
Novel Three-Phase Clustering based on Support
Vector Technique

Ping Ling

College of Computer Science and Technology, Xuzhou Normal University, Xuzhou, China
Email: lingicehan@yahoo.cn

Xiangsheng Rong, Xiangyang You

Training Department, Xuzhou Air Force College of PLA, Xuzhou, China
Email: rxs12@126.com, xyyou@126.com

Ming Xu

Department of Logistic Command, Xuzhou Air Force College of PLA, Xuzhou, China
Email: mingxu@sina.com

Abstract—As an important issue of machine learning,
clustering receives much care in recent years. Among all
clustering approaches, most of them conduct clustering
operations on overall data. That is, they learn label
information from all data. That comes across critical
challenge in times of high-sized datasets. This paper
proposes a novel Three-phase Labeling algorithm (TPL)
based on SVC to overcome this problem. TPL consists of
selecting data representatives (Data representatives),
clustering (Data representatives) and then classifying non-
Data representatives respectively. Support vector clustering
process is modified to select qualified Data representatives
in first phase. Spectrum technique governs the second-phase
clustering task. Therein, the geometric properties of feature
space, a new metric, and a tuning strategy of Kernel scale
are used. In experiments on real datasets, TPL achieves
clear improvement in accuracy and efficiency over its
counterparts, and demonstrates highly competitive
clustering performance in comparison with some state of the
arts.

Index Terms—Three-phase clustering, support vector
clustering, data representatives, new metric, tuning strategy

I. INTRODUCTION

Clustering methods focus on grouping data into
clusters that yield maximum intra-similarity and
minimum inter-similarity of clusters. Conventionally
clustering methods are categorized into several branches:
partition clustering, hierarchical clustering, density-based
clustering, grid-based clustering, model-based clustering,
boundary-detecting clustering, and some other
approaches. As an appealing boundary detecting method,
Support Vector Clustering (SVC) [1] finds Support
Vectors (SVs) to describe cluster contours and fulfills
clustering according to contour information. SVC can
address diverse-shaped datasets and outliers, and by
employing Kernel function, SVC is able to address highly
structured data because of Kernel function’s ability to
map data from the input space to a feature space. In spite

of much popularity in bioinformatics, marketing, fault
detection etc., SVC is adversely affected by its expensive
and poor-qualified labeling piece. Classical SVC’s
labeling approach constructs a complete graph and takes
connected components as clusters, so named as CG
(Complete Graph). The complete graph is represented by
an adjacent matrix, whose development involves random
sampling. That causes considerable randomness and
degrades clustering accuracy. And the number of
sampling points creates a tradeoff between clustering
quality and time cost.

There have been literatures covering variants of CG to
overcome these problems. Support Vector Graph (SVG)
[1] is a natural modification. It computes the adjacent
matrix and connected components with respect to SVs, so
does a lot of time reduction, but it simultaneously
experiences a drop in clustering quality. Proximity Graph
(PG) [2] also computes adjacent matrix among SVs, but it
takes some simulation approach to learn connected
components. In existing implementations, Delaunay
Triangulation (DT) [3, 4, 5, 6, 7], K-means etc. are
alternatives of simulation. PG consumes less time than
SVG, and produces worse result compared with SVG.
Another method, Gradient Descendent (GD) [8] builds
adjacent matrix and connected components based on
Stable Equilibrium Points (SEPs). These SEPs are
generated based on rich geometric and computing
information. And each SEP represents some data or SVs
within its neighborhood. Data is labeled the same
membership as its SEP. Neighborhood specification is
also in need of much computing operations.

These methods share the similar idea as CG, that is, to
construct adjacent matrix and connected components that
are encoded with randomness, and they obtain the
improvement of time cost at the price of the decrease of
clustering quality.

Recently, Sei-Hyung Lee proposed Cone Cluster
Labeling (CCL) that removes randomness for SVC [9].
CCL is different from above variants. It also creates

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 955

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.4.955-962

adjacent matrix and connected components for SVs like
SVG, but the formulation of adjacent matrix comes from
geometric checking. It defines cone-shaped region for
each SV in feature space. Whether two SVs belong the
same cluster is determined by whether their cones are
overlapping. Non-SVs are labeled according to the cone
which they are located in. Through mapping cones back
to input space, CCL carries out all computations in input
space. CCL shows better performance than other methods
empirically. However CCL still has heavy burden of cost,
since it runs on a list of Kernel scale values; the final
result is selected manually. Usually the scale is required
to be fairly large to produce a great number of SVs, the
smaller-sized cones, and consequently the desired result.
This means a long scale list, that is, large cost. Another
unpleasant fact is that when the scale is large, clusters
begin to split unreasonably, which decrease algorithm’s
quality.

Focused on these problems, this paper presents a novel
SVC-based algorithm that is equipped with three phases,
TPL. TPL finds data representatives (Data representatives)
firstly, and then clusters Data representatives, thirdly
classifies non-Data representatives. Data representatives
are produced by the support vector clustering process.
The second phase is accomplished by spectrum technique.
In third step, with help of the tuning strategy of Kernel
scale parameter, non-Data representatives are labeled
through the nearest neighbor classifier. Experiments on
real datasets demonstrate the improvement of TPL over
its peers in time consumption and clustering accuracy,
and its competitive performance versus some state of the
arts. The underlying idea of TPL can be generalized into
an open three-phase clustering framework: find Data
representatives, cluster Data representatives, and then
classify other data. Some discussion about this idea is
presented in the last section.

II. OVERVIEW RELATED WORK

A. SVC
Given n-dimension dataset X, X={x1…xN}. SVC aims

to look for a minimum hyper sphere containing all data,
which is expressed by below optimization problem:

2
,min R i iR Cξ ξ+ Σ (1)

s.t. 2 2
|| () ||i ix a R ξΦ − ≤ + , 0iξ ≥

There Φ is the non-linear map from the input space to
the feature space, ξi is slack variables, a is sphere center
of, R is the radius of sphere, and C is penalty parameter to
tradeoff radius and slack variables. Transfer it to the
Lagrange function, then the Wolfe dual, leading to:

,min (,) (,)i j i j i j i i i iK x x K x xβ β β βΣ − Σ (2)

Points with 0 <βi <= C are SVs. K is the Gaussian
Kernel: K (x, y) = exp (-q||x-y||2). Cluster assignment is
done based on an observation that given a pair of data
points that belong to different components, any path that
connects them must exit from the sphere. Therefore, that

path contains a segment of points y such that R (y) > R,
where R (y) is the distance from y to a. This leads to an
adjacency matrix A:

, (,), ()1
0

i j
ij

y y path x x R y R
A

otherwise

⎧
⎪
⎨=
⎪⎩

∀ ∈ ≤
 (3)

Clusters are defined as the connected components of
the graph induced by A. Clearly, both the expensive
computation for this matrix and the sampling manner to
choose point y deteriorates strictness and veracity of the
algorithm.

B Spectrum Analysis
This paper employs Spectrum Analysis (SA) [10] to

cluster Data representatives, so it is introduced in brief.
SA spans the spectrum space through eigen-decomposing
the pair-wise matrix of data, and clusters data there. The
pair-wise matrix is usually the affinity matrix. Its main
steps are: 1) Compute pair-wise matrix H; 2) Normalize
H to form H’ in some version; 3) Eigen-decompose H’; 4)
Select top p eigenvectors and form spectrum matrix by
stacking p eigenvectors in columns. 5) Cluster rows of
spectrum matrix with a simple method and label xi as the
ith row of spectrum matrix. p is specified by the number
of eigen values that are larger than 1 [11].

III. GEOMETRY PROPERTIES OF FEATURE SPACE

A. Boundary Function
Through non-linear map implied by Kernel, data are

embedded into the hyper sphere of feature space. Because
||Φ (x) ||2 = <Φ (x), Φ (x) > = K (x, x) = 1, all data are
located on the surface of the unit ball. Name the sphere
and the unit ball as S and B respectively. Then data are
located on the intersection of S and B’s surface. That
intersection is shaped like a cap, named as Cap, as shown
in Fig1. Assume a’ as the center of Cap, and a’ is the
intersection point of Oa vector and B’s surface. Since
SVs are on the S’s surface simultaneously, SVs are
actually located on the rim of Cap. Obviously that rim is
a hyper circle, which is expressed as:

2

2 2

|| ()|| 1
|| () ||

x
x a R

⎧⎪
⎨
⎪⎩

Φ =

Φ − =
 (4)

According to byproducts of SVC optimization, there
are:

2 *),

()

1 2 () () (()

j j j

i i i i j i j i j

a x

R x x x x

β

β β β

⎧ =Σ Φ⎪
⎨

= − Σ Φ Φ −Σ Φ Φ⎪⎩
 (5)

where x* is a SV. Adopt a and R2 into (4), we have:

),

*),

1 2 () () (()

1 2 () () (()

i i i i j i j i j

i i i i j i j i j

x x x x

x x x x

β β β

β β β

− Σ Φ Φ − Σ Φ Φ

= − Σ Φ Φ − Σ Φ Φ
 (6)

That is:

*() (() ()) 0i i ix x xβΣ Φ ⋅ Φ − Φ = (7)

956 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

 (7) is the curve of SVs, and is indeed the boundary
function. Theoretically the intersection of surfaces of S
and B is the hyper circle, while (7) is a linear version.
That can be explained if thinking SVC as the one-class
SVM [11].

One-class SVM’s classification idea is to create a
hyper plane that data points can be determined whether
within dataset according to which side of the plane it is
projected to. That hyper plane is reduced to a closed
hyper sphere with minimal area. The corresponding target
function is:

21
2min || || i iCw bξ+ Σ − (8)

s.t. ()i iw x b ξ⋅ Φ ≥ − , 0iξ ≥
Transfer (8) into Lagrange function, set to zero its

derivatives with respect to w, b, and ξi, and it results to
the same optimization function of (1), with w = ΣβiΦ (xi)
and b = w·Φ (x*) = ΣβiΦ (xi) Φ (x*). The hyper plane, w·Φ
(x*) = b, is rewritten as:

*() () () ()i i i i i ix x x xβ βΣ Φ Φ = Σ Φ Φ (9)

That is the same as (7). That means the minimum
sphere of constructed by SVC accounts to a decision
plane that separates dataset’s occupying landscape from
its complement space. According to this opinion, it is
natural that the intersection circle corresponds to a linear
version of feature space.

B. Geometry Properties of SVs
Given V={vi} as the set of SVs. This paper proposes

that SVs appear in terms of clusters on the rim. This
conclusion is based on some previous statements about
feature space geometry [10]. In [12], we verify below
lemma and corollary.
[Lemma] For any x∈X, v∈V, let θ =∠ (Φ (v) Oa’), there

is:
(() ())v O x θ∠ Φ Φ <

1|| || || (') ||v x v a−⇔ − < −Φ
⇔ Φ (x) is within Φ (v) ’s cone
⇔ x is within v’s small sphere
⇔ x and v have same cluster label.

[Corollary] In feature space of Gaussian Kernel, SVs are
collected in terms of clusters on the intersection hyper
line of S and B.

Above lemma and corollary guarantee the validation of
second phase of proposed algorithm.

IV. TPL ALGORITHM

Bearing basic information of SVC and geometric
properties of feature space in mind, TPL find data
representatives firstly, and then clusters data
representatives, and finally it classifies non-data-
representatives with pre-specified methods. More details
are discussed in below sections.

A. Cluster Data representatives in Feature Space
In TPL, support vectors generated by SVC are used as

data representatives. According to geometric property
mentioned in above section, data representatives are
grouped in terms of clusters on the rim, so their
distribution has apparent and regular geometric directions.
In this situation angle information is a good criterion for
clustering. Angle distance between two Data
representatives is expressed by Cosine value, that is, the
inner product: Cos (xi, xj) = <Φ (xi), Φ (xj) >. Here the
spirit of SA is borrowed to group Data representatives,
since SA exactly clusters data according to data
distributing direction. Let the affinity measurement of SA
take the inner product, which well avoids the explicit
computation of Φ (x). Steps of first-phase clustering
approach are: 1) Compute the pairwise matrix Hij = <Φ
(xi), Φ (xj) > = K (xi, xj). 2) Normalize H into H’: H’=Λ-

1/2HΛ-1/2, where Λ = diag (Λi) = diag (Σj Hij). 3) Take top
p eigen vectors as columns to form spectrum matrix; 4)
Perform K-means on rows of spectrum matrix, with the
cluster number being p. 5) Label xi as the ith row’s cluster
membership.

B. Classify Non-Data representatives
Non-Data representatives are classified by nearest

neighbor classifier that is encoded with a new metric. The
new metric integrates the information of feature space
and input space, to look for the true neighbor. The new
metric is:

2 2
*|| || || || (1) (1 (,)) / 2x y x y K x yλ λ− = − + − ⋅ − (10)

Generally λ = 0.5, or it can be specified by background
knowledge. The confidence of exploiting nearest
neighbor rule is provided by the self-tuning strategy of
Kernel scale parameter, which is described in the next
section.

C. Self-tuning Strategy of q
The precondition to label data as its nearest DR is that

Data representatives can serve as data representatives, say,
they form a sketch of dataset. But Data representatives
produced by conventional SVC optimization only
describe cluster contours, without giving the information
about inner-cluster structure. So these Data
representatives are somewhat weak to act as data
representatives. A solution to this problem is to increase
Kernel scale q, so that contours become sharper and more
Data representatives are yielded. However that leads to an
unpleasant fact that clusters are split into non-instinctive
and unreasonable sub-clusters and decreases clustering
accuracy.

This paper proposes a self-tuning strategy for q, with
intention to generate Data representatives that can serve
as data representatives. In more details, for x, define its
scale factor as σx = ||x -xr||. xr is the rth furthest point to x.
σx reflects the local density information of x’s
neighborhood. If ||x -xr||<||y -yr||, it means the
neighborhood of x is denser than that of y. To measure
Kernel affinity between x and y, their scale factors are
combined into qxy =1/σxσy, which results to the modified
Gaussian Kernel:

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 957

© 2013 ACADEMY PUBLISHER

2 2|| || || ||
|| || || ||(,) exp() exp()

x y r r

x y x y
x x y yk x y σ σ

− −
⋅ − ⋅ −= − = − (11)

r is specified as: r = max j { (||x-xj|| - ||x-xj-1||) /||x-xj||}.
This setting employs the max gap in the list of distances
from x to other points as the desired choice. In above
setting, ||x-xj|| is the distance list of x to other points and it
is sorted in the ascending order.

To observe the effect of tuning strategy, Figure 1 and
Figure 2 show the results produced by classical SVC with
original q and the new SVC with the tuning-flexibly qxy.
Clearly, in Figure 1, Data representatives generated by
the traditional SVC are only located on cluster boundaries.
But in Figure 2, Data representatives generated by tuning
SVC are located on both cluster boundaries and the
important positions within clusters. It is noticeable that
on these positions sharp changes of density happen. It is
consequent to arrive to the conclusion that these data
representatives well describe the whole dataset, and then
form a qualified sketch of dataset. That suggests nearest
neighbor rule can work well after the Kernel scale is
tuned adaptively.

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

non-SVs
SVs

Figure 1. Data representatives produced by SVC

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

non-SVs
SVs

Figure 2. Data representatives produced by new SVC

V. EMPIRICAL ANALYSIS

In experimental section, through comparing with
TPL’s peer algorithms, and other popular clustering
algorithms, the goal is to observe the time performance,
clustering performance.

A. Time Cost Analysis
Since the novel point of TPL is that it learns clusters

information from Data representatives, and consequently
groups other data, it is natural to ask whether this could
bring the improvement in time cost. This section
compares time efficiency of TPL with mentioned labeling
methods, to find whether the cost consumed by selecting
Data representatives is deserved. Before labeling, SVC
optimization process is conducted firstly to find Data
representatives. This process of TPL uses tuned scale. In
other methods, if they employ scale parameters, they set
their scale parameters through 15-fold cross-validation.

Datasets are taken from UCI [14]. Their some basic
information is listed in Table I. Therein D is the
dimensionality, Nall is the size of entire dataset, N is the
size of experiment set, and Ncl is cluster number. For
Letter dataset, we randomly sample 100 data points from
‘A’ to ‘J’, the top 10 categories, to form 1000-sized
experimental set. Table II records one-run time
consumption of each method, where the sampling number
is 15.

TABLE I.
BASIC INFORMATION OF DATASETS

 D Nall N Ncl
1) Iris 4 150 150 3

2) Wine 13 178 178 3
3) Vote 17 435 435 2
4) Liver 7 345 345 2

5) Monk3 8 432 432 2
6) Letter 17 20000 1000 26

TABLE II.
TIME COST COMPARISON (SECONDS)

 1) 2) 3) 4) 5) 6)
CG 83 90 205 197 181 213

SVG 69 71 150 112 127 168
PG 9 9 18 20 22 28
GD 3 19 11 29 55 30
CCL 0 0 0 0.3 0.5 1
TPL 0 0 5.2 3 3 6

0

20

40

60

80

100

120

140

160

180

200

100 170 240 310 380 432
N

Ti
m

e(
s)

CG

SVG

PG

GD

CCL

TPL

Figure 3. Time stability comparison

Besides, to observe the stability of various methods, on
Monk3 dataset, different-sized subsets are randomly
found, and the time cost of each method is recorded. The
concrete time cost is illustrated in Figure 3.

958 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

According to seconds consumed by each method, it is
obvious to find that CG consumes highest time
consumption, followed by SVG and then PG. CCL takes
the least time on average. TPL achieves the second least
place. GD has somewhat similar level of efficiency with
PG, but its behaviors are unstable. These empirical
behaviors are analyzed as below theory discussion.

In the theory discussion, here, time expense of labeling
process can be divided into three parts: TM, the time used
to construct the adjacent matrix; TC, the time used to

induce connected components; and TL, the time used to
label non-data-representatives. Time cost of three parts of
methods is listed in Table III in details. In Table III, m
represents the number of sampling points; k represents
the iteration numbers for GD to converge to a SEP; Nsv
and Nsep represent numbers of Data representatives and
SEPs. In below experiments, PG uses DT as simulation
technique. And in DT process, E is used to represent the
number of edges of DT. Of course, value of E decides the
efficiency of PG algorithm.

TABLE III.
TIME COST OF THREE PARTS OF LABELING METHODS

 TM TC TL One-run Time Total Time
CG O (N3m) O (N2) - O (N3m) L1·O (N3m)

SVG O (N (Nsv) 2 m) O (Nsv
2) O ((N-Nsv) Nsv) O (N (Nsv) 2 m) L1·O (N (Nsv) 2 m)

PG O (N log N +Em) O (N) O ((N-Nsv) Nsv) O (N log N +Em) L1·O (N log N +Em)
GD O (N2mk) + O (NsepNm) O (Nsep

2) O (Nsep) O (N2mk) L1·O (N2mk)
CCL O (Nsv

2) O (Nsv
2) O ((N-Nsv) Nsv) O (NNsv) L2·O (NNsv)

TPL - O (Nsv
3) O ((N-Nsv) Nsv) O (Nsv

3) O (Nsv
3)

L1 is the fold number of cross-validation and L2 is the

length of q-list. Then, theoretically, time consumption of
each method can be computed as the results of Table III.

According to Table III, for TM, GD’s cost is the highest,
because GD builds the adjacent matrix among SEPs and
it has to pay extra effort to look for SEPs. TPL does not
take time, for it uses the sub-matrix of the complete
affinity matrix directly. Except TPL, CCL spends the
least time. SVG constructs the same-sized adjacent
matrix as CCL, but it requires sampling operation, which
leads to more time cost than CCL.

For TC, CG is the top consumer. TPL is the second one
due to its eigen decomposition operation. SVG, CCL
follows TPL. CG, SVG, CCL all compute the transitive
closure of adjacent matrix to obtain connected
components, so their time complexity is proportion to
their matrix sizes. Often Nsep is lower than Nsv, so GD
achieves best efficiency among methods. PG uses DT to
approximate graph, and consumes a little time.

As to TL, CG has finished clustering task, so with zero
cost. SVG, PG, CCL and TPL perform the same
operation to computing pair-wise information between
Data representatives and non-Data representatives, thus
yielding same cost. GD takes least time by labeling data
directly according to its representative SEP.

Now look at the empirical evidence of one-run time
case. Clearly CG is the leading consumer, followed by
SVG, GD and then PG. Their cost is controlled by m.
CCL and TPL reduce time cost dramatically and CCL is
more effective than TPL. But if the total time is
concerned, TPL is the better tool since it is equipped with
the adaptive parameterization. CCL’s running is based on
a q-list, from which a good setting is selected. Usually
this list is of a big length, so that a desired result can be
obtained. Other methods have to perform some trials for
cross-validation, also incurring huge cost. For GD, its
complexity is controlled by two factors, m and k,
therefore its cost is more changeful than other methods.

To investigate time stability, we input Monk3 data in a
batch-incremental fashion, to observe behaviors of

methods in this ever-increasing dataset. The trend curves
of methods’ one-run time are shown in Table III. It can
be seen that with N increasing, all methods see their
increase of cost. CG’s curve sees the fast speeding rate as
N increasing. SVG, PG, TPL and CCL have relatively
stable varying tendency. As mentioned before, GD does
experience sharp fluctuations.

This analysis coincides with empirical results.
Then take a look at the time stability behaviors. From

Figure 3, it is safe to come to the conclusion that CCL
presents the highest stability among all methods. Its
success depends on its complex process to find a large
amount of geometric information. This rich information
guarantees the fine clustering performance, and
consequently guarantees the increase of time cost not to
be so dramatic. TPL’s behaviors follow CCL, and the
difference between TPL and CCL is not so clear. Take
the cluster labeling cost into account, the behaviors of
TPL can be said fine, and it should be a desired choice in
practice. As to other methods, their time stability drops in
turn. Reasons can also be found in above analysis.

B. Clustering Performance Analysis
In this section, another dataset is involved to observe

the clustering performance of some algorithms: News
Group [15]. News Groups contains about 20, 000 articles
divided into 20 news groups.

This paper names news groups as below.
NG1: alt.atheism;
NG2: comp.graphics;
NG3: comp.os.ms.windows.misc;
NG4: comp.sys.ibm.pc.hardware;
NG5: comp.sys.mac.hardware;
NG6: comp.windows.x;
NG7: misc.forsale;
NG8: rec.autos;
NG9: rec.motorcycles;
NG10: rec.sport.baseball;
NG11: rec.sport.hockey;
NG12: sci.crypt;
NG13: sci.electronics;
NG14: sci.med;

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 959

© 2013 ACADEMY PUBLISHER

NG15: sci.space;
NG16: soc.religion.christian;
NG17: talk.politics.guns;
NG18: talk.politics.mideast;
NG19: talk.politics.misc;
NG20: talk.religion.misc.
Before clustering task, the usual tf.idf weighting

schema is exploited to express documents, and words that
appear too few times are deleted. Normalize each
document vector to have unit Euclidean length. For
empirical ease, some classes are sampled randomly to
form 6 experimental sets:

a) {NG1, NG2, NG7} (200) ;
b) {NG3, NG7, NG8, NG12} (310) ;
c) {NG2, NG3, NG4, NG5} (350) ;
d) {NG8, NG9, NG10, NG11} (210) ;
e) {NG17, NG18, NG19, NG20} (170) ;
f) {NG12, NG13, NG14, NG15} (260).
In above datasets, the number in the bracket is the

number of samples of each class. Clustering accuracies of
methods are recorded in Table IV. Therein the sampling
number is set as 15. Note that PG has no result in News
Group dataset, because DT used by PG is infeasible in
high-dimensional data space.

TABLE IV.
CLUSTERING ACCURACIES COMPARISON (%)

 CG SVG PG GD CCL TPL
1) 96.6 95.7 96 96.4 97 97
2) 95.8 92.2 92.1 94.3 96.3 95.0
3) 95.1 94 93.5 95 95.8 95.3
4) 70.6 69.1 68.1 71 71.8 71.3
5) 96.7 95.2 95 96 97.0 97.3
6) 87.3 85.7 85.5 85 88.5 88.1
a) 83.9 81.7 - 84.7 85 84.7
b) 83.0 81.8 - 82 84 83.7
c) 78.8 78 - 77.7 80.3 79.5
d) 67 66.1 - 67.2 68.5 67.3
e) 68.9 65.9 - 65 70.8 70.1
f) 67.0 66 - 67.0 68 67.3

From Table IV, CCL and TPL give higher accuracy

than other methods, which is due to their removing
randomness. Generally speaking, CCL outperforms TPL
subtly. Like Vote, Liver, Letter and some News Group
subsets, CCL presents the best results and TPL follows it.
CCL’s advantage is attributed to its q-list. Through
searching parameter space CCL can find a desired scale
than TPL’s auto-parameterized scale. Of course CCL’s
good performance is at the price of high cost. In some
scenarios, like Iris and Monk3, TPL can achieve the
optimal results, which is attributed to two reasons.

The first one lies in the first-phase clustering. The
cooperation between Data representatives’ geometric
properties and SA technique renders SA plays all its
potential and produces the clustering results as good as
possible. While CCL clusters Data representatives
according to the observation of overlapping status among
cone-shaped regions, which lacks theoretical support and
consequently leads to moderate results.

The second reason comes from the process of second
phase, that is, non-Data-representative classification. TPL

fulfills it based on information of both feature space and
input space, but CCL only depends on information of
input space, and its decision is only based on the
geometric observation. Note that the auto
parameterization does not always work well. In Wine,
TPL does a poor job. That is caused by the fact that Wine
data has 178 points but 13 dimensions makes the
neighborhood information be weak, and then the qxy be
imprecise, and consequently, the final result is affected.
In experiments, TPL can reach or get close the optimal
clustering results with less cost, so it is a more welcome
choice among its counterparts under the consideration of
both efficiency and clustering accuracy.

CG, SVG and PG are all based on the derivation of
adjacent matrix and connected components, CG presents
good and stable performance thanks to its employment of
complete graph. SVG is a rough version of CG, so its
performance follows CG. PG is the approximated version
of SVG, so its performance follows SVG. Actually CG’s
performance is limited by sampling number m. If m could
go up to a fairly large value, CG would present the
perfect result. GD produces good results in Iris, Liver and
dataset a), but behaves poorly in Wine and Letter. As
mentioned before, GD is an unstable approach. It is
susceptive to data distribution and data dimensionality.
GD only produces good results in datasets whose
distribution it adapts to.

C. Compare with Popular Clustering Methods
The last section compares TPL with some popular

clustering methods: K-means [16], Girolami [17], NJW
[18], and NI [19].

TABLE V.
COMPARISON OF CLUSTERING ACCURACIES OF METHODS (%)

 K-means Girolami NJW NI TPL qTPL
1) 95.8 97 97 97 97 97
2) 94 95.7 97.5 96 95 97.2
3) 94.2 95.8 97 95.3 95.8 96.3
4) 71.1 73 73.7 70.3 72.5 73
5) 96.2 97 97.3 96.4 97.1 97.5
6) 86.9 89 90.5 88.1 89 89.9
a) 79.4 82.7 85.1 82.8 84.8 85
b) 81.8 82.7 85 80.2 83 84.1
c) 75 78 81.1 73 79.5 80.3
d) 65.1 66.1 68.8 67.2 67.3 68
e) 66.7 68 71.6 67.5 70.0 70.8
f) 65.3 66.2 68.8 66.8 67 68

Girolami is a Kernel-based method. It shares the spirit

of expectation-maximum process, and uses this process
as its core idea. NJW is a popular version of spectrum
clustering method family. It plays much importance in
spectral grouping tasks. Different from above two
algorithms, NI is an agglomerative clustering method. It
defines the metric according to information entropy, and
takes this information-based distance as clustering criteria
to accumulate sub-clusters gradually. To test the effect of
tuning strategy proposed in this paper, here another
version of TPL is conducted: qTPL. qTPL looks for the
optimal q through searching parameter space. Clustering
accuracies of these methods are listed in Table V.

960 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

From Table V, it can be found that NJW is the best
clustering tool. NJW’s best performance is due to the fact
that it probes spectrums of all data, thus obtains the
inherent distributing directions of datasets. That assists
much in detecting correct clusters. Of course NJW’s best
behaviors are at the price of large cost; its time
complexity is O (N3). That affects its performance in
many applications. As to qTPL, it provides the best job in
Iris and Monk3. And qTPL follows NJW with a small
gap in other datasets. That illustrates validation and
performance of TPL idea. The behavior difference
between qTPL and TPL is not so distinct. So it verifies
the effect of tuning strategy that in most cases, this
strategy can find proper scale parameter. For NI,
Girolami and K-means, their clustering accuracy drops
gradually in turn. Between Girolami and NI, the former
works better than the latter. It is because, as an
agglomerative approach, NI is fairly easy to be influenced
by data input order. Although the information-based
metric helps a lot to measure accurate distance among
data, NI still cannot give stable results. K-means is a hard
partition process based on Euclidean metric. It lacks
adaptation to overlapping clusters and diverse
distributions. So K-means presents moderate behaviors.

Generally speaking, TPL gives good results with less
computation, so it is a more feasible choice in
applications.

VI. A GENERAL CLUSTERING IDEA

Take a further look at the process of TPL, it is easy to
summarize a general clustering framework that has
following steps: 1) Extract Data representatives; 2)
Cluster Data representatives; 3) Construct a classifier
based on labeled Data representatives; 4) Classify other
data.

Actually, this framework divides clustering task into
clustering and classifying two sub-tasks. And Data
representatives generated in the first step bridge the two
sub-tasks.

The performance of this framework heavily depends
on the quality of Data representatives. If qualified
representatives that can act as the sketch of the whole
dataset can be found, the framework is expected to
produce good clusters. Some approaches of data
reduction can do this job if they are modified specially.
This paper recommends the tuning-scaled SVC, or other
support-vector-based algorithms, since support vectors
produced by these algorithms just reveal some
information of data distribution. Like tuning-scaled SVC,
its support vectors tell data contours, and it adapts to any
data distribution shape. That brings much advantage in
clustering scenario.

As to the classifier of the second phase, it has many
choices. Those well-known classifiers are all fine options,
like, SVM [20, 21], kNN [22], C4.5 [23, 24, 25], etc.

It is believed that clustering machines based on this
idea will produce higher accuracy while less cost.

VII. CONCLUSION

This paper presents a novel Three-Phase Labeling
Algorithm (TPL). TPL extracts Data representatives
firstly, and then clusters them in feature space according
to their geometric properties; finally the algorithm
classifies non-Data representatives based on the
information provided by feature space and input space.
Therein support vector clustering technique is used to
find Data representatives. The second phase is governed
by spectrum clustering, whose theoretical support is
guaranteed by Data representatives’ geometry corollary.
The third phase is implemented through nearest neighbor
classifier that is based on a new metric; the confidence of
this operation is guaranteed by the designed self-tuning
strategy of Kernel scale.

Empirical evidence on real datasets demonstrate that in
practical applications, TPL has the higher efficiency and
competitive, even better, performance over its
counterparts. Starting from TPL, a new general clustering
framework can be discussed. That is, select Data
representatives, and then cluster Data representatives,
finally classify other data. In future work, more
promising clustering approaches can be developed by
implementing this idea into diverse versions.

ACKNOWLEDGMENT

This work is supported by the Youth National Natural
Science Foundation of China under Grant No. 61105129.

REFERENCES

[1] A. Ben-Hur, D.Horn, H. T. Siegelmann, “Support Vector
Clustering,” Journal of Machine Learning Research, vol. 2,
pp. 125-137, 2001.

[2] J. Yang, V. Estivill-Castro, S. Chalup, “Support Vector
Clustering Through Proximity Graph Modeling,”
Proceedings of 9th International Conference on Neural
Information Processing, pp. 898-903, 2002.

[3] D. T. Lee, B. J. Schachter, “Two algorithms for
constructing a Delaunay triangulation,” International.
Journal of Parallel Programming, vol. 9(3), pp. 219-242,
1980.

[4] M. Qi, T. T. Cao, T. S. Tan, “Computing 2D Constrained
Delaunay Triangulation Using Graphics Hardware,”
Technical Report, #TRB3/11, of National University of
Singapore, 2011.

[5] B. C. Wu, A. P. Tang, L. F. Wang, “A Constrained
Delaunay Triangulation Algorithm Based on Incremental
Points,” Applied Mechanics and Materials, vol. 90, pp.
3277-3282, 2011.

[6] S. W. Yang, Y. Choi, C. K. Jung, “A divide-and conquer
Delaunay triangulation algorithm with a vertex array and
flip operations in two-dimensional space,” International
Journal of Precision Engineering and Manufacturing, vol.
12(3), pp. 435-442, 2011.

[7] O. Devillers, “Vertex removal in two-dimensional
Delaunay triangulation: Speed-up by low degrees
optimization,” Computational Geometry, vol. 44(3), pp.
169–177, 2011.

[8] J. Lee, D. Lee, “An Improved Cluster Labeling Method for
Support Vector Clustering,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 27(3), pp. 461-464,
2005.

[9] S.H. Lee, K.M. Daniels, “Cone Cluster Labeling for
Support Vector Clustering,” Proceedings of the Sixth SIAM

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 961

© 2013 ACADEMY PUBLISHER

International Conference on Data Mining, pp. 484-488,
2006.

[10] A. Ng, M. Jordan, Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” Proceedings of the 14th
Advances in Neural Information Processing Systems, pp.
849-856, 2001.

[11] T. Zheng, X. B. Li, Y. W. Ju, “Disturbing Analysis on
Spectrum Clustering,” Science in China (Series E), vol.
37(4), pp. 527-543, 2007.

[12] P. Ling, C. G. Zhou, “A new learning schema based on
support vector for multi-classification,” NEURAL
COMPUTING & APPLICATIONS, vol. 17(2), pp. 119-
127, 2008.

[13] A. Kowalczyk, B. Raskutti, “One class SVM for yeast
regulation prediction,” ACM SIGKDD Explorations
Newsletter, vol. 4(2), pp. 99-100, 2002.

[14] http://www.uncc.edu/knowledgediscovery
[15] http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes.html
[16] P. S. Bradley, U. M. Fayyad. “Refining Initial Points for

K-Means Clustering,” Proceeding of 15th International
Conference on Machine Learning, pp. 91-99, 1998.

[17] M. Girolami, “Mercer Kernel-Based Clustering in Feature
Space,” IEEE Trans. on Neural Networks, vol. 13(3), pp.
780-784, 2002.

[18] S. F. Ding, Z. Z. Shi, F. X. Jin, et al., “A Direct Clustering
Algorithm Based on Generalized Information Distance,”
Journal of Computer Research and Development, vol. 4,
pp. 674-679, 2007.

[19] L. You, S. L. Zhou, G. Gao, M. Leng, “Scalable Spectral
Clustering Combined with Adjacencies Merging for Image
Segmentation,” Lecture Notes in Electrical Engineering,
Vol. 121, pp.709-717, 2012.

[20] B. Schölkopf, A. J. Smola, “Learning with Kernels:
Support Vector Machines,” Regularization, Optimization,
and Beyond, Cambridge, MIT Press, 2002.

[21] Y. Aflalo, A. M. Bronstein, M. M. Bronstein, R. Kimmel,
“Deformable Shape Retrieval by Learning Diffusion
Kernels,” Lecture Notes in Computer Science, vol. 6667,
pp. 689-700, 2012.

[22] K.N.N. Unni, R. D. Bettignies, S.-D. Seignon and J.-M.
Nunzi, “Application Physics Letters,” vol. 18, pp. 1823-
1838, 2004.

[23] J. R. Quinlan, “C4.5: Programs for Machine Learning,”
Morgan-Kaufmann Publishers, 1993.

[24] P. K. Douglas, S. Harris, A. Yuille, M. S. Cohen,
“Performance comparison of machine learning algorithms
and number of independent components used in fMRI

decoding of belief vs. disbelief,” NeuroImage, vol. 56(2),
pp. 544–553, 2011.

[25] H. W. Peng, P. J. Chiang, “Control of mechatronics
systems: Ball bearing fault diagnosis using machine
learning techniques,” Proceedings of Control Conference,
pp. 175-180, 2011

Ping Ling was born in Xuzhou, Jiangsu Province, China, Feb.
1979. She received her Bachelor’s degree in 2000, from College
of Computer Science and Technology, Xuzhou Normal
University. And then she received her Master’s degree and PHD
from College of Computer Science and Technology, Jilin
University in 2006 and 2010 respectively. She research field
focuses on data mining, intelligence computing, support vector
machine and support vector clustering, etc.

Xiangsheng Rong was born in Yanggu, Shandong Province,
China, 1975. He received his Bachelor’s degree in 1997, from
Department of Logistic Command, Xuzhou Air Force College
of P. L. A. And then he received his Master’s degree in 2003
from Xuzhou Air Force College of P. L. A. His major research
directions include the application of information technology and
dynamic programming technique in military logistic command,
intelligence command in combined operations of a sham battle,
etc.

Xiangyang You was born in Xuzhou, Jiangsu Province, China,
1972. He received his Bachelor’s degree in 1994, from College
of Computer Science and Technology, Harbin Institute of
Technology. Now his research directions are operational
research in military logistic command, intelligent computing
application in logistic command, etc.

Ming Xu was in Suqian, Jiangsu Province, China, 1968. He
received his Bachelor’s degree in 1994, from Department of
Logistic Command, Xuzhou Air Force College of P. L. A. And
then he received his Master’s degree in 2005 from Xuzhou Air
Force College of P. L. A. His research fields are centered in
data integration, data mining, semantic network, etc.

962 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

