
Abstract–Many objects in the PrIKL Reasoner have a canon-
ical representation. This representation and its implementa-
tion required a number of choices with ramifications. This
paper describes the choices, their consequences, and some of
the more interesting implementation details. This informa-
tion will be helpful in understanding the implementation of
PrIKL, particular for implementors of PrIKL plugins. It
may also be helpful in designing systems with similar repre-
sentational problems.

Index Terms–canonical representation, reasoner, prover,
PrIKL, IKL

I. BACKGROUND

PrIKL1 is software to reason with logical statements
using a hybrid of a natural deduction system and a produc-
tion system [1][2]. PrIKL is based on the IKL knowledge
representation language and Common Logic family of
logic languages [3][4]. PrIKL includes additions to first-
order classical logic of sequence variables and a way to
reason about propositions. PrIKL is implemented in Java2

[8].
PrIKL is being developed as part of a semantic valida-

tion suite for information flows in manufacturing produc-
tion networks. The development and production of
complex products demands the cooperation of engineer-
ing and operations activities across a network of compa-
nies, and the successful exchange of information among
them. Standards assist in the mechanics of information
transfer but do not ensure fitness for purpose: consistency,
completeness, and timeliness of the information. The
semantic validation suite will enable testing for fitness of
purpose by translating the content of messages, metadata
about the messages, as well as background information
into an IKL knowledge base.

II. INTRODUCTION

We intuitively think of logical statements as objects that
have structure. For example, a quantified sentence has a

quantifier, binding variable, and a sentence. Each of these
in turn have structure. For example, the sentence may
itself be a quantified sentence.

Internally, PrIKL generates new sentences and per-
forms tasks such as comparisons to existing sentences and
unification with other sentences. Conceivably, these tasks
could all be accomplished using this structured represen-
tation. For example, a function to do comparison would
look like:

Boolean b = equal(Sentence s1, Sentence s2);

At a minimum,this type of test for equality would
require a parallel tree traversal as the objects in both sen-
tences are compared.

However, as the ratio of comparison tests to object
modifications grows, repeated tree traversal of unchang-
ing trees becomes expensive. An efficient representation is
needed. We address this with a string representation that
effectively appears to be an IKL string representation.

An additional requirement is the ability to maintain col-
lections of sentences. The collections must provide a way
to look up sentences or iterate over the sentences. We
address this with dictionaries keyed by the string repre-
sentations.

A benefit of the IKL-based string representation is that
users can readily see objects in a form that makes sense.
While this could be viewed as a requirement, it is not a
requirement in the sense that reasoning can take place
without human interaction. Only in the final step (or dur-
ing debugging) might it be helpful to provide a string rep-
resentation.

III. STRING REPRESENTATION

The string representation of a logical sentence is an
obvious alternative representation of a sentence object.
Indeed, input to the system starts with string representa-
tions that are parsed into tree structures. However, after
parsing, the string representations are discarded since they
are not in a consistent form. For example, consider:

(if(P)(Q))
(if (P) (Q))

Both sentences are equivalent but their string represen-
tations are different. An intelligent string comparator

1. PrIKL is an acronym for Prover for IKL. IKL is an acro-
nym for IKRIS Knowledge Language. IKRIS is an acro-
nym for Interoperable Knowledge Representation for
Intelligence Support.

2. Any mention of commercial products is for information
only; it does not imply recommendation or endorsement
by NIST.

Canonicalization in the PrIKL Reasoner
Don Libes, Antoine Gerardin, Severin Tixier, and Fabian Neuhaus

National Institute of Standards and Technology, Gaithersburg, MD, USA
Email: {libes,gerardin,tixier,fneuhaus}@nist.gov

1058 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.5.1058-1062

could recognize these are the same; however, it is simpler
to just generate the string anew because that guarantees
the string representation is in a standard form. This stan-
dard representation is known as Prikl’s canonical form.
For short, we call this a canonical.

PrIKL users do not need to know the peculiarities of the
canonical or how it is managed internally. However, any-
one debugging or expanding PrIKL (e.g., plugin authors)
must understand the canonical and how it is managed. The
canonical is ultimately shown to the user during the expla-
nation phase of the reasoner. Of course, the canonical
form is compatible with PrIKL’s own parser.

IV. DICTIONARIES

PrIKL maintains objects in a variety of dictionaries. For
example, during reasoning, storage of sentences is pro-
vided in a dictionary known as the magic box. A key
aspect of dictionaries is that objects can be retrieved by
their key. For most dictionaries in PrIKL, the key is the
object’s canonical.

For example, as each new assumption is generated, it is
important to know whether it matches any of a variety of
target sentences that would end the proof – e.g., by raising
a contradiction. This is accomplished in PrIKL by using
the canonical of each new assumption as a key to find
whether any sentence already appears in the magic box
with that key.

In the particular case of a request to add a contradictory
assumption, this is detected by finding the negated
assumption in the magic box. That is, when a new
assumption is encountered, both it and its negation are
added to the magic box. (Of course, the negation is
flagged to indicate it is not an assumption.) Intuitively, an
additional flag within each sentence could itself declare
which version of the sentence is being asserted. Indeed
PrIKL sentences do have such a flag. But for the lookup
purposes, there are a number of reasons why the flag does
not offer a big payoff. The simplest reason is that every
test for existence would then have to have a subsequent
test for negation. A more complex issue is that the exist-
ence of a sentence or its negation could trigger (future) or
track (history) two entirely different chains of reasoning.
Rather than stuff both into a single dictionary entry, we
believe it simpler to make separate entries. This decision
may be worth revisiting in the future.

Although lexical negation – the nesting of a sentence
inside of a "(not ...)" – is simple, many sentences in PrIKL
do not syntactically resemble their negations because
PrIKL’s focus on natural deduction pushes negations into
sentences rather than leaving them at the outside, if possi-
ble.

This use of dictionaries was an implementation choice
that bears closer scrutiny as its advantages and disadvan-
tages are not as trivial as they would first appear. And
there are alternatives. For example, rather than using an
explicit canonical, the collection of all sentences in the
system could be maintained as a tree. The first level of the

tree could be the negation type. The next level could be
the sentence type (quantified, boolean, atomic), and so on.

However, at some point in a tree, the structure bottoms
out, leaving a problem similar to the original one (i.e., that
the magic box addresses). For example, consider atomic
sentences such as (P a), (P b), and (Q b). These can be placed
in the tree under a positive/negative node followed by an
atomic node but what then? Do all atomics get stored in,
say, a positive-atomic list or hash table? If a hash table, is
it split into separate hash tables for predicate? Or split
again by terms and the number of terms? Since there are
tradeoffs at this level, is an adaptive approach appropri-
ate?

It is also worth mentioning that the dictionary provides
performance of O(1) compared to O(n) for trees where n
is the complexity of the sentences rather than the size of
the problem. The size of the problem should be a factor
but we omit it here because it adds similar complexity to
both approaches.

Although we characterized hashing as O(1), of course
that is idealistic. This is not the paper to expand on that.
However, it is worth noting that the default Java string
hashing executes m multiplications, one for each character
in a string. If many sentences are lengthy then, the hashing
cost can be significant. In addition, our canonical form
bears significant redundancy. For example, quantified
statements all begin with “(forall (”. At the very least, it
would make sense to use a hashing algorithm that is smart
enough to skip over areas of likely redundancy. We plan to
address this in the future. At the same time, the natural
deduction aspect of PrIKL drives new sentences to be
shorter over time. While there are exceptions, we expect
performance to be acceptable because sentences generally
shrink rather than grow.

V. MEMORY

PrIKL’s canonicalization is extravagant when it comes
to memory use, an outcome of a memory is cheap philoso-
phy. We believe that our use of this philosophy is appro-
priate but we will revisit it in the future. In the meantime,
we provide some details about memory use in this section.

A canonical is generated for each object. This is true
not only at the sentence level but for each component of
the sentence, recursively. There is in effect a pyramid of
canonicals supporting each sentence.

The intensive memory use is somewhat ameliorated by
several factors:

• There is an extensive amount of sharing. For
instance, the canonical of a binding variable is
shared by all references to the binding variable.
Sentences (and subsentences) themselves may also
be shared by other sentences.

• Memory is cheap. This philosophy is used through-
out PrIKL so it makes sense to be consistent during
canonicalization as well. At the same time, PrIKL’s
memory use is tempered by problem splitting – the

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1059

© 2013 ACADEMY PUBLISHER

splitting of problems which are then offloaded to
other machines.

• The pyramid of canonicals can be lessened by skip-
ping levels and recomputing canonicals as neces-
sary. In effect, this trades back memory for CPU
time. For historical reasons, level skipping currently
occurs in the system for sentences lists. Such sen-
tence lists occur only in boolean sentences. (Sen-
tence lists do not have a specific object type but are
merely implemented as raw Java lists. In retrospect,
it was a mistake to avoid the explicit object; how-
ever, for canonicalization purposes, this would be
one of the levels where canonicalization would be
skipped anyway.)

• Whitespace is skipped whenever unnecessary. This
saves space although it makes canonicals look less
like they were written by a human. It might be
appropriate to rewrite canonicals before they are
ultimately shown to the user during the explanation
phase of the proof. At the same time, it is worth not-
ing that IKL is a verbose language. For example
forall takes six characters when it could be replaced
with a single Unicode character [7]. Conceivably,
we could do the opposite action – rewriting to use
traditional characters because users would prefer
seeing the simpler and shorter sentences.

VI. CANONICALS ON DEMAND

Canonicals do not necessarily exist for all objects; only
those for which the canonical representation is required.
In addition, objects that are modified do not necessarily
have their canonicals updated. Again, recanonicalization
only occurs when the canonical is needed.

When an object’s getCanonical method is called, the sys-
tem calls isValidCanonical. If the canonical is invalid, it is
regenerated using the canonicals of the components,
recursively. This recursion stops when isValidCanonical is
true.

If object modifications are made that affect the canoni-
cal, objects must call invalidateCanonical. Certain types of
modifications require the entire pyramid of canonicals be
recomputed in which case invalidateAllCanonicals must be
called.

An earlier version of PrIKL had no such canonical
maintenance. Programmers implementing or extending
PrIKL had to decide when to regenerate canonicals. Since
the system made no promises, implementors found them-
selves regenerating canonicals after each object modifica-
tion or taking a significant risk that canonical regeneration
could be deferred safely. Since the implementors had no
idea whether there would be a need for the canonical,
regenerations were frequently thrown away before ever
being used and were replaced with a new canonical. The
current on-demand system is a significant performance
improvement on the original system. The new system
relieves the implementors of having to worry about
whether canonical regeneration could be deferred.

VII. NAMES

The canonicals of primitive objects such as variables
and constants are their names. For example, the canonical
of the IKL name “foo bar” is “foo bar” - with the quotes.

It is counterintuitive to include the quotes; however
IKL distinguishes between certain objects with punctua-
tion. Specifically, unquoted strings and double-quoted
strings are IKL names while single-quoted strings are IKL
char strings. PrIKL maintains a dictionary of such
objects which are closed terms. Because the canonicals
include the quotes, the canonicals can be used as dictio-
nary keys directly thereby avoiding the seeming ambigu-
ity between ‘foo bar’ and “foo bar”.

IKL names require double quotes only if the names
include special characters such as whitespace. This raises
the ambiguity that “foo” is equivalent to foo. To avoid this
ambiguity, PrIKL removes the quotes when possible.

PrIKL names new objects or renames old objects dur-
ing reasoning. Since IKL does not permit quoted names
to begin with a backslash, all names PrIKL introduces are
prefixed with a backslash to prevent confusion or pollu-
tion of the user namespace. In the future, we will consider
using namespaces to avoid the extension to the IKL speci-
fication.

The following table defines the prefixes created during
renaming:

\q quantifier names
\x term names
\sk skolem function names
\seq sequence variable names

The original name is appended by a unique integer
(e.g., \q0) or with the user’s original name optional
inserted as well (e.g., \x_person_17). Note that PrIKL
reserves additional prefixes for other purposes. For exam-
ple, \s is used for sequence variable name prefixes created
during unification – but this has nothing to do with canon-
icalization.

VIII. QUANTIFIERS

Quantifiers receive special handling during canonical-
ization.

• Users provide common quantifier names such as
"x" in (forall (x) ... It is not unsurprising (and is legal)
to have nested quantifiers with the same name. To
avoid redundancy of quantified sentences, all quan-
tifiers are renamed systematically. For efficiency,
the most deeply nested quantifiers are renamed first.
This ‘inside-out’ method avoids having to recanoni-
calized subsentences as they appear in new sen-
tences. For example, both of the following
sentences are logicially equivalent:

(forall (x y) (and (P x) (exists (x) (Q x y))))

(forall (man woman) (and (senseOfHumor man) (exists
(child) (knows child woman))))

1060 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Both of those sentences have the same canonical:

(forall (\q2 \q1) (and (P \q2) (exists (\q0) (Q \q0 \q1))))

During transformation to conjunctive normal form, two
actions are taken which again affect canonicals:

• Universal quantifiers are dropped and variables are
freed.

• Existential quantifiers are dropped and variables
become skolem functions.

In both of these cases, unique variables names are gen-
erated to avoid collisions with other names. In the case of
skolem functions, references to the same variables within
the scope of the function are given the same names across
the entire sentence. For example:

Before skolemization:

(and
(forall (\q1)

(or
(not (P \q1))
(exists (\q0) (P \q1 \q0))))

(forall (\q1)
(or

(forall (\q0) (not(P \q1 \q0)))
(P \q1))))

After skolemization:

(and
(or

(not (P x_5))
(P x_5 (skolem x_5 “\sk_y_1”)))

(or
(not (P x_7 y_6))
(P x_7)))

IX. PUBLIC API

The canonicalization API is defined by the SimpleNode
abstract class. (For historical reasons, part of the API
appears in the TreeElement interface. This should eventually
be reorganized.)

The primary public methods to retrieve a canonical is
getCanonical. It takes no arguments and returns the canoni-
cal, generating it as necessary. A deprecated method of
the same name takes a CanonType argument. It is men-
tioned here because many uses of it remain in the code.
CanonType selects between:

CT_ALL Regenerate all levels.
CT_MIN Generate the minimum number of
canonicalizations.
CT_CURRENT Force canonical regeneration at the
current level.

Two methods are supplied to tell the system that the
object has changed and that the canonical is invalid:

invalidateCanonical()
invalidateAllCanonicals()

Once a modification has been made to an object that
causes its canonical to become invalid, invalidateCanonical
indicates that the cached canonical at the current level is
no longer valid. invalidateAllCanonicals causes the entire pyra-
mid of canonicals to be invalidated so that any request for
a canonical starts the process from the leaves. This is nec-
essary for certain changes such as wrapping a sentence in
a new quantifier. Typically, quantifier manipulation is
more complex and it is simpler to recreate the quantifier
than track and adjust all the references to its canonical.

The following method is useful in unusual cases:

getInvalidCanonical()
It is sometimes necessary to get the canonical of an

object even though it is known to be invalid. Obviously,
this method must be used with care as there are no guaran-
tees regarding how the object has diverged from its canon-
ical. For example, getInvalidCanonical is used when terms are
declared identical (e.g., (= a b)) and such identities are
being propagated through sentences which use the terms
in the identity. In this situation, old sentences must be
marked appropriately in the magic box. However, the only
way to get to the sentence entries in the magic box is by
their canonicals (i.e., keys). Calling getCanonical runs the
risk of regenerating the canonical but that would result in
a new canonical when the original is needed. Hence, get-
InvalidCanonical is used in this situation.

The following methods are used for logging and debug-
ging:

toString()
toDetailString()
getOriginalString()

toString is a part of the Java contract for all objects
although no guarantee is made of its format. However,
toString is used by IDEs such as Eclipse and Netbeans, so
we provide an implementation with a useful representa-
tion [5][6]. Depending on debugging desires, toString can
be defined to return either getCanonical or getDebugCanonical.

toDetailString is a method that returns a string with addi-
tional details such as parser token identification.

getDebugCanonical does not return a canonical but rather a
version based on the user’s original input. The version is
not likely to be exact because no attempt is made to track
whitespace and other miscellany. However, it returns orig-
inal object names before they have been changed by
canonicalization as described elsewhere. Objects that have
been created out of thin air by the system (e.g., skolem
functions) use their canonical when queried for their orig-
inal string.

For efficiency and simplicity, debug canonicals are cre-
ated at the same time as the regular canonicalization. This
doubles the memory usage of the canonicalization. How-
ever, these debug canonicals may be turned off (in
util.Debug.debugging), in which case debug canonicals are not

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1061

© 2013 ACADEMY PUBLISHER

generated. References to them will generate a simple
diagnostic message but will not raise an error.

If the user has asked for binding information, this is
generated in the final step of a report. Another function is
provided for this purpose: getOriginalString is similar to get-
DebugCanonical except that getOriginalString 1) rebuilds canon-
icals from scratch each time and 2) provides more original
information than getDebugCanonical. getOriginalString almost
always produces ambiguity – for example, two variables
may have originated as a a single variable – so it should
generally be avoided. getOriginalString is also used as a con-
venience for writing unit tests of the system itself as
deducing the correct numbering for canonicals is often not
the point of many unit tests. Thus, implementors do not
have to deal with the extra layer of indirection caused by
renaming during canonicalization.

X. IMPLEMENTATION API

This section describes the API used in maintaining
canonicals. It will necessarily make references to Java
techniques since that is how the system is implemented.

Canonicalization requires two passes through an object
tree. The first pass computes the depth of objects where
each additional binder increases the depth. The innermost
binder is depth 0. Sentences may have multiple depth-0
binders in different branches of a boolean.

The two passes are necessary because 1) the outer sen-
tences cannot have a canonical representation until the
inner sentences have had their depth computed, and 2)
inner sentences cannot have their canonical created until
the binders in outer sentences have had their canonicals
created. Two separate passes avoid this dilemma.

In the first pass, canonicalization starts with a test of
isValidCanonical which is a marker that exists within every
object recursively. If the canonical is valid, computation
stops and the previously cached canonical is returned. As
the object is traversed using calculateCanonicalDepth, setCa-
nonicalDepth is called to record the computed depths.

In the second pass, cannonizeWithoutDepth descends
through the object tree (guided by isValidCanonical as in the
first pass) building the canonical using the depths com-
puted in the earlier pass available through getCanoni-
calDepth. As canonicals are finished, each object is marked
with validateCanonical, which plays the role of setter for
isValidCanonical.

One last significant method is getSkolemName which
returns a name appropriate for use within skolem func-
tions. If the term has never been used for this purpose, a

new skolem name is generated using genSkolemNameString,
otherwise its existing skolemNameString is returned for this
purpose.

Some additional methods are used for miscellaneous
purposes. For instance, wrapSentenceCanonical takes a sen-
tence and generates the canonical aspects common to all
sentences such as outer parentheses and negation. There
are many name generator-related functions that shall not
be mentioned here but can be found in the source [2].

XI. COMMENTS

User-provided comments are accepted by the PrIKL
parser. However, they play no role in reasoning. Conceiv-
ably, they are of use to users at the conclusion of the proof
and can be provided in the canonical. Thus, user com-
ments are only provided in the debug canonical.

XII. SUMMARY

Canonicalization plays a crucial role in the PrIKL rea-
soner. Canonicalization is needed for both object access as
well as explanations to the user. Canonicalization is com-
plex and has subtleties including tradeoffs given expecta-
tions governing CPU, memory, and problem size. We have
made decisions about these tradeoffs and experimented
with implementations arriving at our current system. We
expect that canonicalization will bear continued scrutiny
and experimentation in the future.

REFERENCES

[1] Neuhaus, F. et al., PrIKL, A Natural Deduction Reasoner, in
preparation. Contact fneuhaus@nist.gov for availability.

[2] PrIKL source, http://prikl.sourceforge.net.

[3] IKL Specification Document, http://www.ihmc.us/users/
phayes/IKL/SPEC/SPEC.html, retrieved Jan 10, 2012.

[4] Common Logic Standard, http://iso-commonlogic.org,
retrieved Jan 10, 2012.

[5] Eclipse, http://www.eclipse.org, retrieved Oct 1, 2011.

[6] Netbeans, http://netbeans.org, retrieved Oct 1, 2011.

[7] The Unicode Standard: A Technical Introduction, http://
www.unicode.org/standard/principles.html, retrieved Oct 1,
2011.

 [8] Java, http://www.java.com, retrieved Oct 1, 2011.

1062 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

