
Applying Model Checking to Destructive Testing

and Analysis of Software System

Hiroki Kumamoto, Takahisa Mizuno, Kensuke Narita, Shin-ya Nishizaki
Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan.

Email: nisizaki@cs.titech.ac.jp, {hiroki.kumamoto, takahisa.mizuno, kensuke.narita}@lambda.cs.titech.ac.jp

Abstract—Recently, model checking is widely applied to

software and hardware verification. It can locate hard-to-

find bugs in systems by exhaustively searching executing

paths. In this paper, we propose a new software design

method that enables us to evaluate the fault tolerance of

software behavior at the specification level: we can check

software behavior, not only when the hardware and

network are in good order, but also when they are out of

order; we can then improve fault tolerance of the target

software using the model checker. We can test software

under environments in which we destroy hardware and/or

networks intentionally in computer simulation. The method

is explained by taking an example of a network-connected

AV appliance. We model the AV appliance by the modeling

language Promela and analyze it by the SPIN model checker.

Index Terms—model checking, software verification, fault

tolerance, SPIN model checker, Promela

I. INTRODUCTION

In this section, we start with some backgrounds and then

explain the purpose of our research.

A. Backgrounds

In software engineering, model checking is regarded as

a genuine breakthrough, especially in regard to the

improvement of software design and coding. Model

check-ing is a technique for verifying whether a model

satisfies a given specification. Models are extracted from

descriptions presented as state-transition diagrams or in

concurrent programming languages. The specifications

are often represented by temporal logic formulae. A

number of model checkers have been developed,

including the SPIN model checker [1] and Uppall2k [2].

Although the models to be verified are formulated as

automata in many automata, SPIN model checkers

enables us to write in Promela, which is a concurrent

programming language with message passing, non-

deterministic choice, and parallelism. In Promela, the

case selection is described as
if

:: guard1 -> option1;

:: guard2 -> option2;

:: else -> else_option;

 fallthrough_option;

fi

If both guard1 and guard2 are satisfied, either

option1 or option2 is executed non-

deterministically. If neither guard1 nor guard2 is

satisfied, else_option is executed. In all cases,

fallthrough_option is executed.
do

:: guard1 -> option1;

:: guard2 -> option2;

:: else -> break;

od

In this example, either option1 or option2 is selected as

well as the case selection above-mentioned and then the

loop repeats itself. Neither guard1 nor guard2 is satisfied,

then the loop finished.

The following is a typical description of process'

definition.
active proctype

process1(chan ch1;ch2){

 statement1;

 statement2;

 statement3;

}

This code fragment means that an instance of a process

in which statement1, statement2, and statement3 are

executed in sequel is generated, initialized, and activated.

Data structures in Promela are very limited because

codes in Promela are translated into automata. A property

to be verified is described in linear temporal logic (LTL)

formulas [3].

The LTL formulas consist of

• propositional variables,

• logical operators such as () (
) (), and

• temporal modal operators such as (“in the

future”), and (“globally”).

A formula means that eventually becomes true;

 means that always remains true. There are two

typical kinds of properties which can be described in the

linear temporal logic:

• safety properties state that something bad never

happens, ;

This paper is based on “Destructive Testing of Software Systems by
Model Checking” by H. Kumamoto, T. Mizuno, K. Narita, S. Nishizaki
which appeared in the Proceedings of the 10th International Symposium

on Communication and Information Technologies, Tokyo, Japan,

October, 2010, IEEE. This work was supported by Grant-in-Aid for
Scientific Research (C), (24500009).

1254 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.5.1254-1261

• liveness properties state that something good

keeps happening, ()
An LTL formula is also translated into an automaton.

A pair of two automata, one from a Promela code and one

from an LTL formula, is simultaneously executed and

checked. Two important features of the model checker

related to our work are:

• The model checker exhaustively determined

whether a given model satisfies a LTL formula

query by tracing all the execution paths;

• The model checker gives us an execution path

that is a counterexample of the LTL formula

query. We can then improve the model with the

results of model checking.

Fault tolerance [4,5] is forbearance that enables a

system to continue operating properly in the event of the

failure of (or faults within) some of its components, and

fault-tolerant design a design that enables a system to

continue operation, possibly at a reduced level, rather

than failing completely, when some part of the system

fails. Fault tolerance has been actively studied in

operating systems research. In this paper, we discuss fault

tolerance with the example of a network-connected AV

appliance.

B. Puropose

In this paper, we discuss a method for applying model

checking to the analysis of the fault tolerance of network-

connected systems. We illustrate the method with an

example of an AV appliance, connected in a local area

network consisting of a DVD recorder and a hard disk

drive (HDD) recorder. We analyze the AV appliance

system with the SPIN model checker not only in normal

circumstances, but also in hardware problem cases. If

fragile points in the system are found, they can be

improved with the assistance of the model checker.

II. FORMALIZATION FOR MODEL CHECKING

In this section, we first introduce an AV appliance

system, which we consider as an example to be analyzed.

We then formalize the system in the modeling language

Promela of the SPIN model checker.

A. AV Appliance System

A simple audio-visual appliance system the fault

tolerance of which can be analyzed is specified as a class

diagram [6] in Figure 1.

(1) A video recorder with a hard disk drive ("HDD

recorder" in Figure 1) and a video recorder with a

DVD drive ("DVD recorder" in Figure 1) are

connected by a local area network.

(2) Video content on the HDD recorder or the DVD

recorder can be played on an LCD display.

(3) Video content on the HDD recorder can be

duplicated on the DVD recorder.

(4) Storage devices like the hard disk drive and the

DVD drive should be exclusively allocated.

The second operation (2) is described in detail:

(1) A user pushes the COPY button on the HDD

recorder.

(2) The HDD recorder starts playing video content

and transmits it to the DVD recorder through a

line between them. The DVD recorder writes the

received content on DVD media.

(3) When the transmission is finished, the DVD

writing is terminated.

The details of this operation have been simplified. For

example, to copy video content on the HDD recorder to

the DVD recorder, one would have to select the content

among several candidates; this is omitted for the sake of

clarity.

Next, we will analyze system behavior when problems

occur within the system.

B. Modeling for SPIN Model Checker

We model the AV appliance system in Promela, a

model description language, which was proposed for

writing target models for the SPIN model checker.

The Promela code of the AV appliance system is

presented in the Appendix; here, we give a UML model

[6] of the AV appliance system to facilitate understanding

of the Promela code (Figure 2, 3, 4, and 5).

Figure 1. AV Appliance System

DVD recorder HD recorder

Local Area Network

LCD

(omitted in modeling)

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1255

© 2013 ACADEMY PUBLISHER

Figure 3. Communication Diagram of the AV System

User

DVD

HD

req_reserve_DVD_self

release_DVD_self

start_play

start_copy

on_DVD
ack_reserve_HD

ack_play_HD

playing_terminated_HD

req_reserve_HD

req_play_HD

release_HD_self

Figure 4. Statemachine Diagram of HD recorder

DVD recorder

reserving_resource_request()
reserving_operation_request()
reserving_resource_OK()
reserving_playing_request()
copy()

<<event>>
req_reserve_DVD_self
release_DVD_self
ack_reserve_HD
ack_play_HD
playing_terminated_HD
on_DVD
start_copy
start_play

HD recorder

reserving_resource_request()
reserving_operation_request()
play()

<<event>>
reserve_HD_self
req_reserve_HD
req_play_HD
on_HD

-dvd +dvd

Figure 2. Class Diagram of the AV System

do/reserving_resource_request()

entry/DVD.ack_reserve_HD

do/reserving_operation_request()

entry/DVD.ack_reserve_HD

do/play

exit/Self.release_HD_self

waiting

ready

playing

req_reserve_HD

req_play_HD

[playing_terminated_HD_self]

/DVD.playing_terminated_HD

1256 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

entry / Self.req_reserve_DVD_self

do / reserving_resource_request ()

waiting

entry / Self.start_copy

do / reserving_operation_request ()

ready

entry / HD.req_reserving_HD

do / reserving_resource_OK ()

reserving

entry / HD.req_play_HD

do / reserving_operation_request ()

waiting_playgin_HD

do/copy ()

waiting

do / play ()

exit / Self.release_HD_self

playing

req_reserve_DVD_self

start_copy

ack_reserve_HD

ack_play_HD

[playing_terminated_HD]

/Self.release_DVD_self

req_play_HD

[playing_terminated_HD]

Figure 5. Statemachine Diagram of DVD recorder

do / actionAtoDev2 ()

stateA

stateB

Figure 6. Translation of Event Transition into Promera Code

Dev1

do

:: Dev1_ch?event

 if

 :: (state == stateA &&

 event == eventA)

 state = stateB;

 Dev2_ch!actionAtoDev2;

 :: (state == stateB &&

 …

 fi

 …

od

eventA

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1257

© 2013 ACADEMY PUBLISHER

A state transition is translated into a Promela code

fragment as Figure 6.

The Promela code of the AV appliance system is

provided in the Appendix.

Using the SPIN model checker, one can verify whether

LTL formulas are satisfied with respect to the model

written in Promela. In this case, we set out the following

properties, which represent the expected behavior.

Properties on Progress:

(1) If the HDD recorder reaches waiting and receives

a start_copy event, the HDD recorder can

transition to playing state:

(HD_state = waiting).

(2) Property (1) also holds for the DVD recorder:

(DVD_state = waiting).

Properties on Liveness:

(3) If the HDD recorder reaches waiting and receives a

start_copy event, the HDD recorder can transition to

playing state:

(p3 q3),

where p3 is

(HD_state =waiting event_HD=start_copy)

and q3 is

(HD_state=playing).

(4) If the DVD recorder reaches waiting, then it can

transition to ready state:

(p4 q4),

where p4 is

(DVD_state =waiting)

and q4 is

(DVD_state=ready).

(5) If the DVD recorder reaches ready and receives a

start_copy event, the DVD recorder can transition to

copying state:

(p5 q5),

where p5 is

(DVD_state =ready event_DVD=start_copy)

and q5 is

(DVD_state=copying).

(6) If the DVD recorder reaches ready and receives a

start_play event, the DVD recorder can transition to

playing state:

(p6 q6),

where p6 is

(DVD_state =ready event_DVD=start_play)

and q6 is

(DVD_state=playing).

(7) If the DVD recorder reaches copying, then it can

transition to waiting state:

(p7 q7),

where p7 is

(DVD_state =copying)

and q7 is

(DVD_state=waiting).

Safety

(8) The system cannot be deadlocked.

(9) The system cannot be livelocked.

The Promela code describing the AV appliance system

satisfies these nine properties.

III. MODELING OF FAULTS

In this section, we discuss the modeling of faults in the

AV appliance system. In a later following section, we

investigate fault-tolerance of the modeled faults using the

SPIN model checker.

There are various kinds of faults in distributed systems.

We focus on the following three cases:

Communication Fault

One instrument sends incorrect messages to another;

Sudden Termination Fault

The system suddenly and unexpectedly stops;

Irregular Transition Fault

The system makes an irregular transition.

Although these three behaviors are not improbable in

normal situations, they are also possible in cases of

hardware and network problems.

A. Modeling and Checking Communication Faults

In this section, we suppose that a communication fault

develops between the HDD recorder and the DVD

recorder in which the HDD recorder sends an erroneous

message to the DVD recorder. For instance, the HDD

recorder sends ack_play_HD instead of ack_reserve_HD.

This faulty action is formulated by rewriting the Promela

code as:

do ::HD_ch ? event ->

 if

 …

 ::(HD_state==waiting &&

 event==req_reserve_HD)->

 HD_state=ready;

/* Here is changed. */
 DVD_ch ! ack_play_HD;

 fi

 …

od

If we apply the SPIN model checker to the disordered

model, we know that the properties (4), (6), (7), and (9)

remain satisfied; on the other hand, (1), (2), (3), (5), and

(8) are not satisfied by this model. After consideration of

the result, we know that

if the DVD recorder receives an erroneous message

ack_play_HD, the transition condition

DVD_state == reserving

&& event_DVD == ack_reserve_HD

is not satisfied, and consequently, the system is stalled.

B. Modeling and Checking Sudden Termination Faults

In this section, we consider the sudden termination of a

part of the AV appliance system: the HDD recorder

unexpectedly stops. To formalize this termination, we

introduce a state \textrm{idol} and incorporate a

transition that loops on the state into the model.

1258 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Specifically, we make the following changes in the

Promela code:

do :: HD_ch ? event_HD ->

 …

 /* Additional Part */

 :: HD_state == ready ->

 HD_state = idle;

 clock = 0;

 /* Looping State */

 :: HD_state == idle ->

 if

/* non-deterministic choice */

 :: HD_state = idle ;

 :: HD_state = ready;

 fi

od

If this kind of fault is incorporated into the system,

then the SPIN model checker gives the following result:

 the properties (4), (6), (7), and (8) remain

satisfied;

 on the other hand, (1), (2), (3), (5), and (9) are not

satisfied by the model.

This result indicates that:

The HDD recorder stays in idle state. On the other

hand, the DVD recorder is stalled waiting for an

appropriate message from the HDD recorder in

waiting state or playing state.

C. Modeling and Checking Irregular Transition Faults

In this section, we consider the sudden termination of a

part of the AV appliance system: the HDD recorder

unexpectedly stops. To formalize this termination, we

introduce a state idol and incorporate a transition that

loops on the state into the model. Specifically, we make

the following changes in the Promela code:

do

 :: HD_ch ? event ->

 …

 /* incorporated fault */

 :: HD_state == waiting ->

 HD_state = playing;

 …

If we verify the disordered model using the SPIN

model checker, we know that the properties (3), (4), (6)

and (7) remain satisfied; however, (1), (2), (5), (8), and

(9) are not satisfied by the model. From this result, we

know that:

The part of the recorder from which an event

message ack_reserve_HD is sent does not start, and

consequently, the condition

(DVD_state==reserving

 && event_DVD == ack_reserve_HD)

is not satisfied. Thus, the DVD recorder is stalled.

IV. IMPROVING ROBUSTNESS USING MODEL CHECKING

In the previous section, we showed that local trouble in

part of the system can cause breakdowns in other parts. If

a problem occurs in the HDD recorder and the copy

action of the DVD recorder is initiated, then the DVD

recorder is stalled. Local faults occurring in part of the

system should be contained and their influence on other

parts of the system should be minimized. We call this

kind of property “software robustness.” In this section,

we propose a methodology for improving and redesigning

software robustness using model checking, and explore it

by rewriting Promela codes mentioned in previous

sections.

From the previous sections’ results, we suggest that the

following properties should be satisfied when faults occur

in the system.

(a) The system notifies the user of the occurrence of

the problem.

(b) If the HDD recorder has a fault, the playing

function of the DVD recorder should be

maintained.

(c) If the HDD recorder has a fault, the system

should not stall or fall silent.

To improve the system with respect to (a), we add a

warning lamp to the system. In Promela, we represent it

as a variable, error_lamp. Moreover, we introduce a

variable, error, which is used as an indicator of fault

occurrence. Items (a), (b) and (c) are modeled as the

following LTL formulas for the model to be satisfied.

(10) If the DVD recorder is in ready state and receives

start_copy event message, the DVD recorder

transitions to copying state, or the warning lamp

error_lamp activates:

((DVD_state =ready)

 (event_DVD=start_copy)

 (DVD_state=copying error_lamp=HD)).

The value HD means that error_lamp is activated.

(11) If no fault occurs, the warning lamp does not

activate:

(error=0error_lamp=HD).

(12) If a fault occurs, the warning lamp is eventually

activated:

((error=1) (error_lamp=HD)).

The conditions (a), (b), and (c) are formulated by the

LTL formulas (1), … , (12) as follows

• for condition (a), formulas (10) and (12) are

required;

• for condition (b), (2),(4), and (6) are required;

• for condition (c), (8) and (9) are required.

Condition (11) represents correct error handling.

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1259

© 2013 ACADEMY PUBLISHER

In the following section, we discuss how to improve

the system by checking the LTL formulas with the SPIN

model checker.

A. Improving robustness against communication faults

If the HDD recorder receives an event message other

than ack_reserve_HD while it is waiting for

ack_reserve_HD, the system activates the warning lamp

and transitions to waiting. This error handling is

formulated as an inline macro:

inline handle_error(){

 error_lamp = HD;

 DVD_state = waiting;

}

and is inserted as follows:

:: (DVD_state==reserving)->

if

::(event_DVD==ack_reserve_HD)->

 normal processing
::(event_DVD!=ack_reserve_HD)->

 handle_error()

This is also applied to the code for waiting for the

ack_play_HD event message.

Model checking also demonstrates that the DVD

recorder is stalled in “reserving” state after the HDD

recorder sends the event message “req_reserve_HD” in

the modified Promela code. To remedy this flaw, we

introduce timeout detection, which enables the system to

transition if there is no possibility of other transition

triggers. Concretely, we add code that executes

“error_lamp = HD” and transitions to waiting state if the

value of “timeout” becomes true.

unless {

 timeout == 1 ->

 error_lamp = HD;

 DVD_state == waiting;

}

B. Improving robustness against sudden termination

faults

If the DVD recorder waits for a response from the

HDD recorder and the HDD recorder does not reply to

the DVD recorder, then the DVD recorder should stop

waiting, regard the situation as erroneous, and apply a

solution.

The primitive timeout in Promela is merely an

instruction to wait for other processes to stop. We

therefore explicitly introduce a clock variable “clock”

into the system. Due to restrictions in a number of states

in the SPIN model checker, the value of “clock” is not

more than 10; if it is incremented repeatedly, it does not

become more than 10.

Increment is formulated as an online macro of Promela,

“handle_increment_clock”, as follows:
inline handle_increment_clock()

{

 if ::(clock< 9)->clock++;

 ::(clock==9)->

error=1;

clock++;

 ::(clock==10)

 /* do nothing */

The online macro “handle_increment_clock” is

inserted into the idling part of the system.

:: HD_state == idle

/* nondeterministic choice */
if :: HD_state=idle;

handle_increment_clock()

 :: HD_state=ready;

 handle_increment_clock()

fi

After these improvements, the SPIN model checker

shows that the properties other than (1), (3), (5) are

satisfied by the modified model.

V. CONCLUDING REMARKS

In this paper, we proposed a methodology for

destructive testing using the SPIN model checker. We

used as an example a simple AV appliance system

consisting of a DVD recorder and a HDD recorder, and

provided a model in Promela modeling language. We

then introduced faults into the model and analyzed the

behavior of these faults. Investigating the result of the

analysis, we improved the model from the viewpoint of

fault tolerance and evaluated the improved model using

SPIN.

The destruction of the AV appliance system, that is,

the intentional introduction of faults to the model, was

not automatic but manual. Thus, we may have overlooked

other ways in which faults could occur. In the

continuation of our work, we will investigate the

automatic occurrence of faults. One of the promising

approaches to this issue is considered as formal modeling

in the process calculus [7,8].

Another interesting approach is Reliability Engineering,

for example, Fault Tree Analysis [12,13]. Introducing this

paper’s results to such research areas is also promising.

APPENDIX A MODELING THE SYSTEM IN PROMELA

We provide a Promela code that describes the AV

appliance system before adding intentional faults.

mtype={

 /* states */

 waiting, ready, playing, reserving,

 waiting_HD_playing, copying, playing_self,

 /* event messages */

 start_play, start_copy,

 ack_reserve_HD, ack_play_HD, req_reserve_HD,

 req_play_HD, playing_terminated_HD, DVD, HD,

};

/* state variables */

show mtype DVD_state = waiting;

show mtype HD_state = waiting;

1260 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

/* communication channels */

chan DVD_ch = [0] of { mtype };

chan HD_ch = [0] of { mtype };

mtype event_HD; mtype event_DVD;

active proctype HD_recorder() {

 do :: HD_ch?event_HD->

 if ::(HD_state == waiting &&

 event_HD==req_reserve_HD)->

 HD_state = ready;

 DVD_ch!ack_reserve_HD;

 ::(HD_state == ready &&

 event_HD == req_play_HD)->

 progress1:

 HD_state = playing;

 DVD_ch!ack_play_HD;

 :: else -> skip

 fi

 :: (HD_state == playing) ->

 DVD_ch!playing_terminated_HD;

 HD_state = waiting;

 od

}

active proctype DVD_recorder() {

 do :: DVD_ch?event_DVD ->

 if :: (DVD_state == reserving &&

 event_DVD == ack_reserve_HD)->

 progress2:

 HD_ch!req_play_HD;

 DVD_state = waiting_HD_playing;

 ::(DVD_state == waiting_HD_playing

 && event_DVD == ack_play_HD) ->

 DVD_state = copying;

 ::(DVD_state == copying &&

 event_DVD==playing_terminated_HD->

 DVD_state = waiting;

 ::else -> skip;

 fi

 :: (DVD_state == ready &&

 event_DVD == start_play)->

 DVD_state = playing_self

 :: (DVD_state == ready &&

 event_DVD == start_copy)->

 HD_ch!req_reserve_HD;

 DVD_state = reserving

 ::(DVD_state == waiting)->

 DVD_state = ready ->

 if :: event_DVD = start_play

 :: event_DVD = start_copy

 fi

 ::(DVD_state == playing_self) ->

 progress3:

 DVD_state = waiting;

 od

}

ACKNOWLEDGMENT

This work was supported by Grants-in-Aid for

Scientific Research (C) (24500009). This paper is an

extended work of [11].

REFERENCES

[1] G. J. Holzmann, The SPIN Model Checker: Primer and

Reference Manual. Addison-Wesley Professional, 2003.

[2] P. Pettersson and K. G. Larsen, “UPPAAL2k”, Bulletin of

the European Association for Theoretical Computer

Science, vol. 70, pp. 40—44, 2000.

[3] M. Huth and M. Ryan, Logic in Computer Science:

Modelling and Reasoning about System. Cambridge

University Press, 2004.

[4] P. J. Denning, “Fault tolerant operating systems”, ACM

Computing Surveys, vol. 8, no. 4, pp. 359—389, 1976.

[5] B. Randell, P. Lee, and P. C. Treleaven, “Reliability issues

in computing system design,” ACM Computing Surveys,

vol. 10, no. 2, pp. 123—165, 1978.

[6] G. Booch, J. Rumbaugh, and I. Jacobson, Unified

Modeling Language User Guide, The (2nd Edition).

Addison-Wesley, 2005.

[7] D. Tomioka, S. Nishizaki, and R. Ikeda, “A cost estimation

calculus for analyzing the resistance to denial-of-service

attack,” in Software Security – Theories and Systems,

Lecture Notes in Computer Science, vol. 3233, 2004, pp.

25—44.

[8] R. Ikeda, K. Narita and S. Nishizaki, “Cooperation of

model checking and network simulation for cost analysis

of distributed system,” International Journal of Computers

and Applications, vol. 33, no. 4, pp. 323—329, 2011.

[9] S. Nishizaki and H. Tamano, “Design of Open Equation

Archive Server Resistant Against Denial-of-Service

Attacks”, accepted and to appear in the Proceedings of

International Conference on Advances in Information

Technology and Mobile Communication – AIM2012.

[10] T. Sasajima and S. Nishizaki, “Blog-based Distributed

Computation – Implementation of Software Verification

System”, accepted and to appear in the Proceedings of the

3rd International Conference on Information Computing

and Applications ICICA2012, 2012.

[11] H. Kumamoto, T. Mizuno, K. Narita, S. Nishizaki,

“Destructive testing of software systems by model

checking”, In the Proceedings of International Symposium

on Communications and Information Technology (ISCIT

2010), IEEE, pp. 26-29, 2010.

[12] W. E. Vesley, F. F. Goldberg, N. H. Roberts and D. F.

Haasl: Fault Tree Handbook, Office of Nuclear Regulatory

Research, 1981.

[13] A. Thums and G. Schellhorn, “Model Checking FTA”, In

FME 2003: Formal Methods, Lecture Notes in Computer

Science, vol. 2805, Springer-Verlag, pp. 739-757, 2003.

[14] S. Nishizaki and T. Ohata “Real-Time Model Checking for

Regulatory Compliance”, accepted and to appear in the

Proceedings of International Conference on Advances in

Information Technology and Mobile Communication –

AIM2012, 2012.

[15] G. Schellhorn, A. Thums, W. Reif, “Formal Fault Tree

Semantics”, in IDPT-2002, Society for Design and

Process Science (2002) pp. 739-757.

Hiroki Kumamoto received his M. Eng. Degree from the

Tokyo Institute of Technology in 2011. He contributed to

this paper when he was a student of the Tokyo Institute of

Technology. Now he belongs to ACCESS, Co., Ltd.

Takahisa Mizuno received his M. Eng. Degree from the

Tokyo Institute of Technology in 2012. He contributed to

this paper when he was a student of the Tokyo Institute of

Technology. Now he belongs to IBM Japan, Ltd.

Shin-ya Nishizaki is an Associate Professor of Computer

Science at Tokyo Institute of Technology, Japan, where he

leads a research group on formal theory on software

systems. He received his Bachelors, Master's and

Doctorate degrees from Kyoto University, in mathematical

science. Before joining Tokyo Institute of Technology in

1998, Dr Nishizaki held appointments in computer science

as Associate Professor at Chiba University for 2 years and

Assistant Professor at Okayama University for 2 years.

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1261

© 2013 ACADEMY PUBLISHER

