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Abstract—As an important issue of machine learning, 
clustering receives much care in recent years. Among all 
clustering approaches, most of them conduct clustering 
operations on overall data. That is, they learn label 
information from all data. That comes across critical 
challenge in times of high-sized datasets. This paper 
proposes a novel Three-phase Labeling algorithm (TPL) 
based on SVC to overcome this problem. TPL consists of 
selecting data representatives (Data representatives), 
clustering (Data representatives) and then classifying non-
Data representatives respectively. Support vector clustering 
process is modified to select qualified Data representatives 
in first phase. Spectrum technique governs the second-phase 
clustering task. Therein, the geometric properties of feature 
space, a new metric, and a tuning strategy of Kernel scale 
are used. In experiments on real datasets, TPL achieves 
clear improvement in accuracy and efficiency over its 
counterparts, and demonstrates highly competitive 
clustering performance in comparison with some state of the 
arts. 
 
Index Terms—Three-phase clustering, support vector 
clustering, data representatives, new metric, tuning strategy 
 

I. INTRODUCTION 

Clustering methods focus on grouping data into 
clusters that yield maximum intra-similarity and 
minimum inter-similarity of clusters. Conventionally 
clustering methods are categorized into several branches: 
partition clustering, hierarchical clustering, density-based 
clustering, grid-based clustering, model-based clustering, 
boundary-detecting clustering, and some other 
approaches. As an appealing boundary detecting method, 
Support Vector Clustering (SVC) [1] finds Support 
Vectors (SVs) to describe cluster contours and fulfills 
clustering according to contour information. SVC can 
address diverse-shaped datasets and outliers, and by 
employing Kernel function, SVC is able to address highly 
structured data because of Kernel function’s ability to 
map data from the input space to a feature space. In spite 

of much popularity in bioinformatics, marketing, fault 
detection etc., SVC is adversely affected by its expensive 
and poor-qualified labeling piece. Classical SVC’s 
labeling approach constructs a complete graph and takes 
connected components as clusters, so named as CG 
(Complete Graph). The complete graph is represented by 
an adjacent matrix, whose development involves random 
sampling. That causes considerable randomness and 
degrades clustering accuracy. And the number of 
sampling points creates a tradeoff between clustering 
quality and time cost. 

There have been literatures covering variants of CG to 
overcome these problems. Support Vector Graph (SVG) 
[1] is a natural modification. It computes the adjacent 
matrix and connected components with respect to SVs, so 
does a lot of time reduction, but it simultaneously 
experiences a drop in clustering quality. Proximity Graph 
(PG) [2] also computes adjacent matrix among SVs, but it 
takes some simulation approach to learn connected 
components. In existing implementations, Delaunay 
Triangulation (DT) [3, 4, 5, 6, 7], K-means etc. are 
alternatives of simulation. PG consumes less time than 
SVG, and produces worse result compared with SVG. 
Another method, Gradient Descendent (GD) [8] builds 
adjacent matrix and connected components based on 
Stable Equilibrium Points (SEPs). These SEPs are 
generated based on rich geometric and computing 
information. And each SEP represents some data or SVs 
within its neighborhood. Data is labeled the same 
membership as its SEP. Neighborhood specification is 
also in need of much computing operations. 

These methods share the similar idea as CG, that is, to 
construct adjacent matrix and connected components that 
are encoded with randomness, and they obtain the 
improvement of time cost at the price of the decrease of 
clustering quality. 

Recently, Sei-Hyung Lee proposed Cone Cluster 
Labeling (CCL) that removes randomness for SVC [9]. 
CCL is different from above variants. It also creates 
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adjacent matrix and connected components for SVs like 
SVG, but the formulation of adjacent matrix comes from 
geometric checking. It defines cone-shaped region for 
each SV in feature space. Whether two SVs belong the 
same cluster is determined by whether their cones are 
overlapping. Non-SVs are labeled according to the cone 
which they are located in. Through mapping cones back 
to input space, CCL carries out all computations in input 
space. CCL shows better performance than other methods 
empirically. However CCL still has heavy burden of cost, 
since it runs on a list of Kernel scale values; the final 
result is selected manually. Usually the scale is required 
to be fairly large to produce a great number of SVs, the 
smaller-sized cones, and consequently the desired result. 
This means a long scale list, that is, large cost. Another 
unpleasant fact is that when the scale is large, clusters 
begin to split unreasonably, which decrease algorithm’s 
quality. 

Focused on these problems, this paper presents a novel 
SVC-based algorithm that is equipped with three phases, 
TPL. TPL finds data representatives (Data representatives) 
firstly, and then clusters Data representatives, thirdly 
classifies non-Data representatives. Data representatives 
are produced by the support vector clustering process. 
The second phase is accomplished by spectrum technique. 
In third step, with help of the tuning strategy of Kernel 
scale parameter, non-Data representatives are labeled 
through the nearest neighbor classifier. Experiments on 
real datasets demonstrate the improvement of TPL over 
its peers in time consumption and clustering accuracy, 
and its competitive performance versus some state of the 
arts. The underlying idea of TPL can be generalized into 
an open three-phase clustering framework: find Data 
representatives, cluster Data representatives, and then 
classify other data. Some discussion about this idea is 
presented in the last section. 

II. OVERVIEW RELATED WORK 

A. SVC 
Given n-dimension dataset X, X={x1…xN}. SVC aims 

to look for a minimum hyper sphere containing all data, 
which is expressed by below optimization problem:  

2
,min R i iR Cξ ξ+ Σ                              (1) 

s.t. 2 2
|| ( ) ||i ix a R ξΦ − ≤ + , 0iξ ≥  

There Φ is the non-linear map from the input space to 
the feature space, ξi is slack variables, a is sphere center 
of, R is the radius of sphere, and C is penalty parameter to 
tradeoff radius and slack variables. Transfer it to the 
Lagrange function, then the Wolfe dual, leading to:  

,min ( , ) ( , )i j i j i j i i i iK x x K x xβ β β βΣ − Σ           (2) 

Points with 0 <βi <= C are SVs. K is the Gaussian 
Kernel: K (x, y) = exp (-q||x-y||2). Cluster assignment is 
done based on an observation that given a pair of data 
points that belong to different components, any path that 
connects them must exit from the sphere. Therefore, that 

path contains a segment of points y such that R (y) > R, 
where R (y) is the distance from y to a. This leads to an 
adjacency matrix A:  

, ( , ), ( )1
0

i j
ij

y y path x x R y R
A

otherwise

⎧
⎪
⎨=
⎪⎩

∀ ∈ ≤
         (3) 

Clusters are defined as the connected components of 
the graph induced by A. Clearly, both the expensive 
computation for this matrix and the sampling manner to 
choose point y deteriorates strictness and veracity of the 
algorithm. 

B  Spectrum Analysis 
This paper employs Spectrum Analysis (SA) [10] to 

cluster Data representatives, so it is introduced in brief. 
SA spans the spectrum space through eigen-decomposing 
the pair-wise matrix of data, and clusters data there. The 
pair-wise matrix is usually the affinity matrix. Its main 
steps are: 1) Compute pair-wise matrix H; 2) Normalize 
H to form H’ in some version; 3) Eigen-decompose H’; 4) 
Select top p eigenvectors and form spectrum matrix by 
stacking p eigenvectors in columns. 5) Cluster rows of 
spectrum matrix with a simple method and label xi as the 
ith row of spectrum matrix. p is specified by the number 
of eigen values that are larger than 1 [11]. 

III. GEOMETRY PROPERTIES OF FEATURE SPACE 

A. Boundary Function 
Through non-linear map implied by Kernel, data are 

embedded into the hyper sphere of feature space. Because 
||Φ (x) ||2 = <Φ (x), Φ (x) > = K (x, x) = 1, all data are 
located on the surface of the unit ball. Name the sphere 
and the unit ball as S and B respectively. Then data are 
located on the intersection of S and B’s surface. That 
intersection is shaped like a cap, named as Cap, as shown 
in Fig1. Assume a’ as the center of Cap, and a’ is the 
intersection point of Oa vector and B’s surface. Since 
SVs are on the S’s surface simultaneously, SVs are 
actually located on the rim of Cap. Obviously that rim is 
a hyper circle, which is expressed as:  

2

2 2

|| ( )|| 1
|| ( ) ||

x
x a R

⎧⎪
⎨
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Φ =

Φ − =
                        (4) 

According to byproducts of SVC optimization, there 
are:  

2 * ),
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1 2 ( ) ( ) ( ( )
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β β β
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where x* is a SV. Adopt a and R2 into (4), we have:  

),

* ),

1 2 ( ) ( ) ( ( )

1 2 ( ) ( ) ( ( )

i i i i j i j i j
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That is:  

*( ) ( ( ) ( )) 0i i ix x xβΣ Φ ⋅ Φ − Φ =                   (7) 
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 (7) is the curve of SVs, and is indeed the boundary 
function. Theoretically the intersection of surfaces of S 
and B is the hyper circle, while (7) is a linear version. 
That can be explained if thinking SVC as the one-class 
SVM [11]. 

One-class SVM’s classification idea is to create a 
hyper plane that data points can be determined whether 
within dataset according to which side of the plane it is 
projected to. That hyper plane is reduced to a closed 
hyper sphere with minimal area. The corresponding target 
function is:  

21
2min || || i iCw bξ+ Σ −                       (8) 

s.t. ( )i iw x b ξ⋅ Φ ≥ − , 0iξ ≥  
Transfer (8) into Lagrange function, set to zero its 

derivatives with respect to w, b, and ξi, and it results to 
the same optimization function of (1), with w = ΣβiΦ (xi) 
and b = w·Φ (x*) = ΣβiΦ (xi) Φ (x*). The hyper plane, w·Φ 
(x*) = b, is rewritten as:  

*( ) ( ) ( ) ( )i i i i i ix x x xβ βΣ Φ Φ = Σ Φ Φ               (9) 

That is the same as (7). That means the minimum 
sphere of constructed by SVC accounts to a decision 
plane that separates dataset’s occupying landscape from 
its complement space. According to this opinion, it is 
natural that the intersection circle corresponds to a linear 
version of feature space. 

B. Geometry Properties of SVs 
Given V={vi} as the set of SVs. This paper proposes 

that SVs appear in terms of clusters on the rim. This 
conclusion is based on some previous statements about 
feature space geometry [10]. In [12], we verify below 
lemma and corollary. 
[Lemma] For any x∈X, v∈V, let θ =∠ (Φ (v) Oa’), there 

is:  
( ( ) ( ))v O x θ∠ Φ Φ <  

1|| || || ( ') ||v x v a−⇔ − < −Φ   
⇔  Φ (x) is within Φ (v) ’s cone 
⇔  x is within v’s small sphere  
⇔  x and v have same cluster label. 

[Corollary] In feature space of Gaussian Kernel, SVs are 
collected in terms of clusters on the intersection hyper 
line of S and B. 

Above lemma and corollary guarantee the validation of 
second phase of proposed algorithm. 

IV. TPL ALGORITHM 

Bearing basic information of SVC and geometric 
properties of feature space in mind, TPL find data 
representatives firstly, and then clusters data 
representatives, and finally it classifies non-data-
representatives with pre-specified methods. More details 
are discussed in below sections. 

A. Cluster Data representatives in Feature Space 
In TPL, support vectors generated by SVC are used as 

data representatives. According to geometric property 
mentioned in above section, data representatives are 
grouped in terms of clusters on the rim, so their 
distribution has apparent and regular geometric directions. 
In this situation angle information is a good criterion for 
clustering. Angle distance between two Data 
representatives is expressed by Cosine value, that is, the 
inner product: Cos (xi, xj) = <Φ (xi), Φ (xj) >. Here the 
spirit of SA is borrowed to group Data representatives, 
since SA exactly clusters data according to data 
distributing direction. Let the affinity measurement of SA 
take the inner product, which well avoids the explicit 
computation of Φ (x). Steps of first-phase clustering 
approach are: 1) Compute the pairwise matrix Hij = <Φ 
(xi), Φ (xj) > = K (xi, xj). 2) Normalize H into H’: H’=Λ-

1/2HΛ-1/2, where Λ = diag (Λi) = diag (Σj Hij). 3) Take top 
p eigen vectors as columns to form spectrum matrix; 4) 
Perform K-means on rows of spectrum matrix, with the 
cluster number being p. 5) Label xi as the ith row’s cluster 
membership. 

B. Classify Non-Data representatives 
Non-Data representatives are classified by nearest 

neighbor classifier that is encoded with a new metric. The 
new metric integrates the information of feature space 
and input space, to look for the true neighbor. The new 
metric is:  

2 2
*|| || || || (1 ) (1 ( , )) / 2x y x y K x yλ λ− = − + − ⋅ −     (10)  

Generally λ = 0.5, or it can be specified by background 
knowledge. The confidence of exploiting nearest 
neighbor rule is provided by the self-tuning strategy of 
Kernel scale parameter, which is described in the next 
section. 

C. Self-tuning Strategy of q 
The precondition to label data as its nearest DR is that 

Data representatives can serve as data representatives, say, 
they form a sketch of dataset. But Data representatives 
produced by conventional SVC optimization only 
describe cluster contours, without giving the information 
about inner-cluster structure. So these Data 
representatives are somewhat weak to act as data 
representatives. A solution to this problem is to increase 
Kernel scale q, so that contours become sharper and more 
Data representatives are yielded. However that leads to an 
unpleasant fact that clusters are split into non-instinctive 
and unreasonable sub-clusters and decreases clustering 
accuracy. 

This paper proposes a self-tuning strategy for q, with 
intention to generate Data representatives that can serve 
as data representatives. In more details, for x, define its 
scale factor as σx = ||x -xr||. xr is the rth furthest point to x. 
σx reflects the local density information of x’s 
neighborhood. If ||x -xr||<||y -yr||, it means the 
neighborhood of x is denser than that of y. To measure 
Kernel affinity between x and y, their scale factors are 
combined into qxy =1/σxσy, which results to the modified 
Gaussian Kernel:  
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2 2|| || || ||
|| || || ||( , ) exp( ) exp( )

x y r r

x y x y
x x y yk x y σ σ

− −
⋅ − ⋅ −= − = −    (11)  

r is specified as: r = max j { (||x-xj|| - ||x-xj-1||) /||x-xj||}. 
This setting employs the max gap in the list of distances 
from x to other points as the desired choice. In above 
setting, ||x-xj|| is the distance list of x to other points and it 
is sorted in the ascending order. 

To observe the effect of tuning strategy, Figure 1 and 
Figure 2 show the results produced by classical SVC with 
original q and the new SVC with the tuning-flexibly qxy. 
Clearly, in Figure 1, Data representatives generated by 
the traditional SVC are only located on cluster boundaries. 
But in Figure 2, Data representatives generated by tuning 
SVC are located on both cluster boundaries and the 
important positions within clusters. It is noticeable that 
on these positions sharp changes of density happen. It is 
consequent to arrive to the conclusion that these data 
representatives well describe the whole dataset, and then 
form a qualified sketch of dataset. That suggests nearest 
neighbor rule can work well after the Kernel scale is 
tuned adaptively. 
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Figure 1.  Data representatives produced by SVC 

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

non-SVs
SVs

 
Figure 2.  Data representatives produced by new SVC     

V. EMPIRICAL ANALYSIS 

In experimental section, through comparing with 
TPL’s peer algorithms, and other popular clustering 
algorithms, the goal is to observe the time performance, 
clustering performance. 

A. Time Cost Analysis 
Since the novel point of TPL is that it learns clusters 

information from Data representatives, and consequently 
groups other data, it is natural to ask whether this could 
bring the improvement in time cost. This section 
compares time efficiency of TPL with mentioned labeling 
methods, to find whether the cost consumed by selecting 
Data representatives is deserved. Before labeling, SVC 
optimization process is conducted firstly to find Data 
representatives. This process of TPL uses tuned scale. In 
other methods, if they employ scale parameters, they set 
their scale parameters through 15-fold cross-validation. 

Datasets are taken from UCI [14]. Their some basic 
information is listed in Table I. Therein D is the 
dimensionality, Nall is the size of entire dataset, N is the 
size of experiment set, and Ncl is cluster number. For 
Letter dataset, we randomly sample 100 data points from 
‘A’ to ‘J’, the top 10 categories, to form 1000-sized 
experimental set. Table II records one-run time 
consumption of each method, where the sampling number 
is 15. 

TABLE I.   
BASIC INFORMATION OF DATASETS 

 D Nall N Ncl 
1) Iris 4 150 150 3 

2) Wine 13 178 178 3 
3) Vote 17 435 435 2 
4) Liver 7 345 345 2 

5) Monk3 8 432 432 2 
6) Letter 17 20000 1000 26 

TABLE II.   
TIME COST COMPARISON (SECONDS)  

 1)  2)  3)  4)  5)  6)  
CG 83 90 205 197 181 213

SVG 69 71 150 112 127 168
PG 9 9 18 20 22 28 
GD 3 19 11 29 55 30 
CCL 0 0 0 0.3 0.5 1 
TPL 0 0 5.2 3 3 6 
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Figure 3.  Time stability comparison 

Besides, to observe the stability of various methods, on 
Monk3 dataset, different-sized subsets are randomly 
found, and the time cost of each method is recorded. The 
concrete time cost is illustrated in Figure 3. 

958 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER



According to seconds consumed by each method, it is 
obvious to find that CG consumes highest time 
consumption, followed by SVG and then PG. CCL takes 
the least time on average. TPL achieves the second least 
place. GD has somewhat similar level of efficiency with 
PG, but its behaviors are unstable. These empirical 
behaviors are analyzed as below theory discussion. 

In the theory discussion, here, time expense of labeling 
process can be divided into three parts: TM, the time used 
to construct the adjacent matrix; TC, the time used to 

induce connected components; and TL, the time used to 
label non-data-representatives. Time cost of three parts of 
methods is listed in Table III in details. In Table III, m 
represents the number of sampling points; k represents 
the iteration numbers for GD to converge to a SEP; Nsv 
and Nsep represent numbers of Data representatives and 
SEPs. In below experiments, PG uses DT as simulation 
technique. And in DT process, E is used to represent the 
number of edges of DT. Of course, value of E decides the 
efficiency of PG algorithm. 

TABLE III.   
TIME COST OF THREE PARTS OF LABELING METHODS 

 TM TC TL One-run Time Total Time 
CG O (N3m)  O (N2)  - O (N3m)  L1·O (N3m)  

SVG O (N (Nsv) 2 m)  O (Nsv
2)  O ( (N-Nsv) Nsv)  O (N (Nsv) 2 m)  L1·O (N (Nsv) 2 m)  

PG O (N log N +Em)  O (N)  O ( (N-Nsv) Nsv)  O (N log N +Em)  L1·O (N log N +Em)  
GD O (N2mk) + O (NsepNm)  O (Nsep

2)  O (Nsep)  O (N2mk)  L1·O (N2mk)  
CCL O (Nsv

2)  O (Nsv
2)  O ( (N-Nsv) Nsv)  O (NNsv)  L2·O (NNsv)  

TPL - O (Nsv
3)  O ( (N-Nsv) Nsv)  O (Nsv

3)  O (Nsv
3)  

 
L1 is the fold number of cross-validation and L2 is the 

length of q-list. Then, theoretically, time consumption of 
each method can be computed as the results of Table III. 

According to Table III, for TM, GD’s cost is the highest, 
because GD builds the adjacent matrix among SEPs and 
it has to pay extra effort to look for SEPs. TPL does not 
take time, for it uses the sub-matrix of the complete 
affinity matrix directly. Except TPL, CCL spends the 
least time. SVG constructs the same-sized adjacent 
matrix as CCL, but it requires sampling operation, which 
leads to more time cost than CCL. 

For TC, CG is the top consumer. TPL is the second one 
due to its eigen decomposition operation. SVG, CCL 
follows TPL. CG, SVG, CCL all compute the transitive 
closure of adjacent matrix to obtain connected 
components, so their time complexity is proportion to 
their matrix sizes. Often Nsep is lower than Nsv, so GD 
achieves best efficiency among methods. PG uses DT to 
approximate graph, and consumes a little time. 

As to TL, CG has finished clustering task, so with zero 
cost. SVG, PG, CCL and TPL perform the same 
operation to computing pair-wise information between 
Data representatives and non-Data representatives, thus 
yielding same cost. GD takes least time by labeling data 
directly according to its representative SEP. 

Now look at the empirical evidence of one-run time 
case. Clearly CG is the leading consumer, followed by 
SVG, GD and then PG. Their cost is controlled by m. 
CCL and TPL reduce time cost dramatically and CCL is 
more effective than TPL. But if the total time is 
concerned, TPL is the better tool since it is equipped with 
the adaptive parameterization. CCL’s running is based on 
a q-list, from which a good setting is selected. Usually 
this list is of a big length, so that a desired result can be 
obtained. Other methods have to perform some trials for 
cross-validation, also incurring huge cost. For GD, its 
complexity is controlled by two factors, m and k, 
therefore its cost is more changeful than other methods. 

To investigate time stability, we input Monk3 data in a 
batch-incremental fashion, to observe behaviors of 

methods in this ever-increasing dataset. The trend curves 
of methods’ one-run time are shown in Table III. It can 
be seen that with N increasing, all methods see their 
increase of cost. CG’s curve sees the fast speeding rate as 
N increasing. SVG, PG, TPL and CCL have relatively 
stable varying tendency. As mentioned before, GD does 
experience sharp fluctuations. 

This analysis coincides with empirical results. 
Then take a look at the time stability behaviors. From 

Figure 3, it is safe to come to the conclusion that CCL 
presents the highest stability among all methods. Its 
success depends on its complex process to find a large 
amount of geometric information. This rich information 
guarantees the fine clustering performance, and 
consequently guarantees the increase of time cost not to 
be so dramatic. TPL’s behaviors follow CCL, and the 
difference between TPL and CCL is not so clear. Take 
the cluster labeling cost into account, the behaviors of 
TPL can be said fine, and it should be a desired choice in 
practice. As to other methods, their time stability drops in 
turn. Reasons can also be found in above analysis. 

B. Clustering Performance Analysis 
In this section, another dataset is involved to observe 

the clustering performance of some algorithms: News 
Group [15]. News Groups contains about 20, 000 articles 
divided into 20 news groups.  

This paper names news groups as below. 
NG1: alt.atheism;  
NG2: comp.graphics;  
NG3: comp.os.ms.windows.misc;  
NG4: comp.sys.ibm.pc.hardware;  
NG5: comp.sys.mac.hardware;  
NG6: comp.windows.x;  
NG7: misc.forsale;  
NG8: rec.autos;  
NG9: rec.motorcycles;  
NG10: rec.sport.baseball;  
NG11: rec.sport.hockey;  
NG12: sci.crypt;  
NG13: sci.electronics;  
NG14: sci.med;  
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NG15: sci.space;  
NG16: soc.religion.christian;  
NG17: talk.politics.guns;  
NG18: talk.politics.mideast;  
NG19: talk.politics.misc;  
NG20: talk.religion.misc. 
Before clustering task, the usual tf.idf weighting 

schema is exploited to express documents, and words that 
appear too few times are deleted. Normalize each 
document vector to have unit Euclidean length. For 
empirical ease, some classes are sampled randomly to 
form 6 experimental sets:  

a) {NG1, NG2, NG7} (200) ;  
b) {NG3, NG7, NG8, NG12} (310) ;  
c) {NG2, NG3, NG4, NG5} (350) ;  
d) {NG8, NG9, NG10, NG11} (210) ;  
e) {NG17, NG18, NG19, NG20} (170) ;  
f) {NG12, NG13, NG14, NG15} (260).  
In above datasets, the number in the bracket is the 

number of samples of each class. Clustering accuracies of 
methods are recorded in Table IV. Therein the sampling 
number is set as 15. Note that PG has no result in News 
Group dataset, because DT used by PG is infeasible in 
high-dimensional data space. 

TABLE IV.   
CLUSTERING ACCURACIES COMPARISON (%)  

 CG SVG PG GD CCL TPL 
1)  96.6 95.7 96 96.4 97 97 
2)  95.8 92.2 92.1 94.3 96.3 95.0 
3)  95.1 94 93.5 95 95.8 95.3 
4)  70.6 69.1 68.1 71 71.8 71.3 
5)  96.7 95.2 95 96 97.0 97.3 
6)  87.3 85.7 85.5 85 88.5 88.1 
a)  83.9 81.7 - 84.7 85 84.7 
b)  83.0 81.8 - 82 84 83.7 
c)  78.8 78 - 77.7 80.3 79.5 
d)  67 66.1 - 67.2 68.5 67.3 
e)  68.9 65.9 - 65 70.8 70.1 
f)  67.0 66 - 67.0 68 67.3 

 
From Table IV, CCL and TPL give higher accuracy 

than other methods, which is due to their removing 
randomness. Generally speaking, CCL outperforms TPL 
subtly. Like Vote, Liver, Letter and some News Group 
subsets, CCL presents the best results and TPL follows it. 
CCL’s advantage is attributed to its q-list. Through 
searching parameter space CCL can find a desired scale 
than TPL’s auto-parameterized scale. Of course CCL’s 
good performance is at the price of high cost. In some 
scenarios, like Iris and Monk3, TPL can achieve the 
optimal results, which is attributed to two reasons. 

The first one lies in the first-phase clustering. The 
cooperation between Data representatives’ geometric 
properties and SA technique renders SA plays all its 
potential and produces the clustering results as good as 
possible. While CCL clusters Data representatives 
according to the observation of overlapping status among 
cone-shaped regions, which lacks theoretical support and 
consequently leads to moderate results. 

The second reason comes from the process of second 
phase, that is, non-Data-representative classification. TPL 

fulfills it based on information of both feature space and 
input space, but CCL only depends on information of 
input space, and its decision is only based on the 
geometric observation. Note that the auto 
parameterization does not always work well. In Wine, 
TPL does a poor job. That is caused by the fact that Wine 
data has 178 points but 13 dimensions makes the 
neighborhood information be weak, and then the qxy be 
imprecise, and consequently, the final result is affected. 
In experiments, TPL can reach or get close the optimal 
clustering results with less cost, so it is a more welcome 
choice among its counterparts under the consideration of 
both efficiency and clustering accuracy. 

CG, SVG and PG are all based on the derivation of 
adjacent matrix and connected components, CG presents 
good and stable performance thanks to its employment of 
complete graph. SVG is a rough version of CG, so its 
performance follows CG. PG is the approximated version 
of SVG, so its performance follows SVG. Actually CG’s 
performance is limited by sampling number m. If m could 
go up to a fairly large value, CG would present the 
perfect result. GD produces good results in Iris, Liver and 
dataset a), but behaves poorly in Wine and Letter. As 
mentioned before, GD is an unstable approach. It is 
susceptive to data distribution and data dimensionality. 
GD only produces good results in datasets whose 
distribution it adapts to. 

C. Compare with Popular Clustering Methods 
The last section compares TPL with some popular 

clustering methods: K-means [16], Girolami [17], NJW 
[18], and NI [19]. 

TABLE V.   
COMPARISON OF CLUSTERING ACCURACIES OF METHODS (%)  

 K-means Girolami NJW NI TPL qTPL
1) 95.8 97 97 97 97 97 
2) 94 95.7 97.5 96 95 97.2 
3) 94.2 95.8 97 95.3 95.8 96.3 
4) 71.1 73 73.7 70.3 72.5 73 
5) 96.2 97 97.3 96.4 97.1 97.5 
6) 86.9 89 90.5 88.1 89 89.9 
a) 79.4 82.7 85.1 82.8 84.8 85 
b) 81.8 82.7 85 80.2 83 84.1 
c) 75 78 81.1 73 79.5 80.3 
d) 65.1 66.1 68.8 67.2 67.3 68 
e) 66.7 68 71.6 67.5 70.0 70.8 
f) 65.3 66.2 68.8 66.8 67 68 

 
Girolami is a Kernel-based method. It shares the spirit 

of expectation-maximum process, and uses this process 
as its core idea. NJW is a popular version of spectrum 
clustering method family. It plays much importance in 
spectral grouping tasks. Different from above two 
algorithms, NI is an agglomerative clustering method. It 
defines the metric according to information entropy, and 
takes this information-based distance as clustering criteria 
to accumulate sub-clusters gradually. To test the effect of 
tuning strategy proposed in this paper, here another 
version of TPL is conducted: qTPL. qTPL looks for the 
optimal q through searching parameter space. Clustering 
accuracies of these methods are listed in Table V. 
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From Table V, it can be found that NJW is the best 
clustering tool. NJW’s best performance is due to the fact 
that it probes spectrums of all data, thus obtains the 
inherent distributing directions of datasets. That assists 
much in detecting correct clusters. Of course NJW’s best 
behaviors are at the price of large cost; its time 
complexity is O (N3). That affects its performance in 
many applications. As to qTPL, it provides the best job in 
Iris and Monk3. And qTPL follows NJW with a small 
gap in other datasets. That illustrates validation and 
performance of TPL idea. The behavior difference 
between qTPL and TPL is not so distinct. So it verifies 
the effect of tuning strategy that in most cases, this 
strategy can find proper scale parameter. For NI, 
Girolami and K-means, their clustering accuracy drops 
gradually in turn. Between Girolami and NI, the former 
works better than the latter. It is because, as an 
agglomerative approach, NI is fairly easy to be influenced 
by data input order. Although the information-based 
metric helps a lot to measure accurate distance among 
data, NI still cannot give stable results. K-means is a hard 
partition process based on Euclidean metric. It lacks 
adaptation to overlapping clusters and diverse 
distributions. So K-means presents moderate behaviors. 

Generally speaking, TPL gives good results with less 
computation, so it is a more feasible choice in 
applications. 

VI. A GENERAL CLUSTERING IDEA 

Take a further look at the process of TPL, it is easy to 
summarize a general clustering framework that has 
following steps: 1) Extract Data representatives; 2) 
Cluster Data representatives; 3) Construct a classifier 
based on labeled Data representatives; 4) Classify other 
data. 

Actually, this framework divides clustering task into 
clustering and classifying two sub-tasks. And Data 
representatives generated in the first step bridge the two 
sub-tasks. 

The performance of this framework heavily depends 
on the quality of Data representatives. If qualified 
representatives that can act as the sketch of the whole 
dataset can be found, the framework is expected to 
produce good clusters. Some approaches of data 
reduction can do this job if they are modified specially. 
This paper recommends the tuning-scaled SVC, or other 
support-vector-based algorithms, since support vectors 
produced by these algorithms just reveal some 
information of data distribution. Like tuning-scaled SVC, 
its support vectors tell data contours, and it adapts to any 
data distribution shape. That brings much advantage in 
clustering scenario. 

As to the classifier of the second phase, it has many 
choices. Those well-known classifiers are all fine options, 
like, SVM [20, 21], kNN [22], C4.5 [23, 24, 25], etc. 

It is believed that clustering machines based on this 
idea will produce higher accuracy while less cost. 

VII. CONCLUSION 

This paper presents a novel Three-Phase Labeling 
Algorithm (TPL). TPL extracts Data representatives 
firstly, and then clusters them in feature space according 
to their geometric properties; finally the algorithm 
classifies non-Data representatives based on the 
information provided by feature space and input space. 
Therein support vector clustering technique is used to 
find Data representatives. The second phase is governed 
by spectrum clustering, whose theoretical support is 
guaranteed by Data representatives’ geometry corollary. 
The third phase is implemented through nearest neighbor 
classifier that is based on a new metric; the confidence of 
this operation is guaranteed by the designed self-tuning 
strategy of Kernel scale. 

Empirical evidence on real datasets demonstrate that in 
practical applications, TPL has the higher efficiency and 
competitive, even better, performance over its 
counterparts. Starting from TPL, a new general clustering 
framework can be discussed. That is, select Data 
representatives, and then cluster Data representatives, 
finally classify other data. In future work, more 
promising clustering approaches can be developed by 
implementing this idea into diverse versions. 
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