly convenience. But when we use a 
virtual machine to run guest operating systems, we 
always don’t need other processes except the virtual 
machine itself. In this case, kernel space virtual machines 
have significant advantages. For some complex 
applications’ kernel modules, such as multimedia players’ 
3D hardware accelerating modules, the translation can 
only be done in kernel space. User space virtual machines 
are hard to handle this problem. 

B.  Structure of KBT 
Based on the above discussion, we designed an 

operating system kernel level dynamic binary translation 
system (KBT). KBT has five main modules: User 
Monitor, CPU Simulator, Translator, Hardware Adapter 
and Kernel Monitor. User Monitor boots guest 
applications, and manages the interactive between the 
user space and the kernel space. CPU Simulator is the 
core module of KBT, it simulates a guest computer 
system’s CPU. Kernel Monitor provides the ports for 
kernel module translation systems to translate the 
complex applications’ kernel modules. Hardware Adaptor 
transmits the hardware operations of the guest software to 
physical hardware. The structure of KBT is shown by Fig. 
4. 

 

Figure 4: structure of KBT 
 
User Manager is the first launched module of KBT, it 

boots the guest software in user space, and handles the 
interactive between user space and kernel space. Take 
Windows operating system’s simulating for example, 
User Manager boots the Windows image into memory, 
and sends the memory location of Windows image to 
CPU Simulator, then gives control to CPU Simulator. 
When Windows needs handling some user space requests, 
such as user interactions, User Manager captures the 
request and sends it to CPU Simulator. 

CPU Simulator simulates a guest computer system’s 
CPU, and coordinates the entire KBT system’s work. It’s 

the core function module of KBT. CPU Simulator needs 
simulating the modern CPU’s instruction execution 
function, instruction cache function, privilege level 
management function and so on. It also integrates the 
memory manage unit’s function, such as virtual memory 
mapping. The structure of CPU Simulator is shown by 
Fig. 5. CPU Simulator has Register Issue Engine, 
Memory Engine and Environment Engine coordinated by 
Execution Engine. Register Issue Engine provides virtual 
registers to Execution Engine, Memory Engine provides 
virtual memory space, and provides virtual memory 
management mechanism. Environment Engine provides 
context switch function and stack function needed by the 
execution of a process. 

The registers of CPU can be divided into general 
registers and control registers. General registers are used 
to store arithmetic’s operands and results, control 
registers are used to control CPU’s execution status, such 
as privilege levels switch. Register Issue Engine uses 
General Register Simulator and Control Register 
Simulator to simulate the two kinds of registers. Take x86 
32 bits CPU for example, General Register Simulator 
simulates eight general registers: EAX, ECX, EDX, EBX, 
ESP, EBP, ESI, EDI. Execution Engine can use these 
general registers by the corresponding variables. 
Correspondingly, Control Register Simulator simulates 
the control registers of x86 CPU, such as CR control 
registers. Control Register Simulator also simulates the 
flag registers such as EFLAGS registers. Physical 
Register Manager maps the virtual registers to real 
memory cells or real registers. Compared with general 
registers, control registers are not used very frequently, so 
they are mapped to memory cells to lower the pressure of 
physical registers. But for the frequently used general 
registers, mapping them to the memory cells will bring 
about serious memory access overload. So, Physical 
Register Manager maps them to the physical registers. 
Liao gave a strategy to solve this kind of problem in [10]. 

Memory Engine provides virtual memory view to 
Execution Engine. All of the memory access’s addresses 
used by Execution Engine are not physical memory 
addresses, but virtual memory addresses, and need to be 
translated to physical addresses by Memory Engine. Just 
to be clear, the physical addresses talked here are not the 
physical addresses of real physical computers, they are 
physical addresses of virtual computer system provided 
by the virtual machine. Software can’t operate real 
physical memory addresses of computers. Virtual 
memory view can bring great benefits to virtual machine 
design, and it provides the possibility of running whole 
Operating Systems and Distributed Network Systems on 
virtual machines. Virtual Memory Manager Module 
supports 4G virtual memory, and supports page based 
virtual memory management. Virtual TLB simulates a 
Translation Lookaside Buffer (TLB) to accelerate the 
virtual address translation. Virtual TLB is a hash table 
storing physical pages. It uses hash values of virtual 
addresses’ page numbers to index the hash table. The 
search of physical pages can be accomplished in constant 
time like real physical TLB. The physical addresses are 
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sent to Translator before instruction translation, the 
addresses of the back-end instructions are already 
physical addresses, so this translation of virtual memory 
addresses doesn’t consume the time of back-end 
instructions’ execution. Physical Memory Manager 
allocates physical memory for Virtual Memory Manager, 

and maps the virtual memory to physical memory 
allocated. It doesn’t allocate all the memory used by KBT 
at once, but allocates memory based on the requirement. 
This strategy can lower the memory pressure of the 
computer system.  

 
Figure 5: structure of CPU Simulator 

 
Environment Engine provides the process execution 

environment, such as the context and stacks. Compared 
with other applications, the virtual machine with dynamic 
binary translation system has a unique feature that guest 
processes and the virtual machine process are in the same 
process context. So, context switching and saving 
mechanism is needed to protect process contexts of guest 
processes and the virtual machine process. Context 
Manager is the module handling this problem. Stack 
Simulator provides the stack mechanism to support 
procedural programming applications. 

Translator translates the guest ISA instructions into 
host ISA instructions to run them on the host computer. It 
can be regarded as a special “Just In Time” compiler, the 
guest instructions are the input data, and the host 
instructions are the output data. Translator logically 
maintains a mapping table from guest ISA instructions to 
host ISA instructions. When CPU Simulator sends a guest 
ISA instruction to Translator, Translator searches this 
mapping table, finds the corresponding host ISA 
instructions. In KBT, the searching procedure of this 
mapping table can be accomplished by decoding guest 
ISA instructions which can be accomplished in constant 
time. The execution efficiency of host ISA instructions 
generated by Translator has important influence to the 
performance of the whole virtual machine, so the 
mapping table must be optimized as far as possible to 
ensure that the host ISA instructions’ execution is quite 
fast. KBT takes advantages of some preliminary artificial 
optimizations, deeper optimizations considering the 
dynamic compile technology will be a further research 
direction. 

Besides translating instructions, the other important 
function of Translator is managing the translated host 

ISA instructions to reduce duplication translation and 
accelerating the instruction fetching speed of the virtual 
CPU. KBT uses Level based Instructions Indexing 
Strategy (LIIS)[11] to manage the back-end host ISA 
instructions. Based on the special locality of the 
instructions, this strategy uses targeted replacement 
algorithms to cache the back-end host ISA instructions, 
significantly reduces the overhead of the instruction 
fetching. 

Some complex software has kernel modules, such as 
multimedia player’s 3D accelerate engine. This kind of 
software is widespread in computer systems. Existing 
user space virtual machines are hard to support this kind 
of software. KBT provides the possibility of solving this 
problem by the module named Kernel Monitor. Kernel 
Monitor monitors all the application’s calls to kernel and 
provides interfaces to support kernel module translation 
systems(Fig. 6). 

 

Figure 6:  kernel module translation. The left figure shows why user 
space virtual machines are hard to translate operation system kernel 
modules, the right figure shows that KBT can handle this problem. 
 
Besides CPU and memory, the PCI hardware devices 

also impact the performance of computer systems. For 
example, for large 3D games, the performance of the 
video card is even more important than CPU. Existing 
user space virtual machines running upon the operation 
system are hard to operate physical hardware devices 
directly. They usually need simulate the physical 
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hardware by software method, and use kernel calls to 
operate the real physical hardware devices. This method 
brings serious performance loss. KBT can operate 
hardware devices directly because it runs in kernel space 
(Fig.7). Hardware Adapter translates the guest 
application’s hardware operations to corresponding 
physical hardware operations. If the guest operating 
system has the device driver of the real physical hardware 
device (common operating systems always have), then no 
extra work would be done. Compared with the simulating 
method used by user space virtual machines, this method 
can improve the performance of the whole system 
significantly. 

 

 
Figure 7: physical hardware virtualization. The first figure shows the 
physical hardware virtualization of user space virtual machines, the 

second figure shows the physical hardware virtualization of operating 
system kernel space virtual machines, the third figure shows the 

hardware in real computer systems. 

IV.  EXPERIMENTS AND ANALYSIS 

We tested the time performance of KBT on the 
Loongson 3A CPU[12][13], the host operating system was 
Linux, the guest ISA was x86 IA-32, host ISA was MIPS. 
The compared virtual machine system was QEMU, which 
has been proven to be a very fast dynamic binary 
translation virtual machine, the performance compare 
between QEMU and other virtual machines can be found 
in [6].  The test set was spec2000[14]. Fig. 8 shows the 
experiment results. In this experiment, KBT used the 
same instruction translation rules as QEMU. From Fig. 9 
we can see that, the performance of KBT is higher than 
QEMU about 20%.  

 

 
Figure 8: performance experiment of KBT 

 
To further optimize the performance of KBT, we tested 

and analyzed the time percentages of KBT’s different 
modules. The experiment results are shown by Fig. 9. 
From Fig. 9 we can see that, the time percentage of CPU 

Simulator is more than 80%. CPU Simulator is the 
bottleneck of KBT, needs depth optimization. The next 
one is Translator, which takes more than 10% time 
percentage. Hardware Adapter takes only about 5% time 
percentage, because spec2000 doesn’t use hardware 
devices frequently. But for some special software, such as 
large 3D games, hardware devices, especially the video 
card, will take much more time percentage. Based on our 
experiment using mplayer[15] as testing set, the time 
percentage of Hardware Adapter raised to more than 15%. 

 

 
Figure 9: time percentages of KBT's different modules 

 
Based on the analysis of section 3-B, back-end 

instructions generated by Translator have important 
affection to the efficiency of KBT. So, we tested the time 
proportion of the back-end instructions’ execution. 
Results are shown by Fig 10.  

 

 
Figure 10: time percentage of the back-end instruction execution 
 
Fig. 10 shows that, the time percentage of back-end 

instructions’ execution is about 65%, so the quality of 
back-end instructions is the key factor of the system’s 
efficiency. To quantitatively analyze the Translator’s 
translation quality, we define the concept of Instruction 
Expansion Rate (IER). For the i-th guest ISA instruction 
block with p instructions, if the corresponding host ISA 
instruction block has q instructions, then we say: 

IERi = p/q                                    (1) 
We use n to identify the number of instruction blocks, 

use mi to identify the execution number of the i-th 
instruction block, and then the IER of Translator is the 
weighted average of IERi: 

  IER =  
෌ ூாோ೔∗௠೔೙೔సభ෌ ௠೔೙೔సభ                             (2) 
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The translation equality increases with the IER 
decreases. Based on our experiment, the IER of QEMU is 
7.82. To improve the efficiency of KBT, we optimized 
the translation rules of KBT. After our optimization, the 
IER of KBT was reduced from 7.82 to 5.77, the 
efficiency was improved about 5%. After this 
optimization, the efficiency of KBT is higher than QEMU 
about 25%. Experiment results are shown by Fig 11.  

 

 
Figure 11: the performance experiment of KBT after preliminary 

optimization 
 

IV.  CONCLUSION 

This paper designed an operating system kernel level 
virtual machine with binary translation systems (KBT) 
which can be used to solve software compatibility 
problem. Compared with existing user space virtual 
machines, running in kernel space brings many 
advantages to KBT. Experiment results improved that 
KBT runs faster than existing virtual machines. We also 
designed some interfaces to support kernel module 
translation systems to run complex software. 

How to improve the performance is the key problem of 
binary translation system. How to make good use of the 
advantages of kernel space, such as memory allocation 
privilege and direct hardware access privilege, to improve 
the performance of KBT, is the further research goal. 
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