Fast Restoration of Warped Document Image based on Text Rectangle Area Segmentation

Kuo-Hsien Hsia

Department of Computer Science and Information Engineering, Far East University, Tainan, Taiwan(R.O.C.) Email: khhsia@cc.feu.edu.tw

Shao-Fan Lien

Graduate School of Engineering Science & Technology (Doctoral Program), National Yunlin University of Science & Technology, Yunlin, Taiwan(R.O.C.) Email: g9510801@yuntach.edu.tw

Juhng-Perng Su

Department of Electrical Engineering, National Yunlin University of Science & Technology, Yunlin, Taiwan(R.O.C.) Email: sujp@yuntach.edu.tw

Abstract—The warp problems usually make the documents being hardly recognized. Specifically, when we copy a page of a thick book or bound document by digital photocopier, the resulted image is usually warped because of the thickness of the document. We focus on this problem and propose a fast method to restore the warped document image in this paper. The text rectangle area of the document is one of the features of a document. The morphological operation is utilized for text rectangle area segmentation. The DLT method is used to compute the mapping relations between the warped document and the non-warped document. In experimental results, the proposed method works on high resolution image very quickly. The warping text and the figures in documents have been restored by the proposed method successfully. This method is efficiency and fast for implementing on the module of digital photocopier.

Index Terms—warped document; image process; DLT method; text rectangle area segmentation.

I. INTRODUCTION

The first photocopier (or copier) is invented by Carlson (American) in 1938. The first commercial copier "Xerox 914" is developed by Xerox in 1959. The Xerox 914 can copy 7 documents per second. The photocopier can copy the large numbers of texts and images from documents to papers quickly. Even in this era of highly computerized, the photocopier is still commonly used in offices, schools, or libraries. The main process of photocopier are "**charge**", "**exposure**", "**development**", "**transfer**" and "**fusing**". In recent years, the traditional photocopier is replaced by the digital photocopier, gradually. The process of digital photocopier is almost the same with the traditional photocopier. The process of digital photocopier just adds the "**digitalization**" after "**exposure**". In other word, the Organic Photo-Conductor Drum (OPC Drum) of digital photocopier can capture the digital signals of documents.

When we copy a page of a thick book or a bound document, the resulted image is usually warped because of the thickness of the document. Therefore, our objective is to design a fast algorithm for restoring the warped document image for a digital photocopier. The method should be developed on embedded systems of digital photocopier. We hope that the copied documents are nonwarped and the copy speed is unchanged.

The warp makes the text not only difficult to read but also being hardly recognized by Optical Character Recognition (OCR). Many researchers have been worked on the warp problem. We are interested in three major types of approach about them. The first type is the model based de-warping method. Such as [1], the plane transform model is established in advance for restoring the warping from camera captured image. Zhang and Tan [2][3] proposed the model of books from the shading and physical analysis. Brown and Brent [4] presented a framework for acquiring and restoring images of warped documents. The second type is segmentation based recovery method. This kind of methods are usually segmenting the characters and detecting the text lines. Based on the text lines, the documents can be restored. Gatos and Pratikakis [5] achieved binary image dewarping based on word rotation and translation according to upper and lower word baselines. Moreover, [6] [7] and [8] are using the similar approaches for warped document restoring. The last is the 3D acquisition method. Such as [9] and [10], a lot of control points are acquired for establishing the surface of document. However, this method is the slowest one of the three approaches.

For our applications, the 3D acquisition method is out of our consideration because of its time-consuming. The model based approach needs the parameters of digital

Manuscript received Mar. 1, 2011; revised Apr. 1, 2011; accepted Apr. 12, 2011.

Corresponding author: Kuo-Hsien Hsia.

photocopier or book. However, these parameters are not easy to obtain from photocopier manufacturing companies practically. Thus we will propose a fast method similar to segmentation based approach for warped documents restoring in this paper. However, a lot of computation is inevitable for detecting the characters and the base line of text. In contrast to former methods, the text area is much easier to segment by our method. The DLT algorithm is used to compute the mapping relations between the warped document and non-warped document. Therefore, the process could restore the document quickly and effectively.

Some cases of the warped document restored by the method will be shown in this paper. From the experimental results, it is demonstrated that the method can work for texts, equations and figures. Moreover, the computing time of high resolution document image is under 0.1 sec. In our survey, few literatures about this topic consider the computing time. Therefore, we strongly believe that the method could be realized in embedded system of digital photocopier.

II. WARPED DOCUMENT IMAGE RESTORATION METHOD

There are three parts in the process. The proposed method is shown in Figure 1. The major steps are image pre-processing, text rectangle area segmentation and document image restoration.

Projective

Transformation

Direct Linear

Transformation

Algorithm

Revised image

Document image

restoration

More details will be discussed in the following.

Image input

Binarization

Filtering

Morphological

operation

Edge and Corer Detection

Image

pre-processing

Figure 1. Warped document image restoration method.

A. Text Rectangle Area Segmentation

We found that the text areas in a general document are usually in rectangle. But the area will often be warped in the copied image. Three steps are proposed for segmenting the text rectangle area. In [11] and [12], some 1163

useful image segmentation algorithms have been proposed. However, the processes of the methods are complicated for our application. Therefore, the fast algorithm, Niblack algorithm [13], is utilized for segmenting the document into binary image. Next, filtering and the morphology operation [14] are used for computing the text rectangle area.

1) Niblack Algorithm

The Niblack algorithm is the method for computing local threshold.

$$I(x, y) = m(x, y) \left[1 + k \left(1 - \frac{\rho(x, y)}{L} \right) \right]$$
(1)

where m(x, y) is the mean of the area image, $\rho(x, y)$ is the standard deviation. *k* and *L* are constants depending on practical applications. For the cases discussed in this paper, k = 0.25 and L=136. Niblack algorithm can remove the shadow and salt-and-pepper noise preliminarily.

Figure 2 shows a result of Niblack algorithm. The shadow area in Figure 2(a) is almost removed in Figure 2(b) by Niblack algorithm. The resulting image is clear enough for the next process.

2) Text Rectangle Area Segmentation

In here, the dilation and erosion is utilized to determine the text area. Erosion and dilation are commonly used operations of morphological image processing. The related introductions are described in the following.

An image A eroded by a matrix B, denoted by $A \odot B$, is defined as:

$$A \odot B = \{A(i, j) \mid \min(A(i, j) \cap B(k, l))\}$$
(2)

where *B* is a square mask, and the size of erosion range depends on *B*. Similarly, an image *A* via dilation operation by a matrix B is denoted by $A \oplus B$. The relation is described as:

$$A \oplus B = \left\{ x \,|\, (\hat{B})_x \cap A \neq \phi \right\} \tag{3}$$

where ϕ is the empty set and x is a point on the image.

Figure 3(a) is the result from Figure 2(b) by inversion. Figure 3(b) is the result of 3 times erosion by a 13×13 mask. The text parts become some rectangular areas. Next, we dilated Figure 3(b) 4 times by a 16×16 mask. In Figure 3(c), 5 text areas are segmented.

3) Feature Points and Corresponding Control Points Detection

From Figure 3(c), the text areas are warped rectangles. The features of the text areas are the corners and edges. Harris corner detector [15] is used for detecting the corners. The corner points and the mapping of the corresponding control points are illustrated in figure 4. Figure 4(b) is the default page and control points. The areas in figure 4(b) are defined from text rectangle area of original image.

B. Document Image Restoration

The document image restoration is a 2D to 2D projective transformation. In this paper, direct linear transformation (DLT) algorithm is used for recovering the documents.

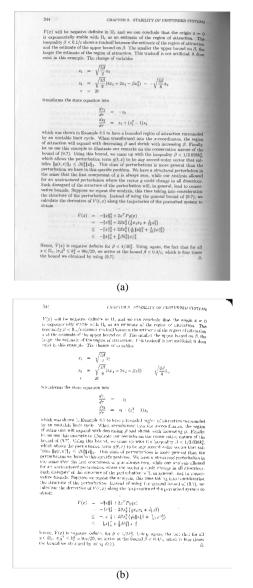


Figure 2. The binarization of document image. (a) Original image. (b) The result of Niblack algorithm.

1) Projective transformation

The projective transformation matrix [16] from the warped document to the original document can be given by

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
(4)

or X'=HX. Let the inhomogeneous coordinates X and in plane A and be (x, y) and (x', y'), respectively. The projective transformation of equation (4) will be written as

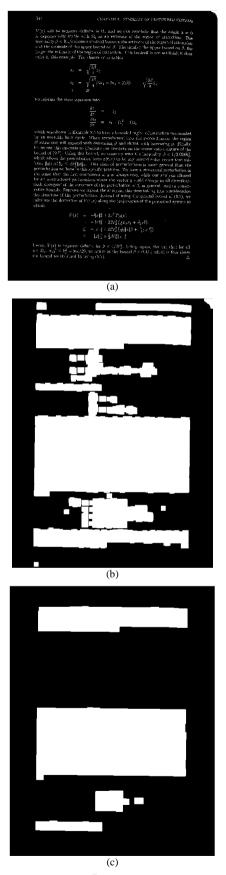


Figure 3. (a) The highlight of binarization document image. (a) The result of erosion operation. (b) The result of dilation operation.

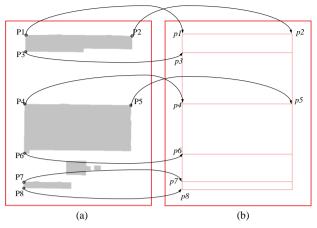


Figure 4. The control points mapping relation. (a) The feature points of text areas. (b) The default page and control points.

$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$

$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$
(5)

Re-arrange equation (5) and we will have

Equation (6) is an over-determined system, the DLT algorithm [14] is utilized for solving the system.

2) Direct Linear Transformation Algorithm

Rewrite equation (6), the linear system can be expressed in matrix form:

$$\mathbf{A}\hat{H} = \hat{\mathbf{x}} \tag{7}$$

where
$$\hat{\mathbf{x}} = \begin{bmatrix} x_1' & y_1' & x_2' & y_2' & \cdots & x_i' & y_i' \end{bmatrix}^T$$

 $\hat{H} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{33} \end{bmatrix}^T$, and

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2'x_2 & -x_2'y_2 & -x_2' \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -y_2'x_2 & -y_2'y_2 & -y_2' \\ \vdots & \vdots \\ x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -y_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix}$$
(8)

The algorithm is illustrated as follows:

- STEP 1 For each corresponding point, compute the matrix **A**. $(i \ge 4)$
- STEP 2 Obtain the SVD (Singular value decomposition) of **A**.
- STEP 3 If $\mathbf{A}=\mathbf{U}\mathbf{D}\mathbf{V}^{\mathrm{T}}$. The last column of vector \mathbf{V} corresponding to the smallest singular value of \mathbf{A} are the elements of the vector H.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we demonstrated the warped document image restoration by our method. The sizes of the left and right page images are both 2550×1755 pixels. They are large image files. The test images are scanned from a 750-page book. The thickness of the book will cause the warp in copying or scanning.

Figure 5(a) is the left (odd-numbered) page image. Figure 5(b) is the de-warped result by the proposed method. Figure 6(a) is the right (even-numbered) page image. The image is warped seriously. This image has rotation and warping. Moreover, there are not only texts but also figures in this image. In Figure 6(b), the text and figures in the image are restored successfully by our method.

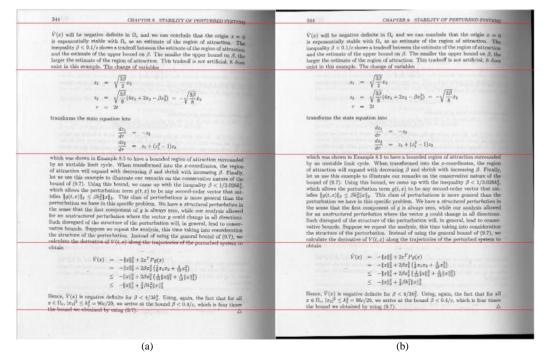


Figure 5. Case 1: Left page document image restoration. (a) Original image. (b) The result of the restoration.

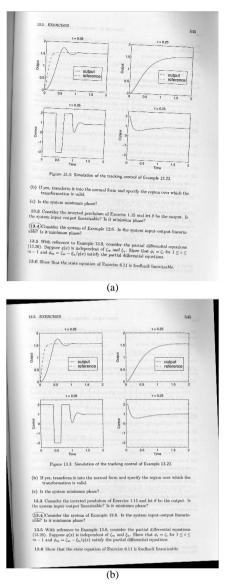


Figure 6. Case 2: Right page document image restoration. (a) Original image. (b) The result of the restoration.

The last case is shown in Figure 7. This is a common situation when we copying or scanning a thick books. Figure 7(a) is also the right page image. The warp in upper right corner is severer than other parts of the document. By our method, the text area in the image is restored. The computation time of case 1, case 2, and case 3 are 0.0863 sec, 0.0926 sec and 0.0736 sec, respectively.

IV. CONCLUSION

In this paper, the text rectangle area segmentation and direct linear transformation (DLT) algorithm are used for restoring the warped document image. The complex text areas are segmented by expansion and erosion. The simple rectangles and corners are used for computing the mapping relation between the warped document and nonwarped document by DLT algorithm. In the experimental results, three high resolution images are restored quickly and successfully. Not only the warped text but also the figures in documents can be restored by the proposed method. This method is easy to implement on the embedded systems of digital copier.

In some case, such as figure 7, the restored text area has a little trapezoidal deformation. That needs further works to improve it in the future.

A. VANISHING PERTURBATIC	N	
When the origin of the non but not exponentially stable, t	ninal system (9.2) is uniformly asy he stability analysis of the pertur- l system has a positive definite, de	mptotically stable, bud system is more crescent Lyapunov
DI	$\frac{V}{t} + \frac{\partial V}{\partial x}f(t, x) \leq -W_3(x)$	d metinoont. The
for all $(t, x) \in [0, \infty) \times D$, we derivative of V along the traje	here $W_3(x)$ is positive definite an actories of (9.1) is given by	d continuous. 1 0e
$\dot{V}(t,x)$	$= \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t, x) + \frac{\partial V}{\partial x}g(t, x)$ $\leq -W_3(x) + \left\ \frac{\partial V}{\partial x}g(t, x)\right\ $	
	$\leq -W_3(x) + \left\ \frac{\partial V}{\partial x} g(t, x) \right\ $	
Our task now is to show that	in all in successful the second	
	$\left\ \frac{\partial V}{\partial x}g(t,x)\right\ < W_3(x)$	
Demute) Genterenti anti itta	task that cannot be done by put c) , so we have done in the expon will depend on the nature of the class of Lyapunov functions for consultal stability is the case when first	
<u>01</u> D	$\frac{\partial V}{\partial x} + \frac{\partial V}{\partial x} f(t, x) \leq -c_0 \phi^2(x)$	(9.8)
	$\left\ \frac{\partial V}{\partial x}\right\ \le c_4 \phi(x)$	(9.9)
$\hat{V}(t, z)$	$\ \partial x\ $ some positive constants c_2 and c_4 mass. A Lyapunov function ratio type Lyapunov function. It is cle aph (9.5) is quadratic type, but a en when the origin is not expose by by an example. If the nomine ertion $V(t, x)$, then its derivative a $) \leq -c_2 \phi^2(x) + c_4 \phi(x) g(t, x) $	ar that a Lyapunov quadratic-type Lya- entially stable. We i system (0.2) has a long the trojectories
	bation term satisfies the bound	
	$\ g(t,z)\ \le \gamma \phi(x), \ \gamma \le \frac{c_0}{c_4}$	
	4.5	
	(a)	
	(a)	
	(a)	
51. VANISHING PERTURBA	TION	
When the origin of the n but not exponentially stable involved. Suppose the nomi- function $V(t, x)$ that satisfies	rzow sominał system (0.2) is uniformly s, the stability analysis of the per nal system has a positive definale co	
When the origin of the n but not exponentially stable involved. Suppose the nomi- function $V(t, x)$ that satisfies		
When the origin of the n but not exponentially stable involved. Suppose the nomi- function $V(t, x)$ that satisfie	TROM cominal system (0.2) is uniformly r, the stability analysis of the pseudo- transform of the system as a positive definite es- $\frac{\partial V}{\partial x} + \frac{\partial V}{\partial x} f(t, x) \leq -W_3(x)$	asymptotically stable turbed system is more decreasent Lyapunos
When the origin of the n bat not exponentially stable involved. Suppose the nom- function $V(t, x)$ that satisfies for all $(t, x) \in [0, \infty) \times D$, derivative of V along the tr	TROM to the stability analysis of the per- nal system (0.2) is uniformly the stability analysis of the per- nal system has a positive definite of $\frac{\partial U}{\partial x} + \frac{\partial V}{\partial x} f(t, x) \leq -W_{0}(x)$ where $W_{1}(x)$ is positive definite according dispersion of the system of the system of the system of the system of the system of the system of the system $M_{1}^{2} = M_{1}^{2} + M_{2}^{2} + M_{2$	asymptotically stable turbed system is more, decrescent Lyapunes and continuous. The
When the origin of the n bat not exponentially stable involved. Suppose the nom- function $V(t, x)$ that satisfies for all $(t, x) \in [0, \infty) \times D$, derivative of V along the tr	TROM to the stability analysis of the per- nal system (0.2) is uniformly the stability analysis of the per- nal system has a positive definite of $\frac{\partial U}{\partial x} + \frac{\partial V}{\partial x} f(t, x) \leq -W_{0}(x)$ where $W_{1}(x)$ is positive definite according dispersion of the system of the system of the system of the system of the system of the system of the system $M_{1}^{2} = M_{1}^{2} + M_{2}^{2} + M_{2$	asymptotically stable turbed system is more, decrescent Lyapunes and continuous. The
When the origin of the n bat not exponentially stable involved. Suppose the nom- function $V(t, x)$ that satisfies for all $(t, x) \in [0, \infty) \times D$, derivative of V along the tr	THOM contained system (0, 3) is undifficultly to the stability samples of the per- sense of the stability samples of the per- sense of the stability of the stability of the stab- stability of the stability of	asymptotically stable turbed system is more, decrescent Lyapunes and continuous. The
When the origin of the x into a exponentially stable model. Suppose the norm function $V(r,z)$ that satisfies the stable of V along the tr $\hat{V}(t,z)$. Our task now is to show the	THEN contained systems (0.2) in uniformity as the stability analysis of the per- site stability analysis of the per- site systems has a positive distinct $\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) \leq -W_3(x)$ $= \frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial x} g(t, x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial$	anymptotically stability sturbed system is more decrement Lyopunos and continuous. The s)
When the origin of the r integration second bills the probability of the integration $\nabla (t, z)$ that each matrix $\nabla (t, z)$ that each is a start of $z \in [0, \infty) = D$, integrations of V along the z $\nabla (t, z)$. Our tank now is to abser the for all $(z, z) \in [0, \infty) = D$, assignated bound on $[0, t]$ of the monotonic bound on $[0, t]$ of the monotonic protons. Our indicate, derivenue, and the distance, derivenue, and the distance bound and the field indice, derivenue, and the distance bound and the field indicate, derivenue, and the distance bound and the field distance bound distance dista	THEN we can also also also also also also also also	anymptotically stability sturbed system is more decrement Lyopunos and continuous. The s)
When the origin of the r integration second bills the probability of the integration $\nabla (t, z)$ that each matrix $\nabla (t, z)$ that each is a start of $z \in [0, \infty) = D$, integrations of V along the z $\nabla (t, z)$. Our tank now is to abser the for all $(z, z) \in [0, \infty) = D$, assignated bound on $[0, t]$ of the monotonic bound on $[0, t]$ of the monotonic protons. Our indicate, derivenue, and the distance, derivenue, and the distance bound and the field indice, derivenue, and the distance bound and the field indicate, derivenue, and the distance bound and the field distance bound distance dista	THOM contained system (0, 3) is undifficultly to the stability samples of the per- sense of the stability samples of the per- sense of the stability of the stability of the stab- stability of the stability of	anymptotically stability sturbed system is more decrement Lyopunos and continuous. The s)
When the origin of the $r_{\rm int}$ are an exponential by table product $V(t_{\perp})$ that makes the product $V(t_{\perp})$ that satisfy matching $V(t_{\perp})$ that satisfy the all $(x, x) \in [0, \infty) \times D$, derivative of V since the V V(t, x). Our tank now is to abave the for all $(t, x) \in [0, \infty) \times D$, or tank now is to show the to the showth as implies as the definition of the single set of the definition of the single set of the definition, determined, and far	THEN THEN THEN h the stability sandpairs of the pro- h the stability sandpairs of the pro- $d\theta = \frac{\partial g}{\partial x} \left(x, y \le -W_h(x) \right)$ where $W_h(x) = \log $	asymptotically table turbed system is more decrement Lyopenes and continuous. The e) system of the system of the securital stability case. or which the analysis here V(r, z) is possible (9.8) (9.9)
When the origin of the $r_{\rm int}$ are an equation to this is an exponential to this is a second se	THE COMMUNICATION CALL THE ADVANCE TO THE ADVANCE THE	asymptotically table turbed system is more decrement Lyopenes and continuous. The e) system of the system of the securital stability case. or which the analysis here V(r, z) is possible (9.8) (9.9)
When the orbit of the has been as a second	THEM The second secon	asymptotically table turbed system is more decrement Lyopenes and continuous. The e) system of the system of the securital stability case. or which the analysis here V(r, z) is possible (9.8) (9.9)
When the orbit of the has been as a second	THE MARK STATES THE S	and continuous. The z) setting a simple order neutral tability case b_1 approximation here $V(r, x)$ is positive (9.8) (9.9)
When the orbit of the has been as a second	THEM The second secon	asymptotically table turbed system is more decrement Lyopenes and continuous. The e) system of the system of the securital stability case. or which the analysis here V(r, z) is possible (9.8) (9.9)

Figure 7. Case 3: Another right page document image restoration. (a) Original image. (b) The result of the restoration.

REFERENCES

- [1] M. Wu, R. Li, B. Fu, W. Li and Z. Xu, "A Model-based Book Dewarping Method to Handle 2D Images Captured by a Digital Camera", International Conference on Document Analysis and Recognition, vol. 1, pp.158-162, 2007.
- [2] L. Zhang and C. L. Tan, "Warped Document Image Restoration Using Shape-from-Shading and Physically-Based Modeling", IEEE Workshop on Applications of Computer Vision, pp.29-29, 2007.
- [3] L. Zhang and C. L. Tan, "Restoring Warped Document Images using Shape-from-Shading and Surface Interpolation", International Conference on Pattern Recognition, vol.1, pp. 642-645, 2006.

- [4] M. S. Brown and W. B. Seales, "Image Restoration of Arbitrarily Warped Documents", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, No.10: pp.1295-1306, 2004.
- [5] B. Gatos, I. Pratikakis and K. Ntirogiannis, "Segmentation Based Recovery of Arbitrarily Warped Document Images", International Conference on Document Analysis and Recognition, vol. 2, pp.989 – 993, 2007.
- [6] W. Zhang, X. Li and X. Ma, "Perspective Correction Method for Chinese Document Images", International Symposium on Intelligent Information Technology Application Workshops, pp.467 - 470, 2008.
- [7] Y. Zhang, C. Liu, X. Ding and Y. Zou, "Arbitrary Warped Document Image Restoration Based on Segmentation and Thin-Plate Splines", International Conference on Pattern Recognition, pp. 1-4, 2008.
- [8] A. Ulges, C. H. Lampert and T. M. Breuel, "Document Image Dewarping using Robust Estimation of Curled Text Lines", International Conference on Document Analysis and Recognition, vol. 2, pp.1001 - 1005, 2005.
- [9] K. B. Chua, L. Zhang, Y. Zhang and C. L. Tan, "A Fast and Stable Approach for Restoration of Warped Document Images", International Conference on Document Analysis and Recognition, vol. 1, pp. 384 - 388, 2005.
- [10] Z. Zhang, C. L. Tan and L. Fan, "Estimation of 3D Shape of Warped Document Surface for Image Restoration", International Conference on Pattern Recognition, vol. 1, pp. 486 - 489, 2004.
- [11] C. Lui, X. Zhang, X Li, Y. Li, and J. Yang, "Gaussian Kernelized Fuzzy c-means with Spatial Information Algorithm for Image Segmentation", Journal of Computer, vol. 7, no. 6, pp.1511-1518, 2012.
- [12] J. Lin and J Wang, "Research on Contour Correction in Medical CT Image Segmentation", Journal of Computer, vol. 7, no. 3, pp. 762-767, 2012.
- [13] W. Niblack, An Introduction to Digital Image Processing. Prentice Hall, Englewood Cliffs, 1986.
- [14] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice Hill. 2001.
- [15] M. Nixon and A. Aguado, Feature Extraction & Image Processing, Amsterdam Academic, Boston, 2008.
- [16] R. I. Hartley and A. Zisserman, Multiple View Geometry in computer vision, Cambridge, UK, 2003.

Kuo-Hsien Hsia was born in Taiwan in 1963. He received the Ph.D. degree in electrical engineering from the National Sun Yat-Sen University, Taiwan, in 1994. He is currently an associate professor of the Department of Computer Science and Information Engineering, Far-East University, Taiwan. His research interests

are in the area of differential game theory, fuzzy theory, imageassistant measurement and control software design.

Shao-Fan Lien was born in Taiwan in 1981. He received the B.S. degree from Department of Electronic Engineering of Huafan University in 2004 and received the M.S. degree from Tungnan University in 2006. He is Ph.D. student of Graduate School of Engineering Science and Technology, National Yunlin University of

Science and Technology. His research interests include computer vision and vision servoing system control.

Juhng-Perng Su was born in Taiwan in 1958. He received the M.S. degree in electrical engineering from the National Taiwan University of Science and Technology, Taipei, Taiwan, in 1986, and the Ph.D. degree in electrical engineering from Sun Yat-sen University, Kaohsiung, Taiwan, in 1990. Since 1991, he has been

with the National Yunlin University of Science and Technology, Yunlin, Taiwan, where he is currently a Professor in the Department of Electrical Engineering. Since 2004, he has been conducting research projects on autonomous unmanned helicopters. His current research interests include the design of autonomous unmanned vehicles, robust estimation and optimal control, intelligent systems, and nonlinear control. Dr. Su was a recipient of the distinguished research award from Yunlin University of Science and Technology in 2005 and awards from various domestic competitions.