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Abstract— Most threshold key encapsulation mechanisms
(KEM) have been studied in a weak model–static corruption
model or random oracle model. In this paper, we propose a
threshold KEM scheme with provable security based on the
bilinear groups of composite order in the standard mod-
el. We use a direct construction from Boyen-Mei-Waters’
KEM scheme to obtain a threshold KEM scheme that can
withstand adaptive chosen ciphertext attacks (CCA) and
adaptive corruption attacks. However, to achieve a higher
security level, our construction does not increase overall
additional size of ciphertext compare to other schemes.

Index Terms— Key encapsulation mechanisms; Adaptive cor-
ruption attacks; Chosen ciphertext attack; Bilinear groups
of composite order

I. INTRODUCTION

In 1998, Cramer and Shoup [1] proposed the first
practical public key encryption (PKE) scheme whose
security against adaptive chosen ciphertext attacks (C-
CA) could be proven without depending on the random
oracle model. Security against CCA is now commonly
accepted as the standard security notion for public key
encryption schemes. In a threshold public-key encryptiona

(TPKE) system [2], [3], each of n users holds a secret
decryption key corresponding to a public key, a message
is encrypted and sent to a group of decryption users,
and the ciphertext can be decrypted only if at least t
of decryption users (where t is the threshold) in the
authorized set cooperate. Below this threshold, no infor-
mation about the plaintext is leaked, even if the number
of the authorized users was corrupted up to t-1, which
is crucial in all applications and situations where one
cannot fully trust a single person, but possibly a group
of individuals. The security notions of threshold encryp-
tion are very similar to those of public-key encryption
in that the notion of indistinguishability against chosen
ciphertext attacks (IND-CCA) in public key encryption
corresponds to the notion of indistinguishability against
chosen ciphertext attacks in threshold encryption (IND-
TCCA). However, the static adversary model or adaptive
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adversary model is a special security notion in threshold
public-key encryption. In the static corruption model the
adversary fixes the players that will be corrupted before
the protocol starts, while in the adaptive corruption model,
the adversary chooses which players to corrupt at any time
and based on any information it sees during the protocol.
Obviously, the notion of indistinguishability against static
corruption attacks and chosen ciphertext attacks in thresh-
old encryption(IND-SCA-TCCA) [4] is weaker than the
notion of indistinguishability against adaptive(or named
dynamic ) corruption attacks and chosen ciphertext attacks
in threshold encryption (IND-ACA-TCCA) [5]–[8].

Instead of providing the full functionality of the public-
key encryption scheme, in many applications the com-
munication between a sender and receiver only needs a
temporary session key to encrypt a message. The key
encapsulation mechanism (KEM) [9]–[11] is used to
transmit a randomly encrypted key from a sender to a
designated receiver instead of a message. A sender runs an
encapsulation algorithm to produce a random session key
together with a corresponding ciphertext. This ciphertext
is sent to the receiver, which can uniquely reconstruct
the session key by using its secret key. In the end, both
parties share a common random session key. The KEM
in the threshold settings is that: each of n users holds
a secret decryption key corresponding to a public key; a
session key is encrypted and sent to a group of decryption
users; and the ciphertext can be decrypted only if at least
t decryption users in the authorized set cooperate.

The security notions of threshold KEM (TKEM) are
similar to those of threshold encryption. The strongest
notion is indistinguishability against adaptive corruption
attacks and chosen ciphertext attacks.

In 2005, Boyen-Mei-Waters [10] proposed an IND-
CCA-TKEM scheme in the standard model. However, the
security reduction of [10] is loose. therefore, in the same
secure level, the size of the system secure parameter of
loose secure reduction will be much larger than that of
tight secure reduction. In 2007, based on RSA problem,
Takeru et al. [12] proposed a TKEM scheme against IND-
CCA with tight secure reduction. However, the secure
model of [12] is random oracle model [13].

Historically, most threshold key encapsulation mech-
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anisms [10], [12], [14] have been studied in a static
corruption model, that is, a adversary chooses which users
it wants to corrupt before the scheme is setup. However, in
adaptive corruption model, the a adversary could choose
which users it wants to corrupt at any time. So, the static
corruption model is weaker than the adaptive corruption
model. In 2011, Libert and Yung [15] use the Lewko-
Waters [16] dual encryption approach and bilinear group
with composite orders to design a threshold decryption
scheme that is simultaneously chosen-ciphertext secure
under adaptive corruptions and non-interactive. However,
to achieve CCA security, Libert and Yung use a one-
time strong signature, so the ciphertext of their scheme is
longer than schemes without one.

In this paper, based on Boyen-Mei-Waters’ TKEM,
and Libert and Yung’s threshold decryption scheme, we
construct a robust CCA threshold KEM scheme against
adaptive corruption attacks with tight secure reduction in
the standard model. To the best of our knowledge, this
is the first threshold KEM scheme that can withstand
adaptive corruption attacks and chosen ciphertext attacks
in the standard model.

II. PRELIMINARIES

A. Bilinear Group with Composite Orders and Related
Cryptographic Assumptions

Let G and GT be two cyclic groups of order N =
p1p2p3 (where p1, p2, p3 are distinct primes). A bilinear
map e(·, ·) is a map G × G → GT such that for any
generator g, h ∈ G and random α, β ∈ ZN , it satisfies
the following properties:

• Bilinearity: e(gα, gβ) = e(g, g)αβ .
• Non-degeneracy: If e(g, h) = 1GT , for all h ∈ G,

then g = 1G.
• Orthogonality: Let Gp1

, Gp2
, and Gp3

denote the
subgroups of order p1, p2 and p3 in G respectively.
e(hi, hj) is the identity element in GT, for any
hi ∈ Gpi and hj ∈ Gpj ( i ̸= j), that is e(hi, hj) =
1GT(i ̸= j).

For each i ∈ {1, 2, 3}, the notation Gpi is the subgroup
of order pi. For all distinct i, j ∈ {1, 2, 3}, notation Gpipj

is the subgroup of order pipj .
The following assumptions on a bilinear group with

composite orders will be used in this paper. For more
details please refer to [16].

Assumption 1 ( [16]): Given a description of (N =
p1p2p3,G,GT, e(·, ·)), as well as g∈RGp1 , X3∈RGp3 and
T ∈R G, it is infeasible to efficiently decide whether
T ∈ Gp1p2 or T ∈ Gp1 .

Assumption 2 ( [16]): Given a description of (N =
p1p2p3, G, GT, e(·, ·)), a set of group elements (g,
X1X2, Z3, Y2Y3) and T ∈R G, where (g,X1) ∈R

G2
p1
, (X2, Y2) ∈R G2

p2
, and (Y3, Z3) ∈R G2

p3
, it is hard

to efficiently decide whether T ∈ Gp1p3 .
Assumption 3 ( [16]): Given a description of (N =

p1p2p3, G, GT, e(·, ·)), a set of group elements (g, gαX2,
X3, g

βY2, Z2) and T ∈R GT, where g∈RGp1 , (X2, Y2,

Z2)∈RG3
p2
, X3∈RGp3 and (α, β) ∈R Z2

N it is infeasible
to efficiently decide whether T =e(g, g)αβ .

Lemma 1 (Lemma 1 in [16]): If an algorithm can pro-
duce a nontrivial factor of N , then it can break Assump-
tion 1 or Assumption 2.

B. Definition of (t, n)-Threshold KEM Scheme

Let P = (P1, · · · , Pn) be a set of n participants. A
sender wants to send a session key K to P that any
t participants can recover session key K, while t − 1
participants cannot acquire any information about session
key K. A (t, n)-threshold KEM scheme consists of the
following six algorithms:

• Setup(Λ, t, n): Takes as input a security parameter
Λ, decryption threshold t, and a number of decryp-
tion participants n. It outputs a set of parameters
(PK,SK,VK), where PK is the public key, SK =
(SK1, . . . , SKn) and VK = (V K1, . . . , V Kn) are
the corresponding decryption keys and verification
keys, respectively. The ith participant is given the
decryption key share (i, SKi).

• Encapsulate(PK): The algorithm randomly selects
a secret k ∈ ZN , then outputs the ciphertext C and
the session key K.

• CiphertextVerify(PK,C): Takes as input the public
key PK and ciphertext C. It checks whether C is a
valid ciphertext with respect to PK.

• PartialDecapsulate(PK,SKi, C): Takes as input
the public key PK, a ciphertext C, Pi’s decryption
key SKi. It outputs a partial decapsulation share µi

of the ciphertext C, or a special symbol (i,⊥).
• ShareVerify(PK, VK,C, µi): Takes as input the

public key PK, verification keys V K, as well as
a ciphertext C and partial decapsulation share µi.
It checks whether µi is a valid partial decapsulation
share with respect to V K. It outputs valid or invalid.

• Reconstruct(PK,VK, C,Ω): Takes as input the
public key PK, verification keys VK, as well as
a ciphertext C, and a list of t partial decapsulation
shares, denoted by Ω = (µ1, . . . , µt), without loss
of generality. It outputs a session key K or ⊥.

Let (PK,SK,VK) be the output of the Setup(n, t, λ).
We require the following two consistency properties:

1) For any ciphertext C generated by the Encapsula-
tion(PK) algorithm, if µi is generated by the Par-
tialDecapsulate(PK,SKi, C), where SKi is Pi’s
decryption key share, then ShareVerify(PK, V Ki,
C, µi) = valid.

2) If C is the output of the Encapsulation(PK) algo-
rithm and Ω = (µ1, . . . , µt) is a list of t distinct
partial decapsulation shares µi, where µi = Par-
tialDecapsulate(PK,SKi, C), then we require that
Reconstruction(PK,VK, C,Ω)=K.

C. Security Model

For any ciphertext C associated with a session key K,
any collusion for which fewer than t participants cannot
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learn any information about the session key K. Following
[4] [10] [14], we further formally define the security
of threshold KEM against IND-ACA-TCCA (adaptive
corruption attacks, chosen ciphertext attacks), under the
classical semantic security notion, and using the following
game between an adversary A and challenger C. Both are
given as input n, t, and a security parameter Λ.

• Init: The challenger C runs Setup(n, t,Λ) algo-
rithm to obtain the set of parameters PK,SK =
(SK1, . . . , SKn), and VK = (V K1, . . . , V Kn). It
gives PK, VK to the adversary A.

• Phase 1: The adversary A adaptively issues the
following queries:
Corruption query: The adversary A adaptively is-
sues a decryption key share query of a participant
depending on the results of previous attacks. If
the adversary A wants to query the ith decryption
key, the challenger C forwards the corresponding
decryption key SKi to adversary A. No more than
t− 1 decryption key shares can be obtained by A in
the whole game.
DecapsulationShare query: The adversary A adap-
tively issues DecapsulationShare query with (Pi, C),
where i ∈ {1, . . . , n}. The challenger C runs the
PartialDecapsulate algorithm with C and SKi, and
forwards the resulting partial decapsulation share of
the Pi to adversary A.

• Challenge: The challenger C picks a random bit
δ ∈ {0, 1} and runs the Encapsulate algorithm to
obtain (C∗,K0), and randomly chooses an ephemer-
al key K1. Challenger C then gives (Kδ, C

∗) to the
adversary A.

• Phase 2: The adversary A makes further queries as
in Phase 1, but it is not allowed to make Decapsu-
lationShare query on the challenge C∗.

• Guess: Finally, the adversary A outputs a guess δ′ ∈
{0, 1} and wins the game if δ = δ′.

Let AdvIND−ACA−TCCA
A,n,t denote the probability that

A wins the game when the challenger C and adversary A
are given n,t as input.

We say that a TKEM is CCA security if for any
n and t, where 0 < t ≤ n, and the advantage of any
probabilistic polynomial-time (PPT) adversary A, the
advantage AdvIND−ACA−TCCA

A,n,t (Λ) = |Pr[δ′ = δ]− 1/2|
is negligible with Λ.

III. THE PROPOSED SCHEME

The algorithms of our (t, n)-threshold KEM scheme
are specified as follows:

• Setup(Λ, t, n). Given the parameter λ,t,n, this algo-
rithm does the following:

1) Select bilinear groups (G,GT) of order N =
p1p2p3 (where p1, p2, p3 are distinct primes and
p1, p2, p3 > 2Λ), a bilinear map e : G × G →
GT;

2) Select generators
(g, h, u, v)∈RG4

p1
, Xp3∈RGp3 ;

3) Select a collision-resistance hash function H :
G → ZN ;

4) Pick a random degree t−1 polynomial f(x) =∑t−1
j=0 ajx

j (where t is the value of threshold,
and aj ∈ ZN , for j = 0, · · · , t− 1, and α =
a0 ̸= 0), and compute the decryption key share
SKi = hf(i) ·Z3,i and verification key V Ki =
e(SKi, g) = e(g, h)f(i), for i = 1, . . . , n,
where Z3,i is selected in Gp3 at random. (Ran-
dom elements of Gp3 can be obtained taking
a generator of Xp3 and raising it to random
exponent modulo N );

5) Publish the public key to be PK = (G,GT,
N, g, u, v,Xp3 , e(·, ·),H, e(g, h)α) and the ver-
ification keys VK = (V K1, . . . , V Kn) on the
system bulletin board (BB). The decryption key
SKi is privately given to Pi, for i = 1, . . . , n;

6) The secret parameters are (h, α, p1, p2, p3).
• Encapsulate(PK). Given the PK, this algorithm

first picks k∈RZN and computes

c1 = gk,

c2 = (uτv)k,

where τ = H(c1). The complete encapsulated key,
C is the two group elements (c1, c2). The session
key, K = e(g, h)αk, is calculated and kept secretly
by the sender.

• CiphertextVerify(PK,C). Given C = (c1, c2) and
PK, any verifier first randomly picks two distinct
elements g3, g

′
3∈Gp3 and checks whether or not

e(c2, gg3)
?
= e(c1, (u

τv)g′3), (1)

is correct, where τ = H(c1).
• PartialDecapsulate(PK,C, SKi). Given the public

key PK and an encapsulated key C = (c1, c2), the
participant Pi returns 0 if CiphertextVerify(PK,C)
is not correct. Otherwise, it randomly picks βi ∈
ZN , (W3i, W

′
3i) ∈ G2

p3
, and computes

µi1 = SKi · (uτv)βi ·W3i,

µi2 = gβiW ′
3i,

where τ = H(c1). Then participant Pi can send µi =
{µi1, µi2} to the combiner through secure channels.

• ShareVerify(PK, VK,C, µi). The combiner verifies
whether µi = {µi1, µi2} generated by the ith partici-
pant is valid, as follows. It first computes τ = H(c1),
then checks whether or not

e(µi1, g) = V Ki · e(uτv, µi2), (2)

is correct. If so, the algorithm outputs valid. Other-
wise it outputs invalid.

• Reconstruct(PK, V K,C,Ω). The session key is
reconstructed from Ω = (µ1, . . . , µt), a list of t
partial decapsulation shares of an encapsulated key
C = (c1, c2), as follows. The combiner first verifies
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that C and t partial decapsulation shares are valid,
then computes

d1 =
∏t

i=1
µλi
i1 ,

d2 =
∏t

i=1
µλi
i2 ,

where λi =
∏t

j=1,j ̸=i
−j
i−j . Finally, the combiner

uses (c1, c2, d1, d2) to reconstruct session key K as
follows:

K =
e(c1, d1)

e(c2, d2)
. (3)

IV. SECURITY ANALYSIS

A. Correctness

The consistency of equation (1) is given by

e(c2, gg3) = e((uτv)k, gg3)

= e((uτv)k, g)e((uτv)k, g3),

e(c1, (u
τv)g′3) = e(gk, (uτv)g′3)

= e(gk, (uτv))e(gk, g′3),

and e((uτv)k, g3) = 1GT = e(gk, g′3).
The consistency of the equation (2) is given by

e(µi1, g) = e(SKi · (uτv)βi ·W3i, g)

= e(SKi, g) · e((uτv)βi , g) · e(W3i, g)

= V Ki · e((uτv), gβi)

= V Ki · e(uτv, gβi) · e(uτv,W ′
3i)

= V Ki · e(uτv, gβiW ′
3i)

= V Ki · e(uτv, µi2).

The consistency of the equation (3) is given by

d1 =
∏t

i=1
µλi
i1

=
∏t

i=1
(hf(i)Z3,i(u

τv)βi ·W3i)
λi

=
∏t

i=1

(
hf(i)(uτv)βi

)λi ∏t

i=1
(Z3,iW3i)

λi

=
∏t

i=1
hf(i)λi

∏t

i=1
(uτv)βiλi ·R′

3i

= hα
∏t

i=1
(uτv)βiλi ·R′

3i,

and

d2 =
t∏

i=1

µλi
i2 =

t∏
i=1

(gβiW ′
3i)

λi =
t∏

i=1

(g)βiλi ·R′′
3i,

in which R′
3i =

∏t
i=1(Z3,iW3i)

λi , R′′
3i =

∏t
i=1(W

′
3i)

λi ,
and thus

e(c1, d1)

e(c2, d2)
=

e(gk, hα
∏t

i=1(u
τv)βiλiR′

3i)

e
(
(uτv)k,

∏t
i=1 g

βiλi ·R′′
3i

)
=

e(gk, hα)e(gk,
∏t

i=1(u
τv)βiλi)

e((uτv)k,
∏t

i=1 g
βiλi)

=
e(gk, hα)e(gk, (uτv)

∑t
i=1 βiλi)

e((uτv)k, g
∑t

i=1 βiλi)

= e(gk, hα) = K.

V. SECURITY

Theorem 1: The scheme is IND-ACA-TCCA secure
against adaptive corruptions attacks if Assumption 1,
Assumption 2, and Assumption 3 hold simultaneously,
and H is a collision-resistant hash function in the standard
model.

Proof: We prove the security by a hybrid argument
using a sequence of games. The first game, Game0,
is basically identical to the IND-ACA-TCCA game in
the standard model, and the adversary A’s advantage
is defined accordingly. In the last Game, Game6, the
adversary will still have to guess a given bit. But in this
last game, the challenger C first performs the Encapsulate
algorithm to acquire (K,C∗), and selects a random bit
δ ∈ {0, 1} and two random session keys K0,K1, then
sends (C∗,Kδ) to the adversary A. So |Pr[δ′ = δ]| must
be exactly 1/2. To go from the first game to the last,
we define various intermediate games. According to the
method of proofing sequence of games [17], each Gamei
must be very similar to Gamei−1, that is, the advantage of
A in Gamei will be bounded away from its advantage in
Gamei−1 by at most a negligible quantity. Let g2 and
g3 denote a generator of the subgroup Gp2 and Gp3 ,
respectively.

• Game0: We now define a game, Game0, that is
an interactive computation between a challenger C
and adversary A. This game is simply the usual
IND-ACA-TCCA game, in which C provides the
adversary’s environment.

– Init : C runs the Setup algorithm to obtain the
description of PK = (G,GT, N, g, u, v,Xp3 ,
e(·, ·),H, e(g, h)α), MSK = (h, p1, p2, p3),
and picks a polynomial f(x) = α + a1x +
. . .+ at−1x

t−1 to compute Pi’s decryption key
share SKi = hf(i)Z3,i and verification key
V Ki = e(g, SKi), for i = 1, . . . , n, where
Z3,i ∈R Gp3 . C gives the public key PK and
verification key VK = {V K1, . . . , V Kn} to A.

– Phase 1: A can adaptively issue a “Corruption
query” and “DecapsulationShare query.”
Corruption query : If A wants to corrupt Pi,
C just gives the decryption key share SKi to A.
No more than t − 1 decryption key shares can
be obtained by A in the game0.
DecapsulationShare query: Received (Pi, C =
(c1, c2)) from A, the challenger C checks
whether C is well-formed according to the
equality (1). If so, C randomly picks βi ∈
ZN , (W3i,W

′
3i) ∈ G2

p3
, computes µi1 = SKi ·

(uτv)βi · W3i, µi2 = gβiW ′
3i, where τ =

H(c1), and sends the partial decapsulation share
µi = (µi1, µi2) to A. Otherwise, C gives a
random value to A.

– Challenge: Once A ends the Phase 1, C can
form the following challenge information. C
randomly selects k ∈ ZN , and computes C∗ =
(c∗1 = gk, c∗2 = (uτv)k),K0 = e(g, h)αk, where
τ = H(c1). With this, C now selects a random
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bit δ ∈ {0, 1} and a random session key K1. C
then sends (C∗,Kδ) to A.

– Phase 2: A continues to issue further Cor-
ruption query and DecapsulationShare query
as in phase 1, but it is not allowed to make
DecapsulationShare query on the challenge C∗.

– Guess: Eventually, A outputs a guess bit δ′ ∈
{0, 1} for δ. Since Game0 is identical to the
IND-ACA-TCCA game, we have

ADV IND−ACA−TCCA
A (λ) = |Pr[δ′ = δ]−1/2|

and our goal is to prove that this quantity is
negligible.

• Game1:This is the same as Game1, except that the
challenger will reject all decryption queries that c1 ̸=
c∗1 and H(c1) = H(c∗1).

• Game2: This is identical to Game2, except the
challenger will refuse all decryption queries that
H(c1) ̸= H(c∗1) and H(c1) = H(c∗1) (mod p2).

• Game3: This is the same as Game2, except that in
the phase 2, C will abort if A manages to make
PartialDecapsulate query (Pi, C = (c1, c2)) such
that the C = (c1, c2) can pass the CiphertextVerify
algorithm and for which c1 = c∗1 and c2 ̸= c∗2.

• Game4: This is the same as Game3, with one d-
ifference in the Challenge phase that C randomly
selects (k, ω, ζ) ∈ Z3

N and generates the challenge
ciphertext as follows:

c∗1 = gkgω2 ,

c∗2 = (uτ∗
v)kgωζ

2 ,

K0 = e(g, h)αk,

where τ∗ = H(c∗1). The challenge ciphertext
C∗ = (c∗1, c

∗
2) is well-formed according to verifi-

cation equation (1). To verify this, we observe the
correctness as follows:

e(c∗2, gg3)

= e((uτ∗
v)kgωζ

2 , gg3)

= e((uτ∗
v)kgωζ

2 , g) · e((uτ∗v)kgωζ
2 , g3)

= e((uτ∗
v)kgωζ

2 , g) · 1GT

= e((uτ∗
v)k, g) · e(gωζ

2 , g)

= e(uτ∗
v, g)k,

e(c∗1, (u
τ∗
v)g′3)

= e(gkgω2 , (u
τ∗
v)g′3)

= e(gk, (uτ∗
v)g′3) · e(gω2 , (uτ∗

v)g′3)

= e(gk, (uτ∗
v)g′3) · 1GT

= e(gk, (uτ∗
v)) · e(gk, g′3)

= e(uτ∗
v, g)k.

So, we have e(c∗2, gg3) = e(c∗1, (u
τ∗
v)g′3).

• Game5: This is identical to Game4 with one dif-
ference of DecapsulationShare query on (Pi, C =
(c1, c2)) in phase 1. C randomly selects (γ, ι, ζ) ∈

Z3
N , (W3,W

′
3) ∈ G2

p3
, and answers the Decapsula-

tionShare query of Pi about c1, c2 as follows:

µi1 = SKi(u
τv)γW3i · gιζ2 ,

µi2 = gγW ′
3i · gι2,

where τ = H(c1). The partial decapsulation share
(µi1, µi2) is well-formed according to equation (2).
To verify this, we can see the correctness as follows:

e(µi1, g)

= e(SKi(u
τv)γW3i · gιζ2 , g)

= e(SKi(u
τv)γ , g) · e(W3ig

ιζ
2 , g)

= e(SKi, g) · e((uτv)γ , g)

= V Ki · e(uτv, g)γ ,

V Ki · e(uτv, µi2)

= V Ki · e(uτv, gγW ′
3i · gι2)

= V Ki · e(uτv, gγ) · e(uτv,W ′
3ig

ι
2)

= V Ki · e(uτv, g)γ .

• Game6: This is the last game, identical to Game5,
but in the challenge phase the challenger C first
performs the Encapsulate algorithm to acquire
(K,C∗), and selects a random bit δ ∈ {0, 1} and two
random session keys K0,K1, then sends (C∗,Kδ) to
the adversary A. .

First observe that, as desired, the adversary A’s view in
Game6 is identical for either choice of δ ∈ {0, 1}, but Kδ

is never related to C∗ in the experiment, so |Pr[δ′ = δ]|
is exactly 1/2.

Claim 1: Suppose there exists an algorithm A that can
distinguish Game1 from Game0 with advantage ϵ. Then
there is a distinguishing algorithm D with advantage ϵ in
finding a collision of the hash function H.

If A can distinguish Game1 from Game0, D will
find the collision of the hash function H . Because hash
function H is collision-resistant, we conclude that this
event happens with negligible probability, as desired.

Claim 2: Suppose there exists an algorithm A that can
distinguish Game2 from Game1 with advantage ϵ. Then
there is a distinguishing algorithm D with advantage ϵ/2
in breaking Assumption 1 or Assumption 2.

Proof. If A can produce C = (c1, c2) such that τ ̸= τ∗

(mod N) and τ = τ∗ (mod p2), where τ = H(c1), τ
∗ =

H(c∗1), D can find a non-trivial factor of N by computing
gcd(τ − τ∗, N). According to Lemma 1, D can break
Assumption 1 or Assumption 2 with advantage ≥ ϵ/2 (
proof is similar to Lemma 1 of [16]).

Claim 3: Suppose there exists an algorithm A that can
distinguish Game3 from Game2 with advantage ϵ. Then
there is a distinguishing algorithm D with advantage ϵ in
breaking Assumption 1.

The only situation is when A issues a partial de-
capsulation share extraction oracle with a valid cipher-
text (c1, c2) such that c1 = c∗1 and c2 ̸= c∗2. Since
e(g, c2) = e(gg3, c2) = e(c1, u

τvg′3) = e(c1, u
τ∗
vg′3) =

e(c∗1, u
τ∗
v) = e(g, c∗2), this means that the difference
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between c2 and c∗2 is that c2 has a non-trivial component
in Gp2 , but c∗2 has no non-trivial component in Gp2

(equation 1 rules out the existence of a Gp3 component
in c2). So the relationship between c2 and c∗2 is that
c2 = c∗2 ·X1X2, where X1 is an element in Gp1 and X2

is an element in Gp2 . Since e(g, c2) = e(g, c∗2 ·X1X2) =
e(g, c∗2)e(g,X1)e(g,X2) = e(g, c∗2)e(g,X1), this mean
that e(g,X1) = 1GT , but g ̸= 1Gp1

, so, we can conclude
that X1 = 1Gp1

. D calculates ξ = e(T, c2)/e(T, c
∗
2).

If ξ = 1GT , D can determine T ∈ Gp1 , otherwise
T ∈ Gp1p2 .

Claim 4: Suppose there exists an algorithm A that can
distinguish Game4 from Game3 with advantage ϵ. There is
a distinguishing algorithm D with advantage ϵ in breaking
Assumption 1.
Proof. D begins by taking an instance (G,GT, N, e, g,
X3, T ) of Assumption 1. We now describe how it “inter-
polates” between Game3 and Game4 with A using these
parameters.

Init. D first selects a collision-resistance hash function
H : G → ZN , four random integers a, b, c, α ∈ ZN

and a random polynomial f(X) of degree t − 1 such
that f(0) = α. Then it computes g = g, u = ga, v =
gb, h = gc, Xp3 = X3, e(g, h)

α, and Pi’s decryption key
share SKi = hf(i)Z3,i and verification shadow V Ki =
e(g, SKi), for i = 1, . . . n, where Z3,i ∈R Gp3 . Finally, D
sends PK = (G,GT, N, g, u, v,Xp3 , e(·, ·),H, e(g, h)α),
V K = (V K1, . . . , V Kn) to A.

Even though D knows everyone’s decryption key share,
it cannot distinguish T ∈ Gp1p2 or T ∈ Gp1 .

Phase 1. This phase is identical to phase 1 of Game3.
Challenge. Once the adversary A ends Phase 1, D can

generate the challenge ciphertext as follows:

c∗1 = T,

c∗2 = T aτ∗+b,

K0 = e(T, h)α,

where τ∗ = H(c∗1). D now selects a random bit δ ∈
{0, 1} and random session key K1. D then sends (C∗ =
(c∗1, c

∗
2),Kδ) to A.

Phase 2. This phase is identical to phase 2 of Game3.
Guess. A outputs a guess bit δ′ ∈ {0, 1} for δ.
If T ∈ Gp1 , there exists a number k ∈ ZN to satisfy

T = gk, and D correctly simulates Game3. To verify
correctness, notice that we rewrite c∗1, c

∗
2 as follows:

c∗1 = gk,

c∗2 = T aτ∗+b

= (gaτ
∗+b)k

= (uτ∗
v)k.

If T ∈ Gp1p2
, there exist two numbers k, ω ∈ ZN to

satisfy T = gkgω2 , and D correctly simulates the Game4.
To verify correctness, observe that we rewrite c∗1, c

∗
2 as

follows:

c∗1 = gkgω2 ,

c∗2 = T aτ∗+b

= (gkgω2 )
aτ∗+b

= (gk)aτ
∗+b(gω2 )

aτ∗+b

= (uτ∗
v)k(gω2 )

aτ∗+b

= (uτ∗
v)kgωζ

2 ,

where ζ = aτ∗ + b. If A can distinguish Game4 from
Game3 with a advantage ϵ, D can use the output of A to
distinguish T ∈ Gp1 or T ∈ Gp1p2 with advantage ϵ.

Claim 5: Suppose there exists an algorithm A that can
distinguish Game5 from Game4 with advantage ϵ. Then
there is a distinguishing D with advantage ϵ in breaking
Assumption 2.
Proof. D begins by taking in an instance (G,GT, N,
e, g,X1X2, Z3, Y2Y3, T ) of the Assumption 2. We now
describe how it effectively “interpolates” between Game4
and Game5 with A using these parameters.

Init. D first selects a collision-resistance hash function
H : G → ZN , four random integers a, b, c, α ∈ ZN

and a random polynomial f(X) of degree t − 1 such
that f(0) = α. Then it computes g = g, u = ga, v =
gb, h = gc, Xp3 = Z3, e(g, h)

α, and Pi’s decryption key
share SKi = hf(i)Z3,i and verification shadow V Ki =
e(g, SKi), for i = 1, . . . n, where Z3,i ∈R Gp3 . Finally, D
sends PK = (G,GT, N, g, u, v,Xp3 , e(·, ·),H, e(g, h)α),
V K = (V K1, . . . , V Kn) to A.

Phase 1. This phase is identical to Phase 1 of Game
4, with one difference in the DecapsulationShare query in
that D chooses two random W3,W

′
3 ∈ Gp3 and generates

the partial decapsulation share of Pi with (c1, c2) as
follows:

µi1 = SKi · T a·τ+b ·W3,

µi2 = T ·W ′
3,

where τ = H(c1).
Challenge. Once the adversary A ends Phase 1, D can

generate the challenge ciphertext as follows:

c∗1 = X1X2,

c∗2 = (X1X2)
aτ∗+b,

K0 = e(X1X2, h)
α,

where τ∗ = H(c∗1). D now selects a random bit δ ∈
{0, 1} and a random session key K1. D then sends (C∗ =
(c∗1, c

∗
2),Kδ) to A.

There exists (k, ω) ∈ Z2
N such that X1 = gk and X2 =

gω2 , and we rewrite (c∗1, c
∗
2) as follows:

c∗1 = gkgω2 ,

c∗2 = (gkgω2 )
aτ∗+b

= (gk)aτ
∗+b(gω2 )

aτ∗+b

= (uτ∗
v)k(gω2 )

aτ∗+b

= (uτ∗
v)kgωζ

2 ,

K0 = e(X1X2, h)
α

= e(gkgω2 , h)
α

= e(gk, h)αe(gω2 , h)
α

= e(g, h)αk,
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where τ∗ = H(c∗1) and ζ = aτ∗ + b. So, the form of
(c∗1, c

∗
2) is the same as that of Game4’s.

Phase 2. This phase is identical to the phase 2 of
Game4.

Guess. A outputs a guess bit δ′ ∈ {0, 1} for δ.
If T ∈ Gp1p3 , there exists two numbers β, ι ∈ ZN

to satisfy T = gβgι3, and then D correctly simulates
the game4. To verify correctness, notice that we rewrite
µi1, µi2 as follows:

µi1 = SKi · T a·τ+b ·W3

= SKi · (gβgι3)a·τ+b ·W3

= SKi · (gβ)a·τ+b(gι3)
a·τ+b ·W3

= SKi · (uτv)β(gι3)
a·τ+b ·W3

= SKi · (uτv)βW3i,

µi2 = T ·W ′
3

= gβgι3 ·W ′
3

= gβW ′
3i,

where W3i = (gι3)
a·τ+bW3 and W ′

3i = gι3 ·W ′
3.

If T ̸∈ Gp1p3 , but T ∈ G, so there exists three numbers
β, ι, σ ∈ ZN to satisfy T = gβgι2g

σ
3 , and then D correctly

simulates the game5. To verify correctness, notice that we
rewrite µi1, µi2 as follows:

µi1 = SKi · T a·τ+b ·W3

= SKi · (gβgι2gσ3 )a·τ+b ·W3

= SKi · (gβ)a·τ+b(gι2)
a·τ+b(gσ3 )

a·τ+b ·W3

= SKi · (uτv)β(gι2)
a·τ+b(gσ3 )

a·τ+b ·W3

= SKi · (uτv)βgιζ2 W3i,

µi2 = T ·W ′
3

= gβgι2g
σ
3 ·W ′

3

= gβgι2W
′
3i,

where ζ = a ·τ+b,W3i = (gσ3 )
a·τ+b ·W3,W

′
3i = gσ3 ·W ′

3.
If A can distinguish Game5 from Game4 with advan-

tage ϵ, D uses the output of A to decide whether or not
T ∈ Gp1p3 with advantage ϵ.

Claim 6: Suppose there exists an algorithm A that can
distinguish Game6 from Game5 with advantage ϵ. Then
there is a distinguishing D with advantage ϵ in breaking
Assumption 3.
D begins by taking in an instance (G,GT, N, e, g, gαX2,
X3, g

βY2, Z2, T ) of the Assumption 3. We now describe
how it effectively “interpolates” between Game5 and
Game6 with A using these parameters.

Init. D first selects a collision-resistance hash function
H : G → ZN , three random integers a, b, c ∈ ZN

and a random polynomial f(X) of degree t − 1 such
that f(0) = 1. Then it computes g = g, u = ga, v =
gb, h = gc, Xp3 = X3, e(g, h)

α = e(gαX2, h), and Pi’s
decryption key share SKi = (gαX2)

cf(i)Z3,i and verifi-
cation shadow V Ki = e(g, SKi), for i = 1, . . . n, where
Z3,i ∈R Gp3 . Finally, D sends PK = (G,GT, N, g, u, v,
Xp3 , e(·, ·), H, e(g, h)α), V K = (V K1, . . . , V Kn) to A.

Phase 1. This phase is identical to Phase 1 of Game
5, with one difference in the DecapsulationShare query
in that D chooses three random numbers γ, ζ, ξ ∈ ZN

and generates the partial decapsulation share of Pi with
(c1, c2) as follows:

µi1 = SKi(u
τv)

γ
(Z2X3)

ζ ,

µi2 = gγ · (Z2X
ξ
3 ),

where τ = H(c1). Suppose that Z2 = gι2, X3 = gσ3 ,
where (ι, σ) ∈ Z2

N , to verify the correctness, notice that
we rewrite µi1, µi2 as follows:

µi1 = SKi(u
τv)

γ
(Z2X3)

ζ

= SKi(u
τv)

γ
gιζ2 · gσζ3

= SKi(u
τv)

γ · gιζ2 · V3,

µi2 = gγ · (Z2X
ξ
3 )

= gγ · gι2 · g
σξ
3

= gγ · gι2 · V ′
3 ,

where V3 = gσζ3 and V ′
3 = gσξ3 . The form of µi1, µi2 is

the same as with Game5’s.
Challenge. Once the adversary A ends phase 1, D can

generate the challenge ciphertext as follows:

c∗1 = gβY2,

c∗2 = (gβY2)
aτ∗+b,

K0 = T c,

where τ∗ = H(c∗1). D now selects a random bit δ ∈
{0, 1} and random session key K1. D then sends (C∗ =
(c∗1, c

∗
2),Kδ) to A.

To verify the correctness of (c∗1, c
∗
2), we assume that

Y2 = gω2 , where ω ∈ ZN , and rewrite (c∗1, c
∗
2) as follows:

c∗1 = gβY2

= gβgω2 ,

c∗2 = (gβY2)
aτ∗+b

= (gβ)aτ
∗+b(Y2)

aτ∗+b

= (uτ∗
v)β(Y2)

aτ∗+b

= (uτ∗
v)β(gω2 )

aτ∗+b

= (uτ∗
v)βgωζ

2 ,

where τ∗ = H(c∗1) and ζ = aτ∗ + b.
Phase 2. This phase is identical phase 2 of Game5.
Guess. A outputs a guess bit δ′ ∈ {0, 1} for δ.
If T = e(g, g)αβ , D correctly simulates the game5,

since K0 = T c = e(g, g)αβc = e(g, gc)αβ = e(g, h)αβ .
If T ∈R GT, K0 = T c is a random value of GT.

In this case, the challenge ciphertext (c∗1, c
∗
2) carries no

information on K0 or K1.
If A can distinguish Game6 from Game5 with a advan-

tage ϵ, D uses the output of A to decide whether or not
T = e(g, g)αβ with advantage ϵ.
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VI. COMPARISON

In this section, we compare our TKEM scheme with
the BMW’05 TKEM and IAHS’07 TKEM schemes. The
BMW’05 scheme is the provable security under the DBD-
H assumption in the standard model with loose reduction.
The IAHS’07 TKEM scheme is the provable security
under the RSA assumption in the random oracle model
with tight reduction. Neither BMW’05 nor IAHS’07 can
withstand an adaptive corruption attack. Here, SM is
the abbreviation of the standard model and ROM is the
abbreviation of the random oracle model. In Table 1 we
summarize the comparisons.

TABLE I.
COMPARISONS WITH OTHER TKEM SCHEMES

Adaptive Secure Secure Security
corruption level model reduction

BMW’05 × IND-CCA SM loose
IAHS’07 × IND-CCA ROM tight
OURS

√
IND-CCA SM tight

VII. CONCLUSIONS

In this paper, we have provided a threshold KEM
scheme against chosen ciphertext attacks and with con-
stant size ciphertext that is fully secure in the standard
model from some assumptions about bilinear groups
with composite order. In doing so, we discovered that
the static-corruption-secure Boyen-Mei-Waters KEM can
be proven to be adaptive-corruption-secure if we use
bilinear groups with composite order and the dual system
approach of Lewko-Waters.
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