
The Key as Dictionary Compression Method of
Inverted Index Table under the Hbase Database

Pengsen Cheng

Chengdu University of Information Technology, Chengdu, P.R.China
Email: cps11@163.com

Junxiu An

Chengdu University of Information Technology, Chengdu, P.R.China
Email: anjunxiu@cuit.edu.cn

Abstract—Starting with Hbase's own characteristics, this
paper designs an inverted index table which includes key
word, document ID and position list, and the table can saves
a lot of storage space. After then, on the basis of the table,
the paper provides key as dictionary compression with high
compression ratio and high decompression rate for the data
block. At last, this paper tests the effectiveness of the
compression method by comparing it with Lzo and Gzip
which supported by Hbase.

Index Terms—Hbase, inverted index table, key as dictionary
compression

I. INTRODUCTION

The speed of reading data from disc into memory can
be improved by compressing data. The high efficient
decoding algorithms run fast on modern hardware. The
total time of reading compressed data from disc into
memory and decompressing the data is less than reading
the same block of uncompressed data. For example, it can
reduce the I/O time consuming by loading a compressed
position list, even need to add some additional
decompression time. So, in the most cases, the search
engine which introduces compressed inverted index is
more efficiency than which not introduces it. If the target
of compression is to save disc space, the compression
algorithms usually loss part of compress efficiency. But if
the algorithms aim at improve disc transfer efficiency,
they’re uncompress efficiency must be higher [1].

Traditional compression method based on different
compress principle can be divided into the following
three classes:

a. Compression method based on statistics, the core
principle is the Shannon information theory [2, 3] . In
practice, the symbols in message source encode to
different length according to its frequency. The symbols
with higher frequency encode to short codes, whereas the
symbols with lower frequency encode to long codes.
Thanks to large probabilities appear more often and small
probabilities appear few, after encoding a message can be
lossless represented with few symbols.

b. Compression method based on integer transform,
this method of compression that applied to a series of

integers, is the most used method in inverted index
compression [4-9] . In current mainstream computers
usually use 32 bits to represent an integer, but for a large
part of the number don’t need so many bits to be
represented. Compression method based on integer
transform takes advantage of integer factorization or
combinations to represent one or a set of integers with
appropriate bits. Those methods represent smaller
integers with fewer bits and larger integers with more bits.
It achieves less storage space by sacrificing the total
number of integer represented with fixed bits.

c. Compression method based on dictionary, this
method introduced a dictionary indexing mechanisms
into it [10-12] . In other systems, it often needs extra
space to store the indexes. However, if it requires
additional space in the compression method to store
dictionary information, it reduces the compression ratio
and even may bring about volume expansion. Therefore,
in the dictionary-based compression method, the
compressed data make up of index information. This
means that data appeared first as a dictionary, later if the
same data, record the length of the data and their distance
with the dictionary data; if this data don’t appear in the
previous, the data is recognized as dictionary data.

These compression methods have improved compress
ratio or decompress efficiency from different ways, but a
common problem in search engine is that these methods
focus either on compress ratio or decompress efficiency.
The query efficiency is a great important of search engine.
In querying inverted index, reading file and
decompressing data is a unified process and the process
should be consider together rather than focus on one side.
In addition, different from traditional row of relational
database, Hbase is a sparse, column-oriented and
distributed database which physical file not only contains
user required information but also contains a lot of
redundant information. Byte is base data type in Hbase,
therefore there are 256 symbols. If it uses statistics-based
compression method, the code tree will be too big.
Thanks to block is operation units in compression, there
are lot of bit operation and code tree querying operation,
and compression ratio is poor and decompress efficiency
is normal. The purpose of compression methods based on

1086 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.5.1086-1093

integer transform is to represent a smaller integer with
fewer bits, and data in Hbase is the shortest of 8-bit bytes.
In compression which operation unit is byte, raising the
compression ratio is difficult and different compression
methods with different operational size own different
decompress efficiency. Inverted index data file in Hbase
is a kind of redundant information and integer sequences
arranged in alternating files. Large amount of redundant
information in the data is suitable for dictionary
compression. It needs to compress the list position of
invert index before the list be inserted in Hbase, for the
query efficiency of invert index can be increased by
querying as decompressing the list.

Hbase database currently only supports Gzip
compression and Lzo compression [13, 14] . The Gzip
compression provides a higher compression ratio, but
efficiency of decompression is low [15] ; The Lzo has a
high decompress efficiency, but compression ratio is low
[16] . Aiming at storage structure of Hbase and the
characteristics of data block in the files, this paper comes
up with key as dictionary compression method for data
block. The way try to raise the compression ratio under
the premise of higher decompress efficiency, achieve the
unity of file reading and data decompression, and
increase the query efficiency of inverted index.

II. THE FILE STORAGE SYSTEM IN HBASE [13, 14]

Hbase is a column-oriented of distributed database and
constructs on Hadoop that is a kind of distributed file
system. The file system of Hbase continues to use
Hadoop’s HDFS (Haddop file system). There would be
more than one column family in one table under Hbase,
and one column family corresponds to a folded on the
physical storage structure. One folder contains several
Hfiles. Hfile’s structure shown in the following figure:

Fig.1.The structure of Hfile

Hfile is variable length file. Every record saves a
key/value in the data block, and other parts of Hfile save
location information and index information. Hbase can
automatic sorts the data in memory to lexicographic order
by row key. When writing file, Hbase writes all data
blocks in the memory to the files, and in the end of the
file adds index information of data blocks. When reading
file, it reads interrelated data blocks through accessing
index information rather than reads all data at once.

Through analysis on source code, internal compression
mechanism in Hbase, it only can compresses on data
block and meta block, and compression process occurs in

writing data from memory to disk. Each time it only
compresses one block. That means every block of
compression is needed to re-initial of compression
algorithm. And it performs the decompression operation
when reading data from disc to memory.

As shown in figure 2, it is a record structure in data
block. It begins with two fixed length numbers that
represent the length of key and value respectively. The
key begins with one fixed length number that represents
the length of row key. It followed by the row key, and
then is a fixed length number that represents the column
family’s length, then the column family, then the qualifier,
and at last are two fixed length numbers that represent
time stamp and key type. The principal original data
types are integer and string in key data, but in order to
simplify data access procedures, Hbase will automatic
change data type to byte. Therefore, the key data is a byte
array from software manufacturing perspective.
Compared with the key, there are thousands types of the
value in practice, but in the same reason, the value also
simplify to a byte array.

Fig.2.The structure of a record in data block

III. THE DESIGN OF INVERTED INDEX TABLE

Inverted index that adopt word-level inverted table, is
structured as follows:

1

2

1 1 2

2 1 2

1 2

, (, , , ...,),

(, , , ...,), ...,

(, , , ...,)
n

f

f

n f

T doc pos pos pos

doc pos pos pos

doc pos pos pos

<

>

The T represents the index, namely a
word; . (1, 2, ...,)idoc i n= . represent the ID of

documents contained the T ; (1, 2, ...,)ipos i f=

represent the positions that T locates in
(1, 2, ...,)idoc i n= .

Currently, it is bad, inefficient and there are many
system bugs on Hbase’s multiple column families.
Official recommends that the column family should be
controlled at up to 2 or 3 [13] . Because every column
family stored in a specific folder and different column
families in a same row data are stored in different file, it
creates a lot of redundant information. Just the data like
row key, time stamp is duplicating saved many times as
the number of column family increases that led to a large

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1087

© 2013 ACADEMY PUBLISHER

number of I/O operation and inefficient when reading
data. Reading inverted index file should be in real-time.
That means reading file should minimize unnecessary I/O
operations. And reading inverted index has the
characteristics of fetching the entire row. For a specific
keyword, all of the information is needed in the follow-up
operation, include document ID, position record list and
frequency of the word which hidden in position record.
For those reasons, it is not suitable for multiple column
family stores. To make full use of storage format of Hfile,
this paper used document ID as qualifier in table. In data
block, qualifier filed is a space designed to store the
column name. Storing document ID in it can save storage
space and also in line with people's habits of logical
thinking and Hbase provide the interface to obtain the
value in qualifier filed. In this paper, the length of the
document ID is 4 bytes or 32 bits.

For those reasons, after changed the word-level
inverted table to index table under Hbase, the logical
view as shown in table I:

TABLE I
LOGICAL VIEW

Row
key

Time
stamp

position
Doci Docj … Dock

W

tn p1…pf
tn-1 p1…pf

…
t1 p1…pf

In table I, row key refers to a specific word and
corresponds to the index entry T in word-level inverted
table; time stamp is a unique identification generated by
Hbase when insert a data into it. Position is name of
column family. This column family has indeterminate
number of qualifier. Each qualifier is document ID that
T appeared in it, like Doci, Docj, Dock in table, and it
corresponds to idoc in word-level inverted table. One
column in a specific row has one value at most under the
column family of position. This value is the compressed
position record list about T in idoc .

Hbase is sparse storage database. Section of empty
value is directly ignored. At the time of the actual storage,
because one column of a specific row is maximum one
value, the storage number equal to the number of not
empty value.

TABLE II
PHYSICAL VIEW

Row key Time
stamp

Column
family Column Value

W tn position Doci p1…pf
W tn - 1 position Docj p1…pf

…… …… …… …… ……
W t1 position Dock p1…pf

IV. KEY AS DICTIONARY COMPRESSION

Taking the characteristics of Hbase and Hfile into
consideration, this paper designed key as dictionary
compression method (KADC) to compress the all key;

the paper used variable byte codes (VBC) to compress
value and the integers which stand for length. In order to
synchronize querying and decompressing of position list,
it needs to compress the list before the position list is
inserted into Hbase. Then, the compressed list is the value
in Hbase, and it is unnecessary to compress the value
again.

A. Compression Algorithm
The length of array and array was expressed by

(,)kn key , and the k meat which row in the block. The

array 1, 2, 3,..., nkey a a a a= , and key made up by 7

short array: the length of row: 1 2,rowlen a a= ; row

key: 3 3,..., irow a a += ; the length of column family:

jfamlen a= ; column family: 1, 8...,j jfam a a+ += ;

qualifier: 9 12,...,j jcol a a+ += ; timestamp:

13 20,...,j jtime a a+ += ; key type: 21jtype a += , and

4j i= + , []0, 255i∈ .

Definition 1: In (,)rn key∀ and

(,)kn key∀ ()r k≠ , the r kfamlen famlen≡ ,

r kfam fam≡ .

Definition 2: In (,)rn key∀ and

(,)kn key∀ ()r k≠ , if r krow row= ,

r krowlen rowlen≡ .

Definition 3: In (,)rn key∀ and (,)kn key∀

()r k< , if r krow row= , there would not be a

(,) , (,)ln key l r k∈ which the l krow row≠ .

Corollary 1: Array’s length 21 25n j i= + = + , as
a result [25,280]n∈ .

Hbase automatically sorts records to lexicographic
order by row key and then sorts data in same row keys by
time stamp from large to small, which the definition 3
means. As the data growing, one data block will be
gradually filled up by the data with same row key. As
known from definition 1 and definition 2, the length of
row key, row key, the length of column family and
column family were all same in records which row key
are same. It only needs to store same filed once in records
with same row key in a block. Therefore, it constructs the
first four filed to be a dictionary data.

In the inverted index, the least used operation is
deleting. The value of key type filed is input type for
most and even all key/value data, thus dictionary data
includes key type filed. The value of time stamp and
qualifier is in wide range. But the time stamp with 8 bytes
is longer than key type, and the change in its high byte is
not obvious and slow because the change is progressively
increasing. Therefore, the time stamp is included in the
dictionary. In practice, time stamp in different key/value
will be same when insert data into Hbase in a very short

1088 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

period of time. To increase compress ratio as far as
possible includes qualifier filed into dictionary. As a

result, a complete dictionary data was a complete key
data.

Fig.3.The process of compression method

Compression process shown in figure 3, the compare
means to compare the bytes from high byte to low byte,
and the process ends when the determine condition is
false, and the compressed data is the current data. Hbase
is programmed by Java which is big endian. To meet the
common comparative method, the qualifier and time
stamp were transformed to litter endian. This process

compresses data in the order of row key, key type, time
stamp, and qualifier. The data do not be compressed
when its row key isn’t same with dictionary’s. That mean
the records with former row key are all compressed and
the current data is not only the compressed data of itself,
but also it is the dictionary data with next row key.

Algorithm 1.Compression algorithm

Input: Byte array dict, Byte array data
 Output: Byte array dict, Byte array compressed_data, Integer length_of_compressed_data
 //transform the first two bytes in array to length of row key
1 length_of_rowkey_in_dict = bytesTointeger(dict, 0, 2);
2 length_of_rowkey_in_data = bytesTointeger(data, 0, 2);
 //get the row key which begin from the third byte of array
3 rowkey_in_dict = GetbytesFrombytes(dict, 2, length_of_rowkey_in_dict);
4 rowkey_in_data = GetbytesFrombytes(data, 2, length_of_rowkey_in_data);
 //transform the endian of qualifier and time stamp in data to little endian
5 data = ToLittleEndian(data);
6 if rowkey_in_dict != rowkey_in_data then
7 dict = data
8 compressed_data = data
9 length_of_compressed_data = 2 + rowkey_in_data + 1 + 8 + 4 + 8 + 1;
10 else
 //get the length of dict
11 length_of_dict = 2 + rowkey_in_dict + 1 + 8 + 4 + 8 + 1;
 //get the maximum possible length of compressed data in the condition
12 length_of_compressed_data = 4 + 8 + 1;
 //let i express the last byte of array
13 i = length_of_dict - 1;
14 while dict[i] != data[i] do
15 i--;
16 length_of_compressed_data--;
17 compressed_data = GetbytesFrombytes(data, 2 + rowkey_in_dict + 1 + 8, length_of_compressed_data);

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1089

© 2013 ACADEMY PUBLISHER

B. Decompression Algorithm
The length of compressed array and compressed array

was expressed by (,)cn ckey . The array

1,..., cnckey c c= , and ckey made up by 3 short array:

qualifier: 1,..., ciccol c c= , timestamp:

..., cjctime c= , ckctype c= , and []1, 4ci∈ ,

[0,8]cj∈ , [0,1]ck∈ .
Corollary 2: The compressed array’ length

cn ci cj ck= + + , as a result [1,13]cn∈ .
Corollary 3: (,)xn xkey∀ , if 25xn ≥ ,

(,)xn xkey was (,)n key data type. If 13xn ≤ ,
(,)xn xkey was (,)cn ckey data type.

Fig.4.The process of decompression method

Decompression process shown in figure 4, the
dictionary data and compressed data can be distinguished
by their length, as it proved by the corollary 3. If the
length of data larger or equal to 25, that means it is the

dictionary, and itself is the decompressed data. If the
length of data smaller or equal to 13, it means it is the
compressed data. The decompression data needs to get
the missing part from dictionary data.

Algorithm 2.Decompression algorithm

 Input: Byte array dict, Byte array data, Integer length_of_data
 Output: Byte array dict, Byte array decompressed_data, Integer length_of_decompressed_data
1 if length_of_data > = 25 then
2 dict = data
3 decompressed_data = data
4 length_of_decompressed_data = length_of_data
5 else
 //transform the first two bytes in array to length of row key
6 length_of_rowkey = bytesTointeger(dict, 0, 2);
 //Calculate the length of the first four filed
7 length_of_fisrt_four_filed = 2 + length_of_rowkey + 1 + 8;
 //put the bytes of the first four filed into the decompressed_data
8 decompressed_data = GetbytesFrombytes(dict, 0, length_of_fisrt_four_filed);
 //add the data to the following valid buffer of decompressed_data
9 decompressed_data += data;
10 length_of_dict = length_of_fisrt_four_filed + 4 + 8 + 1;
 //current the number of valid bytes in decompressed_data
11 length_of_decompressed_data = length_of_fisrt_four_filed + length_of_data;
12 if length_of_decompressed_data < length_of_dict then
 //add the last part to the following valid buffer of decompressed_data
13 decompressed_data += GetbytesFrombytes(dict, length_of_decompressed_data - 1, length_of_dict -

length_of_decompressed_data);
14 length_of_decompressed_data = length_of_dict;
 //restore the endian of qualifier and time stamp to big endian
15 decompressed_data = ToBigEndian(decompressed_data);

1090 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

C. Algorithm Analysis
 In the compression algorithm, the main cost is byte

compression. When the row key of dictionary and of data
is different, it needs the minimum number of
comparisons that it only needs to compare the number of
the length of shorter row key. When the row keys are
same between dictionary and data, it maybe needs the
maximum number of comparisons that it needs to
compare the whole key part. So, the time complexity of

compression one recode is ()O n , and the complexity of

compression one block is ()O n recodes× . The total

complexity of compression is ()O N which N means
the total number of bytes in one block. In the process of
compression, it needs extra space to save dictionary data.

So the space complexity of compression is ()O M
which M means the length of dictionary data.

 In the decompression algorithm, the main cost is to
change little endian to big endian. The bytes of qualifier
are 4 and time stamp filed are 8. Every time, changing a
32bits digit from little endian to big endian needs 4 shift
operations, and changing a64bits digit needs 8shift
operations. Each time, decompression one recode needs
12 shift operations. So the time complexity of

decompression one block is (12)O recodes× . The

total complexity of decompression is ()O N which
N means the total number of recodes in one block. In the
process of decompression, it needs extra space to save
dictionary data. So the space complexity of

decompression is ()O M which M means the length
of dictionary data.

D. The Compression of A Key/Value
A key/value data can be divided into 4 parts. Except

the key and value, there still are two filed at the
beginning to record the length of key and value. The
length is compressed by variable byte codes(VBC)[5].
The compression solution is shown in follow figure:

 Fig.5.The hybrid compression method of a key/value

The complete process of a key/value as follow:
First, the key was compressed in the row with the

dictionary compression method. The result and the length
of compressed data were both saved in catch.

Second, the compressed length of key was written into
the file, then the compressed length of value was written
into the file, and last the compressed key and value were
written into the file in order.

V. EXPERIMENTAL METHODS AND RESULTS

Thanks to this paper only involved about compressing
on data block and to simplify experimental and to
enhance effectiveness of the experimental results, part
experiments in this paper were not doing under the
environment of Hbase. But in order to verify the solution,
the processed data of Hbase was put into the program
which simulated the reading and writing processing in
Hbase.

There were 2539 web pages used as the experimental
data in this paper. They all came from the Internet. After
web purification and segmentation processing, these data
was inserted into Hbase database in stand-alone
environment, and then the Hbase services were
immediately stopped. The purpose of that was to make
Hbase written its data in memory to disc. A totally
generated 3 Hfile, and their size were 11873280 bytes,
15609856 bytes and 46880768 bytes. And then these files
were processed. The way was to extract all data blocks
from them and save this data to file A, B and C. their size
was 11863262 bytes, 15595881 bytes and 46843112
bytes.

The basic information of experimental computer as
follow:

The version of system operation: RedHat CentOS
release 5.5;

The type of CPU: Intel(R) Xeon(R) CPU E5345 @
2.33GHz (there were 2 CPUs);

The capacity of memory: 4046280 kB.
The name of the compression in the paper was kadc. It

was written by ASCI C and compiled to static link library
with O2 compilation optimization by GCC compiler. The
comparative experiments adopted the library of LZO-2.05
[16] and library of ZLIB-1.2.5 [15] . The default
compilation optimization level of them was O2 and O3.
Every comparative experiment was the same framework.
The only difference was to call different compression and
decompression library. All operations of reading and
writing file, compressing and decompression were in a
data block units.

TABLE III

THE RESULTS OF EXPERIMENT

Method Compression
ration

Compression
efficiency

(MB/s)

Decompression
efficiency (MB/s)

KADC 20.3% 468 891
LZO 26.0% 374 818
GZIP 15.8% 25 239
From table III, it can be found that the key as

dictionary compression method is superior to LZO on the
compression ratio of inverted index table. And the
compression efficiency and decompression of key as
dictionary is superior to GZIP’s and LZO’s. The
Calculation method of compression efficiency and of
decompression efficiency is:

The size of original fileCompression efficiency
Compression time

=
,

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1091

© 2013 ACADEMY PUBLISHER

The size of original fileDecompression efficiency
Decompression time

=
.

The compression time and decompression time don’t
include time of I/O consuming. And in the calculation
method of decompression efficiency, the size of original
file is the size of decompressed file rather than
compressed file’s.

TABLE IV

COMPRESSION TIME (S)

Method 11M 15M 45M

KADC 0.031 0.046 0.119

LZO 0.044 0.048 0.131

GZIP 0.465 0.593 1.767

TABLE V

DECOMPRESSION TIME (S)

Method 11M 15M 45M

KADC 0.012 0.018 0.061
LZO 0.014 0.019 0.073

GZIP 0.050 0.067 0.188

In table IV and table V, the file size is the original file
size. The time means the value of compression or
decompression time plus the time of I/O consuming. It
could be found that the KADC’s consuming time is less
than others.

TABLE VI

COMPRESSION RATION AND QUERYING TIME(S) UNDER THE HBASE REAL
ENVIRONMENT

Method Compression ration Querying time (s)
No compression 100% 7.91

KADC 20.3% 4.32
LZO 26.0% 5.60
GZIP 15.8% 7.02

In table VI, all the result is monitored under the real
Hbase environment. In the compression ration test, it
closed the compression on meta data of LZO and GZIP.
In the querying time test, the querying time means
scanning all data in index table that the Hbase reads all
data on disc to memory without any process.

VI. EXPERIMENTAL CONCLUSION

Inverted index is principally applied in the technology
of search engine. Since, to meet the technical
characteristics of search engines, it greater emphasis on
the immediate accessibility of inverted index. The need
reflected in this article is mainly the execution time of
decompression as short as possible.

It assumes the size of source data is S(MB),
compression ratio is C, decompression efficiency is
D(MB/s), the average ratio of reading data from disc to
memory is T(MB/s), and the time of whole
decompression process is t. Therefore:

S SCt
D T

= +

The experimental data was taken into the above
equation. It would be found that: kadc lzoC C< and

kadc lzoD D> . Therefore, the following conclusions can
be drawn:

kadc lzot t< .
Now, it assumes that:

kadc gzipt t≥ . 1

From 1, it can get that:
()kadc gzip gzip kadc

kadc gzip

C C D D
T

D D
−

≤
−

. 2

From 2 , it can get that only when 14.69 /T MB s≤ ,
the 1 is right. But current, the T is much larger than
this number. So in the most cases, it can get the result that
the kadc gzipt t≥ is true.

This conclusion can be verified from table V and table
VI. Therefore, Kadc than Gzip or Lzo was more suitable
of inverted index compression.

Above conclusions apply to the stand-alone
environment. If in a distributed environment, it needed to
add the time of network transmission. The time for
consumed of whole decompression process is t:

net
S SCt t
D T

= + + .

nett was the time of network transmission. It was also
related to the size of compressed file and related to the
compression ratio in the case of same source size. So,
time of network transmission did not have an impact on
experimental conclusion, but it would increase gap
between Kadc and Lzo methods.

VII. CONCLUSION

Through analysis on experiment and experimental
results, the key as dictionary compression method on
particular inverted index table under the Hbase database
has a high immediacy, and it meets the requirements of
search engine for instant response. The key as dictionary
compression method for key also can apply to other big
table design under Hbase. But the source of Hbase just
give the option of Lzo and Gzip, so the source must be
modify to use this method in Hbase and at the same time
the Java interface of this method should be gave. At last,
the meta block also can be compressed except data block
in Hbase’s Hfile.

VIII. ACKNOWLEDGEMENT

This work was supported by 2012 China National
Social Science Fund (No. 12XSH019) and 2010 Natural
Science and Technology Development Fund of Chengdu
University of Information Technology (No.
CSRF201002).

1092 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

REFERENCES

[1] Manning, C.D., P. Raghavan and H. Schütze, Introduction
to Information Retrieval. 2009.
http://nlp.stanford.edu/IR-book/.

[2] Shannon, C.E., A Mathematical Theory of Communication.
Bell System Techical Journal, 1948. 27: p. 379-423,
623-656.

[3] FengGui, LingQiwei and ChenDonghua, Information
Theory and Coding Techniques. 2007, Beijing China:
TsingHua Uniersity Press.

[4] LiuXingyu, A Research of Full-Text Retrieval Based on
Inverted Index. 2004, Huazhong University of Science and
Technology: Wuhan China.

[5] PanShengyi, A Study on Compression Algorithm
Performance Based Inverted Index. 2009, Hangzhou
Dianzi University: hangzhou China.

[6] A, M. and S. L, Binary interpolative coding for effective
index compression. Information Retrieval, 2000. 3(1): p.
25-47.

[7] Williams, H.E. and J. Zobel, Compressing Integers for Fast
File Access. The Computer Journal, 1999. 42(3): p.
193-201.

[8] V, A. and M. A, Inverted index compression using
word-aligned binary codes. Information Retrieval, 2005.

8(1): p. 151-161.
[9] WangHu and WangQianping, Research and Analysis on

Five Inver ted Files Compression Techiques. Computer
Engineering and Applications, 2006(07): p. 169-173.

[10] Ziv, J. and A. Lempel, A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory, 1977. IT-23(3): p. 337-343.

[11] Storer, J.A. and T.G. Szymanski, Data compression via
textual substitution. Journal of the ACM , 1892. 19(4): p.
928-951.

[12] CaoDengjun, Study of Real-time and Lossless
Compression Encoding. 2004, National Central University:
Taoyuan Taiwan China.

[13] The Apache Software Foundation, The Apache Hbase
Book. 2010. http://hbase.apache.org/book/book.html.

[14] The Apache Software Foundation, The Source of Hbase.
2011. http://hbase.apache.org/.

[15] Roelofs, G., J. Gailly and M. Adler, A Massively Spiffy
Yet Delicately Unobtrusive Compression Library. 2010.
http://zlib.net/.

[16] Oberhumer, Lzo. 2010.
http://www.oberhumer.com/opensource/lzo/.

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1093

© 2013 ACADEMY PUBLISHER

