
Complexity is in the Brain of the Beholder: A
Psychological Perspective on Software

Engineering’s Ultimate Challenge

Iyad Zayour, PhD
Faculty of Science, Lebanese University, Lebanon

Email: iyad.zayour@ul.edu.lb

Imad Moukadem, PhD
Computer Science, Gulf University for Science &Technology, Kuwait

Email: moukadem.i@gust.edu.kw

Issam Moghrabi, PhD
MIS, Gulf University for Science &Technology, Kuwait

Email: moughrabi.i@gust.edu.kw

"Beauty in things exists merely in the mind which contemplates them."

David Hume, 1742

Abstract—Complexity of software has been largely studied
as a property of the code. We argue instead that complexity
is a psychological phenomenon and should be studied from
this perspective. The psychological literature however is
structured in a way making of little practical usefulness.
We propose a model based on isolated psychological facts
connected by intuitive reasoning to fight complexity in a
practical way. In this model, complexity corresponds to
occurrences of cognitive overload in the working memory
(WM), the bottleneck of cognition. Reducing complexity can
be achieved by relieving the WM of some load by explicitly
representing the internal mental constructs using external
media such as software tools. We present a case study in
which we used this model to produce a tool to reduce the
complexity in program comprehension for large software
systems. The tool was used in an industrial setting. We
present here the mental constructs targeted and the details
of the tool.

Index Terms—Software psychology, Complexity measures,
Program comprehension, Reverse engineering

I. INTRODUCTION

Working with software is difficult, mainly because
software is inherently complex [1]. Complexity is a
central issue in software engineering, a raison d’être, one
can argue. After all, if programs were simple, would ever
such a discipline exist? In the software literature,
complexity is discussed mainly in terms of code metrics.
It is considered as a property of the code itself, ignoring
that it is actually a human psychological phenomenon. It
is the human intellect (of the beholder) that is the subject
of the experience of complexity. Yet the discussion of

complexity in software as a psychological phenomenon
has been largely ignored.

The feeling of complexity or difficulty is not specific
to working with software; it is a part of any problem
solving process, a topic that is well studied in many
disciplines especially in psychology. Apparently, the
discipline of psychology should have a lot to offer to win
the battle against complexity. Yet, it seems that very little
practical psychological knowledge has been passed to the
software engineering community. Perhaps there is a
conception that dealing with complexity from the
psychological perspective should involve crossing
disciplines. The study of human intellect is the realm of
psychology, while, as software engineers, we are more
educated to work with software artifacts. The idea of
crossing into a new discipline can be intimidating; we are
more comfortable with the segregation of disciplines.

 Psychology, in particular, can be very inhospitable for
outsiders; it is a science that is based on rigorous
experiments based on validating hypotheses in labs or
lab-like settings [2]. Simple comprehensive theory or
rules of thumb that can provide practical help for
outsiders, like us the engineers, are not so common.

II. PSYCHOLOGY FOR SOFTWARE: THE GAP

Obviously, there is a gap between what psychology
provides in form of rigorously validated conclusions and
the kind of intuitive knowledge needed to guide us in our
fight with complexity. Bridging this gap could be a
valuable achievement; psychology is a science with over
100 years of accumulated knowledge that is supposed to

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1079

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.5.1079-1085

help in dealing with a problem that is primarily
psychological.

In bridging this gap, some vacuum has to be filled with
conclusions that may be less scientific than what is the
norm in psychology. However, there should be no fear of
being less scientific: new trends in the philosophy of
science encourage valuing theories based on their
problem solving efficacy rather than on their scientific
rigor [3]. Moreover, the alternative to relaxing the
scientific rigor, as we propose, is the total absence of any
guidance from scientific facts as we already have when
we develop tools for helping with complexity. For
example, the area of reverse engineering has seen little
success in achieving its objectives. Many scholars argue
that this disappointing result has been largely due to the
fact that reverse engineering tool developer’s base their
design on their intuitive assumptions of what can be
useful in reducing complexity in the absence of any
formal guideline or criteria for evaluating success [4].

We argue that, in order to arrive at a theory or model
that is practical enough to aid in software, connecting
accurate dots (rigorous facts of psychology) with not-so-
accurate lines (intuitive assumptions) is more likely to
reveal a picture that is more accurate than a drawing
without any demarcation points (the dots).

In this article, we try to present an intuitive model for
fighting complexity that is based on psychological
evidence and yet practical enough to influence or even
guide software engineers in their fight with complexity.
We try to connect the set of fragmented lab-proven facts,
which can be individually of little practical value, into
one comprehensive practical theory.

We start by giving an overview of some psychological
facts that are instrumental to understand the nature of
complexity (the dots) as seen by the psychology field. We
then build on these facts (connect the dots) to propose a
model of understanding and fighting complexity in terms
that can be mapped into software design decisions.
Finally, we describe how we applied this model/approach
in a case study.

III. THE DOTS: PSYCHOLOGICAL FACTS ABOUT
COMPLEXITY

To find facts useful in dealing with complexity, the
human cognitive system responsible for information
processing is the place to start. Unfortunately, the logical
anatomy of the human cognitive system is complex and
subject to many theorizations about its functional
components and their interactions.

Within the large psychological body of literature
describing cognition, one logical component of this
system has been shown to be so central in understanding
the psychological aspects of complexity – the working
memory (WM). The WM has very interesting
characteristics that makes it intimately related to our
interest in complexity:

• It is the mental workbench that is the place of all
conscious activities and problem solving [11].

• It is well-characterized as a place of limited and
scarce resources. It is widely considered to be

the bottleneck for the human cognitive system
[5].

WM itself has been subject to different theorizations
(see related work section), yet some facts have
accumulated significant empirical support about resource
utilization and performance in WM:

1. The number of information elements or concepts
that can be stored and used in problem solving in
WM is very limited [14].

2. The more information is stored, the worse the
overall performance gets [6].

3. The longer duration the information are stored
(beyond 20-30 seconds when active rehearsal
becomes needed), the worse performance gets [12].

As these facts show, the performance of the WM, and
consequently the whole human cognitive performance,
depends critically on minute details such as small
differences in the number of items it stores and on the
duration they are stored.

A. Connecting the Dots
To connect the above dots, we propose that much of

our perception of complexity is directly related to the
load on the WM resources. As such, a problem becomes
complex when its memory representation requires enough
resources that approach or exceed the WM capacity. In
particular, it is the requirement to simultaneously store
elements in the WM that tests its capacity. How many
elements exactly and for how long is not important from
our point of view as long as these elements and their
storage duration are seriously limited compared to the
magnitude of problems we need to solve in software
engineering.

Accordingly, we propose that managing complexity
depends on maintaining an adequate level of cognitive
load (CL) and in particular avoiding cognitive overloads.
Yet the question remains about the possibility of
managing CL, can we choose to avoid overloads?

The answer seems simple when we depend on intuition:
we do that every day. When our WM capacity is
overloaded we resort to external artifacts. For example,
when we need to store a piece of information that is large
beyond our WM capacity (e.g. a 9-digit telephone
number or a shopping list), we write it on a paper. The
paper thus becomes an extension of the WM that extends
its storage capacity and takes over some of its storage
load. The paper can be considered as a cognitively
inexpensive and resource abundant node within one
distributed cognitive system to which storage load can be
delegated. This delegation also happen in processing
tasks such as when we use a hand held calculator to
delegate some of the CL of arithmetic so we can free our
cognitive resources for higher order task like calculating
a financial statement. In addition to papers and
calculators, a spreadsheet or even software are all
examples of external artifacts to which we can delegate
CL if they can properly integrate with our mental
processes to form one cohesive distributed cognitive
system.

1080 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

B. CL and Complexity
To illustrate how the load on memory translates to the

psychological notion of difficulty or complexity, consider
the exercise of adding two numbers mentally. Start with
adding a 2-digit number to a 1-digit number, say 77 +8.
This can be easily performed mentally without any help
as the elements of the problem representation fit within
the WM capacity. However, when we increase the
number of digits to four, say (77+89), the task starts to be
perceived as difficult for some and even intractable for
others. As the number of elements that need to be
simultaneously retained in the WM increases (beyond 4
or 5 digits), most people find such problem to be difficult
or complex.

So how do we manage complexity in such situations?
Again, by using a pen and a paper, the many-digits
problem becomes tractable. The paper relieves the WM
from the load incurred in retaining the digits in memory
since the digits visibility on paper substitute for their
mental visibility. There will be no more a need for all the
digits to be retained simultaneously in the WM for
enough time until the mental calculation finishes.

The level of success in delegating or integrating
external artifacts depends, however, on the ability of
these artifacts to faithfully represent the implicit internal
cognitive constructs that we build in our WM. The eye’s
view of these constructs should be very similar to what
the mind would visualize. In fact, some recent research in
brain neuroscience showed a striking similarity in brain
activities between in-memory visualization and optical
vision [7]. Mentally visualizing an object was found to
produce a very similar brain signature to the signature
produced by actually looking at the same object. Taking
this into consideration, the term externalization becomes
more appropriate as the goal becomes to externalize
imagery from internal memory to external artifacts.

IV. AN APPROACH FOR HANDLING SOFTWARE
COMPLEXITY

So how can we apply this theory/approach on our
software problems? Can we sub-contract loads from the
WM in a way that makes the complex problems that we
face in software become less complex? Unfortunately, the
nice parallelism in our example between mental and
paper addition is not expected to be easily found in
software. Identifying the mental constructs used during
software tasks that can be externalized may not trivial.
Moreover, faithfully representing these constructs can
also be challenging. In the next section, we describe an
approach and a case study in which we applied our
approach in one of the most complex tasks of software
engineering.

A. Managing CL
Perhaps one of the best places where complexity is

intensely prominent is the area of program
comprehension during software maintenance of large
legacy systems. This is an inefficient process mainly
because of the difficulties in comprehending the code of
the software systems. Trying to understand someone

else’s code can be highly taxing on the WM due to the
unfamiliarity factor since unfamiliarity prevent
capitalizing on the information in the long term memory
(chunking) to create a smaller footprint in the WM
(another fact from psychology).

The classical way to address the inefficiency in
software maintenance has been to develop reverse
engineering tools that attempt to extract relevant
knowledge from source code and present it in a way that
breaks the code complexity and thus facilitates
comprehension. However, these tools have a major “low
adoption” problem among software engineers (SEs) in
industry; developing tools that makes program
comprehension easier has proved to be not so easy task.
The failure to produce effective tools is, in our opinion,
due to the absence of understanding of the true nature of
complexity. There is a gap between the real source of
difficulties a SE faces and what the reverse engineering
tool developer intuitively assumes.

Program comprehension is predominantly a cognitive
process, so instead of basing our tool design on intuitive
assumptions about what make program comprehension
easier; we present an approach that is based on what we
are proposing in this article: reduce cognitive overloads
that are the actual source of complexity by externalizing
them to an external artefact – a reverse engineering tool.

B. The Approach
Our approach to break the complexity of program

comprehension involves the following steps:
1. Characterize the mental processes used during

program comprehension. Characterizing how
programmers understand programs is a thread in
computer science literature called “cognitive
models of program comprehension” [8]. A
cognitive model describes the major internal
cognitive activities in a generic way. Knowledge
provided by these models can be useful but, as
we find out, they are often not detailed enough
to identify problems that can be addressed by a
tool. Therefore, we did our own work by
analyzing the work practices of SE during
software maintenance, focusing on how SE’s
comprehend programs from a cognitive
perspective.

2. Identify situations and tasks where cognitive
overloads occur. Such situations are identifiable
by simple techniques such as external
observation of SE work practices, by asking the
SE to identify such situations, or even by
introspection.

3. Analyze these tasks trying to identify the nature
of the mental structures causing the overloads.
The goal is to identify, among other things, the
implicit processing constructs and operations
that go on in the WM.

4. Design a tool that explicitly represent the mental
constructs of the overload-causing tasks and
externalize from the WM whatever possible sub-
activities it can.

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1081

© 2013 ACADEMY PUBLISHER

V. THE CASE STUDY

We applied our approach in a telecommunication
company in order to help it reduce the cost of maintaining
one of its large legacy systems. Minor maintenance
requests take weeks to finish since most of the time is
spent on comprehending the system. We analyzed the
work practices of maintainers looking for sources of
inefficiency.

We identified one of the situations of high inefficiency
when small corrective maintenance tasks are assigned to
entry level SE’s who have little familiarity with code or
understanding of the structure of the system.

The SE’s were typically given a description of
maintenance request in domain language. Their initial
goal was to localize the code related to the maintenance
request so they can modify it. This mostly requires
mentally executing or comprehending the code (bottom
up) to determine if the code is related to the maintenance
request or at least leading to the related code.

We noted that the mental execution involves the
tracing of the control flow at the level of routines more
than at individual lines. The SE’s follow the routine call
hierarchy at varied levels of depth. They drill down when
a routine is not clear or when it seems relevant; otherwise
they move forward at high level in the call hierarchy.

In analyzing why this activity was perceived as so
difficult and why it caused frequent overloads, we noted
the following cognitive sources of difficulties:

1. Storage overload: the SE’s, while trying to
mentally explore the execution path of software as
part of understanding its behavior, need to keep a
mental map of who calls who— a kind of call tree.
The map needs to be presented mentally in totality
since understanding the meaning of a function
depends on what functions called it and what
functions it calls. This calling tree aggregates
together to one concept representing the
functionality to be achieved. Every part (routine
name and relative position) of the call tree
contributes to the overall grasping of the code
executed. The necessity to keep all these elements
in memory simultaneously, particularly when the
depth of the call tree is significant, made this
activity cognitively overloading.

2. High retention cost: the comprehension of code
that executes in a certain scenario requires
following the logical relation created by the
execution (calling) flow between routines that are
stored all over the software system (in different
files and directories). The linear order of actual
code execution has to be mentally reconstructed

from delocalized static code. This requires finding
each one of the delocalized piece of code (e.g. the
calling routine), retaining it in the WM, and then
finding the next related piece of code (the called
routine) so that an overall map of the relationships
can be mentally constructed. In moving from
acquired information to find the next related one,
significant time may elapse particularly since
primitive search tools were used. This retention
incurs significant CL and in many cases, as we
observed, the retained information (e.g. calling
routine) may fade from memory before the related
information is reached thus breaking the whole
comprehension process that requires that all the
related pieces of information to be simultaneously
present in the WM.

Interestingly, a similar finding (see related work) has
been identified in the learning literature. The Split
Attention Effect theory [9] states that the use of physically
separated information sources that cannot be perceived
simultaneously causes a higher cognitive load on WM
due to the need to mentally integrate the information.

VI. THE TOOL

Now that the mental constructs that overload the WM
have been identified, we need to externalize it to be
represented by an external medium—a reverse
engineering tool. That is, if SE’s, during comprehension,
mentally construct call trees then let’s delegate this load
to the tool and let the tool do that instead, so the scarce
resources of the WM can be freed for higher order mental
tasks.

Call trees have often been used in trying to understand
program behavior (e.g. call stacks and traces), but
unfortunately not in cognitive-friendly forms. For
example, a call tree can be constructed by a step-wise
debugger that permits following the call flow; however
this has been shown to be highly disorienting and not
useful for program comprehension tasks [10]. A call tree
that shows in a panoramic way all the call relations
during a scenario is an attractive representation as it
explicitly represents the code in its order of execution,
thus removing the WM load caused by code delocalizing.

The tool that we developed takes a call trace (a log of
entries representing the called routine within a scenario)
and processes the trace in order, generating a call tree
(see figure 1). Processing was needed since the call
traces, even for small executed scenarios are inherently
large and are of little value in their raw forms.

1082 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Ins trum e n te d
a pp lica tion

R a w
tra ce

file

p ro g ra m
co de

In s tru m e n t/
co m p ile

ru n te s t
ca se s

R e pe tion
rem ova l

P a tte rn
D e tec tion

R o u tin e
R an k ing

C a ll T re e
v ie w e r

Figure 1: A diagram showing the various steps of trace processing

Some of the techniques to ensure this parallelism
between the mental and tool representation included:

1. Compression: mentally, a human would not
visualize 100 nodes for the same routine if it was
called within a loop of 100 iterations. Thus, we
removed redundant call entries caused by loops
and recursion.

2. Selective level display: To parallel the selective
exploration of call depth that we observed in SE’s,
we allowed the user to control the depth of the call
tree using the collapse/expand at each node (much
like file explorer), so the user drills down in the
call tree whenever they need to. The user can also
choose a specific level of call depth to apply to the
whole tree.

3. Selective routine display: Not all routines
contribute to the comprehension equally, some
routines are more important than others i.e. they
yield more information in constructing the higher
level concept the SEs are trying to assimilate. To
permit the user to hide the less-important routines,
we developed heuristics that approximate the
human evaluation of importance of routines
(ranking) and permitted the user to hide the least
important on a continuous spectrum.

4. Learning: contiguous routine call sequences were
found to recur in the traces. These sequences
represent patterns that when comprehended at
their first encounter should be abstracted, learned
then remembered by the user. To extend this
ability of the user to remember what he has
learned, the tool permits the user to choose a
sequence of call entries (a pattern) and replace it
with a high level description. This description,
will then replace all other occurrences of this
sequence in the traces.

VII. EVALUATION

The various techniques used in the tool did compress
the call traces to a size that made them readable [11] and
proportional to the functionality covered. However, the

most relevant evaluation is related to perception of SE’s
of how much difficulty has been reduced.

Figure 2: The call tree generated by the tool where P nodes corresponds
to a pattern not yet abstracted

The SE’s appreciated the new ways to view the

software provided by the tool that explicitly represented
an invisible domain (the dynamic domain i.e. the
execution of the software) that could be only be
constructed mentally with difficulty. Some noted that
although they had a mental conception of how the call
tree looks like for some familiar code, they were still
amazed of what the call tree actually looked like in the
tool. This amazement seems to reflect that they were
never able to mentally construct large-enough call trees; a
plausible claim given that, in our subject system, a depth
of more than eight levels in the call tree was not
uncommon. One programmer described the tool as a
panoramic debugger, since a stepwise debugger gives a
small window of visibility on what is executing, while the

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1083

© 2013 ACADEMY PUBLISHER

higher order view, such that provided by the tool, has to
be mentally constructed. Overall, the consensus was that
the tool significantly facilitated the comprehension of the
system. In particular, it facilitated the kind of
comprehension that was especially difficult during
software maintenance.

VIII. BACKGROUND AND RELATED WORK

A. The Evolution of WM
The psychological understanding of the WM and the

resources it holds has dramatically evolved from its view
as a short term holder of a limited number of information
elements. One of the most credible and popular models
for WM is that suggested by Baddely [12], who views it
to be more like a mental workbench.

 Under Baddely’s model, the WM is made out of a
central executive and two slave subsystems: the
phonological loop and the visuo-spatial sketchpad. The
central executive is thought to be the primary workbench
area of the system where mental work of all sorts is done.
It initiates a variety of mental processes, such as decision
making, retrieval of information from long-term memory,
reasoning and language comprehension.

The phonological loop is a sound-based system that
can hold and recycle small quantities of information; it
corresponds to a short-term rehearsal buffer. The visuo-
spatial sketchpad is a specialized slave system that holds
visual or spatial codes for short periods of time.

Baddely considers that the central executive can be
thought of as a pool of mental resources available for any
of several different tasks but which is limited in overall
quantity. Each of the two slave systems also has a limited
pool of resources.

Resources are shared in one direction, from the central
executive down to either the phonological loop or the
visuo-spatial sketchpad. The central executive shares its
resources with the slave systems when either one of the
slave systems becomes overburdened (with an overly
demanding task) and needs extra resources. However,
when the central executive shares its resources, it often
ends up having insufficient capacity to do its own work.

Recently Baddely [13] added to his model a fourth
component, the episodic buffer, which holds
representations that integrate phonological, visual, and
spatial information, and possibly information not covered
by the slave systems.

B. Cognitive Load and Learning
One of the areas that managed to do well in utilizing

the psychological knowledge is learning and the design of
the learning material. We can find in the domain of
learning comprehensive theories with strong empirical
evidences covering the relation between WM load,
performance and the notion of complexity:

The theory of relational complexity of Halford [14]
defines relational complexity as the number of
independent elements or variables that must be simulta-
neously considered to solve a problem. Halford argue that
relational complexity reflects the cognitive resources
required to perform a task. The processing difficulty of

any task is “the number of interacting variables (i.e.,
dimensions or arguments) that must be represented in
parallel to perform the most complex process in the task”.
Halford was even more specific when he showed that
only 4 concepts can be integrated in the WM of an adult
simultaneously as part of the mental problem
representation.

The well-known Cognitive Load theory (CLT) [15]
suggests that learning happens when there are no
cognitive overloads. They provide techniques for
reducing WM load in order to facilitate learning. They
also propose that users may get an information overload
when there is too much information that is presented in
parallel.

The split-attention effect theory [9] states that when
learners have to split their attention between disparate
sources of information, then these sources of information
have to mentally integrate before the instructional
material can be rendered intelligible. This process of
mental integration is likely to impose a heavy cognitive
load and thus impede learning.

IX. CONCLUSION

Complexity is primarily a psychological phenomenon.
Psychology, a well-established science, should help much
more than it is already doing. The problem is that the
literature of psychology is not formulated in a way that
can provide practical help in the software business as it is
made in terms of isolated facts (dots) that fall short of
being comprehensive theories of practical value.

In this article, we showed that, using some intuitive
reasoning, these dots can be connected to draw a map that
can be useful in guiding the software community in
fighting its eternal enemy – complexity. The approach,
case study and the reverse engineering tool presented a
demonstration of how this can be accomplished.

While performing their intellectual tasks, humans
create very fluid mental representations that are not
always easy to replicate with more concrete media.
Software, more than any other medium experienced by
humanity before (namely paper), can also be very fluid
and thus promising in paralleling memory representations.

Yet, lessons learned from reverse engineering, whose
main goal is to break the complexity of existing software,
can also be used in forward engineering. Complexity is
not specific to software maintenance; it can be part of the
entire software life cycle. We need to conceptualize
systems beyond our WM capacity starting from the
architecture, passing by analysis and design till
development.

People intuitively use sketches and diagrams to
visualize the big picture, or more formally they use
modeling languages like UML. Sketching or modeling
perhaps can be viewed as a way to break concentrations
of complexity by creating external representations, like a
pen and paper in mental addition. If that become well
established, then the perspective we provided in this
article may be useful in resolving the religious debate
about the usefulness of modeling (agile vs. formal),

1084 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

answering questions such as how, when and how much
modeling can be useful.

REFERENCES

[1] F. Brooks, “No Silver Bullet: Essence and Accidents of
Software Engineering”, IEEE Computer, vol. 20, 4 April
(1987)

[2] W. Kintsch, Comprehension: a Paradigm for Cognition,
Cambridge university press, p. 2. (1998)

[3] L. Laudan, Beyond positivism and relativism, Westview
press, (1996)

[4] M.A. Storey et. al., “Cognitive design elements to support
the construction of a mental model during software
exploration”, Journal of Systems & Software , vol.44, no.3,
Jan. (1999)

[5] Card S., Moran T., Newell A., The Psychology of Human
Computer Interaction, Erlbaum Assoc., Hillsdale NJ, p.
392. (1983)

[6] M. Ippel, “Cognitive Task Load And Test Performance”,
http://www.ijoa.org/imta96/paper52.html

[7] J. Decety, “Do imagined and executed actions share the
same neural substrate?”, Cognitive Brain Research, 87-93
(1996)

[8] A. Von Mayrhauser, A.M. Vans ,“Program Understanding
Behavior During Adaptation of Large Scale Software”,
Proceedings. 6th International Workshop on Program
Comprehension (1998)

[9] P. Chandler, & J. Sweller, “The split-attention effect as a
factor in the design of instruction”. British Journal of
Educational Psychology, 62, 233-246. (1992).

[10] B. Korel, J. Rilling , “Program slicing in understanding of
legacy system”, ", Proceedings Fifth International
Workshop on Program Comprehension (1998)

[11] I. Zayour, “Reverse Engineering: A Cognitive Approach,
a Case Study and a Tool”, PhD thesis, p.117 (2002)

[12] A.D. Baddeley, Working Memory, Oxford: Clarendon
Press (1986)

[13] A.D. Baddeley, “The episodic buffer: A new component
of working memory?” Trends in Cognitive Science, 4,
417-423 (2000).

[14] S. Halford, H. Wilson, and W. Phillip, “Processing
capacity defined by relational complexity: Implications
for comparative, developmental and cognitive
psychology.” Behavioral Brain Sciences, 21, 803-831.
(1998).

[15] J. Sweller, "Cognitive load during problem solving:
Effects on learning". Cognitive Science, 12 (2), 257–
285(1988).

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1085

© 2013 ACADEMY PUBLISHER

