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Abstract— Based on the statistical property of SAR image 
speckle noise and the property that the multiscale geometric 
analysis can capture the intrinsic geometrical structure of 
image, combining curvelet transform with BivaShrink 
denoising model, a method of SAR image denoising based 
on curvelet domain is presented in this paper. According to 
calculation of variance homogeneous measurement and 
curvelet coefficients of current layer and its parent layer, 
the local adaptive window is determined to optimally 
estimate shrinkage factor. The method can effectively 
reduce SAR speckle noise and preserving details of SAR 
image well through the correlation of curvelet coefficients in 
the same direction of subband and parent-layer subband. 
The experimental results show the presented method greatly 
improves the subjective visual effect and the numerical 
indicators of the denoised image. 
 
 
Index Terms— Curvelet transform, Variance homogeneous 
measurement, speckle suppression, SAR image 
 
 

I.  INTRODUCTION 

A Synthetic aperture radar (SAR) is an active 
microwave remote sensor. It can form an image at 
anytime and any weather. But the visibility of SAR image 
greatly reduces due to its inherent speckle noise, it is a 
key issue to effectively remove the speckle noise in a 
SAR image. The speckle noise is usually expressed as the 
multiplicative noise model.  

Wavelet transform can achieve a good denoising result 
for SAR owing to its good time-frequency representation 
properties[1,2,3,4]. Wavelet is the optimal base when it 
represents the objective function with point singularity, 
but it isn’t the optimal when it represents the singularity 
of line and hyperplane. To overcome this limitation, 
Candès and Donoho propose curvelet transform[5]. It can 
detect the singularity of line and surface well, and 

effectively deal with line singularity of two-dimensional 
space. Strack[6] applies hard thresholding and curvelet 
transform to denoise image, and gets a good denoising 
result. But the hard thresholding mistakes part of the 
small signal coefficient values for noise figure. It will 
lose a lot of details and blur the edge and texture of image, 
especially SAR image with complex background and rich 
edges and texture details. Many experiments show that 
BivaShrink denoising based on wavelet domain, proposed 
by Sendur[7], can effectively remove noise, and has 
lower computational complexity. This method demands 
to estimate the noise variance nσ of noisy image and the 

variance Xσ of original image. nσ  is estimated usually 
through the median estimation. After the determination of 

nσ , the estimation of Xσ  is very important.Because the 
coefficients between all adjacent layers show a weak 
correlation after the image is transformed by the 
orthogonal wavelet, the BivaShrink denoising method 
uses the neighborhood window to estimate Xσ  . This 
window has the following two properties[8]: (1) It is a 
square window with unchanged size and shape; (2) It 
only considers the wavelet coefficients of the same sub-
band, ignoring the impact of parent-layer coefficients on 

Xσ .  
While wavelets are used to separate point singularities, 

second generation wavelets, e.g. curvelets, are more 
suitable for the extraction of two dimensional features, as 
they are able to describe image discontinuities along a 
smooth line (an edge) with a minimum number of 
coefficients. The elementary components are the so-
called ridgelets – due to their appearance like a ridge – 
that can have different scales (equivalent to their length), 
directions and positions in the image. This enables a 
selection of two dimensional features to be suppressed 
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(assumed noise) or to be emphasized (structure) by 
manipulating the corresponding coefficient of each 
ridgelet. In the following a short overview to related work 
especially to the development of curvelets is given. Then, 
the curvelet representation is roughly explained and three 
applications are presented: image denoising, structure 
enhancement and change detection over the city center of 
Munich (imaged by TerraSAR-X in the high resolution 
spotlight mode and VV polarization). So this paper shows 
the potential of the curvelet transform for SAR image 
analysis. 

The curvelet transform used in this approach has 
originally been developed by (Cand`es and Donoho, 1999) 
to describe an object with edges with a minimal number 
of coefficients in the continuous space. Much research 
work was done to examine the behaviour of curvelets, to 
transfer the definitions from the continuous to the discrete 
space  and to accelerate the computing time so that digital 
image processing becomes feasible. Many applications in 
different scientific fields have been published so far, e.g. 
in geo- and astrophysics, that are summarized on the 
curvelet homepage (Demanet). 

In this paper, the BivaShrink denoising is extended to 
curvelet domain. However, when SAR image is denoised 
in curvelet domain, if we directly adopt the method 
proposed by Sendur to estimate Xσ , the estimation 
accuracy will be severely affected.  

Firstly, the size of the neighborhood window ( , )N i j  
has greater influence on the estimation of ),( jiXσ  and 
the whole denoising results. The increment of window 
usually leads to the reduction of ),( jiXσ , and vice versa. 
If the size of window is too large, the edges and texture 
details of the image can be better maintained, but much 
noise is mistaken for useful signal to preserve. Otherwise, 
if the size of window is too small, lots of edges and 
texture details are treated as noise to remove, which will 
blur the image. Because SAR image has complex 
background, rich texture and obviously different variance 
in different regions, it is very difficult to accurately 
estimate the value of Xσ  through using the 
neighborhood window with fixed size in each layer. 

Secondly, the curvelet transform isn’t an orthogonal 
transform. It exists a high degree of redundancy, which is 

116 +J ( where J denotes the number of the decomposed 
layers). The curvelet coefficients between adjacent layers 
show a strong correlation. If the correlation is considered 
to estimate the variance Xσ  in the BivaShrink denoising 
based on curvelet domain, which is bound to further 
reduce the error of Xσ . 

To solve the above two problems, a curvelet domain 
BivaShrink denoising method based on region 
segmentation is proposed. It adaptively determine the 
shape and size of the neighborhood window through 
calculating the variance homogeneous measurement and 
the regional energy ratio. Simultaneously, it estimates the 
variance Xσ of the original image according to the 
statistical information of the intra and inter-layer 
coefficients. The experimental results indicate that the 

proposed method can better suppress the speckle noise of 
SAR image, and effectively maintain the details 
information of the edges and texture. The subjective 
visual effect and the numerical indicators of the denoised 
images are greatly improved. 

II.  IMPROVED CURVELET DOMAIN BIVASHRINK 
DENOISING ALGORITHM 

A. Curvelet Transform Model 
The new ridgelet and curvelet transforms were 

developed over several years in an attempt to break an 
inherent limit plaguing wavelet denoising of images. This 
limit arises from the well-known and frequently depicted 
fact that the two-dimensional (2-D) wavelet transform of 
images exhibits large wavelet coefficients even at fine 
scales, all along the important edges in the image, so that 
in a map of the large wavelet coefficients one sees the 
edges of the images repeated at scale after scale. While 
this effect is visually interesting, it means that many 
wavelet coefficients are required in order to reconstruct 
the edges in an image properly.With so many coefficients 
to estimate, denoising faces certain difficulties. There is, 
owing to well-known statistical principles, an imposing 
tradeoff between parsimony and accuracy which even in 
the best balancing leads to a relatively high mean squared 
error (MSE). While this tradeoff is intrinsic to wavelet 
methods. There are also various discrete ridgelet 
transforms based on ideas of frames and orthobases. For 
all of these notions, one has frame/basis elements 
localized near lines at all locations and orientations and 
ranging though a variety of scales (localization widths). It 
has been shown that for these schemes, simple 
thresholding of the discrete ridgelet transform provides 
near-optimal -term approximations to smooth 
functionswith discontinuities along lines. In short, 
discrete ridgelet representations solve the problem of 
sparse approximation to smooth objects with straight 
edges. 

In image processing, edges are typically curved rather 
than straight and ridgelets alone cannot yield efficient 
representations. However at sufficiently fine scales, a 
curved edge is almost straight, and so to capture curved 
edges, one ought to be able to deploy ridgelets in a 
localized manner, at sufficiently fine scales. Two 
approaches to localization of ridgelets are possible. 

A special member of this emerging family of 
multiscale geometric transforms is the curvelet transform 
which was developed in the last few years in an attempt 
to overcome inherent limitations of traditional multiscale 
representations such as wavelets. Conceptually, the 
curvelet transform is a multiscale pyramid with many 
directions and positions at each length scale, and needle-
shaped elements at fine scales. This pyramid is 
nonstandard, however. Indeed, curvelets have useful 
geometric features that set them apart from wavelets and 
the likes. For instance, curvelets obey a parabolic scaling 
relation which says that at scale 2 j− , each element has an 

envelope which is aligned along a “ridge” of length 22
j

−
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and width 2 j−  . We postpone the mathematical treatment 
of the curvelet transform to Section 2, and focus instead 
on the reasons why one might care about this new 
transformation and by extension, why it might be 
important to develop accurate discrete curvelet 
transforms. Curvelets are interesting because they 
efficiently address very important problems where 
wavelet ideas are far from ideal. We give three examples: 
1. Optimally sparse representation of objects with edges. 
Curvelets provide optimally sparse representations of 
objects which display curve-punctuated smoothness—
smoothness except for discontinuity along a general curve 
with bounded curvature. Such representations are nearly 
as sparse as if the object were not singular and turn out to 
be far more sparse than the wavelet decomposition of the 
object.  

This phenomenon has immediate applications in 
approximation theory and in statistical estimation. In 
approximation theory, let mf  be the m  -term curvelet 
approximation (corresponding to the m largest 
coefficients in the curvelet series) to an object 

2 2
1 2( , ) ( )f x x L R∈ . Then the enhanced sparsity says that 

if the object f  is singular along a generic smooth 
2C curve but otherwise smooth, the approximation error 

obeys 
                     2

2 3 2|| || (log )m L
f f C m m−− ≤ ⋅ ⋅  

and is optimal in the sense that no other representation 
can yield a smaller asymptotic error with the same 
number of terms. The implication in statistics is that one 
can recover such objects from noisy data by simple 
curvelet shrinkage and obtain a Mean Squared Error 
(MSE) order of magnitude better than what is achieved 
by more traditional methods. In fact, the recovery is 
provably asymptotically near-optimal. The statistical 
optimality of the curvelet shrinkage extends to other 
situations involving indirect measurements as in a large 
class of ill-posed inverse problems . 
2. Optimally sparse representation of wave propagators. 
Curvelets may also be a very significant tool for the 
analysis and the computation of partial differential 
equations. For example, a remarkable property is that 
curvelets faithfully model the geometry of wave 
propagation. Indeed, the action of the wave-group on a 
curvelet is well approximated by simply translating the 
center of the curvelet along the Hamiltonian flows. A 
physical interpretation of this result is that curvelets may 
be viewed as coherent waveforms with enough frequency 
localization so that they behave like waves but at the 
same time, with enough spatial localization so that they 
simultaneously behave like particles. This can be 
rigorously quantified. Consider a symmetric system of 
linear hyperbolic differential equations of the form 

( ) ( ) 0k
k k

u uA x B x u
t x

∂ ∂
+ + =

∂ ∂∑   

where u  is an m -dimensional vector and nx R∈ . The 
matrices kA and B  may smoothly depend on the spatial 
variable x , and the kA  are symmetric. Let tE  be the 

solution operator mapping the wavefield (0, )u x  at time 
zero into the wavefield ( , )u t x  at time t . Suppose that  

( )nϕ is a (vector-valued) tight frame of curvelets. Then [5] 
shows that the curvelet matrix 

( , ) , ( )t n t nE n n Eϕ ϕ′ ′=< >    
is sparse and well-organized. It is sparse in the sense that 
the matrix entries in an arbitrary row or column decay 
nearly exponentially fast (i.e., faster than any negative 
polynomial). And it is well-organized in the sense that the 
very few nonnegligible entries occur near a few shifted 
diagonals. Informally speaking, one can think of curvelets 
as near-eigenfunctions of the solution operator to a large 
class of hyperbolic differential equations. On the one 
hand, the enhanced sparsity simplifies mathematical 
analysis and allows to prove sharper inequalities. On the 
other hand, the enhanced sparsity of the solution operator 
in the curvelet domain allows the design of new 
numerical algorithms with far better asymptotic 
properties in terms of the number of computations 
required to achieve a given accuracy . 
3. Optimal image reconstruction in severely ill-posed 
problems. Curvelets also have special microlocal features 
which make them especially adapted to certain 
reconstruction problems with missing data. For example, 
in many important medical applications, one wishes to 
reconstruct an object 1 2( , )f x x from noisy and incomplete 
tomographic data, i.e., a subset of line integrals of f  
corrupted by additive moise modeling uncertainty in the 
measurements. Because of its relevance in biomedical 
imaging, this problem has been extensively studied 
(compare the vast literature on computed tomography). 
Yet, curvelets offer surprisingly new quantitative insights  
For example, a beautiful application of the phase-space 
localization of the curvelet transform allows a very 
precise description of those features of the object of 
f which can be reconstructed accurately from such data 

and how well, and of those features which cannot be 
recovered 

, ,n n n n
n good n good

f f fϕ ϕ ϕ ϕ
∈ ∉

= < > + < >∑ ∑  

The first part of the expansion can be recovered 
accurately while the second part cannot. What is 
interesting here is that one can provably reconstruct the 
“recoverable” part with an accuracy similar to that one 
would achieve even if one had complete data. There is 
indeed a quantitative theory showing that for some 
statistical models which allow for discontinuities in the 
object to be recovered, there are simple algorithms based 
on the shrinkage of curveletbiorthogonal decompositions, 
which achieve optimal statistical rates of convergence; 
that is, such that there are no other estimating procedure 
which, in an asymptotic sense, give fundamentally better 
MSEs . 

B. Wavelet Domain BivaShrink Denoising Model 
Suppose the original image ),( jif  is polluted by 

noise ),( jin  with variance nσ , where 

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 949

© 2013 ACADEMY PUBLISHER



),0(∈),( 2
nNjin σ . And the noisy image is transformed 

by wavelet. Assume the converted coefficients to be 
)),(),,(( 1 jicjia k

l  ( 3,2,1=k ), which respectively denote 
the horizontal, vertical and diagonal high-frequency 
coefficients. In BivaShrink denoising, the hard threshold 
is replaced by the adaptive shrinkage factor to remove the 
noise of the wavelet coefficients. The aim of denoising is 
to restore the coefficients ),( jixk

l  of unpolluted image 

from the coefficients ),( jic k
l of noisy image. Assume the 

shrinkage factor of coefficient ),( jic k
l  is ),( jiξ . The 

estimated value of  can be obtained by  

      ),( jixk
l ×= ),( jiξ ),( jic k

l                     (1) 
In the BivaShrink denoising model[7], the shrinkage 

factor ),( jiξ  is expressed as (2) for the wavelet 

coefficient ),()( jic k
l ， 

=),( jiξ
22

1

2
22

1

)],([)]2,2([

3
)],([)]2,2([

jicjic

jicjic

k
l

k
l

X

nk
l

k
l

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+

+

+ σ
σ

 (2)           

In (2), the function +)(x  indicates 

⎩
⎨
⎧

≤
>

=+ 0,0
0,

)(
x
xx

x ; )2,2(1 jic k
l+  

denotes the parent-layer coefficient corresponding to  

),( jic k
l ; 

6745.0
|)),((| jicMedian

n =σ  ,where 

1∈),( HHjic , and 1HH  is the first-layer high-frequency 
coefficient after wavelet decomposition;  

})].([1,0max{),( 2

),(),(

2
n

jiNnm

k
lX jic

M
ji σσ −= ∑

∈

      (3) 

Where ],[ jiN  represents a neighborhood window of 

coefficient ),( jic k
l , and M  is total number of 

coefficients in ],[ jiN . 

C. Improved Estimation of Variance ),( jiXσ  in 
Curvelet Domain 

If we assume that the speckle is fully developed, the 
model of the multiplicatively corrupted backscattered 
signal can be expressed as 

         ( ) ( ) ( ) ( ) ( ) [ ( ) 1]g n f n u n f n f n u n′ ′= ⋅ = + ⋅ −  
             ( ) ( ) ( ) ( ) ( )f n f n u n f n v n= + ⋅ = +  

in which ( )g n  and ( )f n  are the observed noisy signal 
and the noise-free reflectance, respectively, at pixel 
position n , and u′  is the fading variable modeled as a 
stationary random process independent of f , with 

[ ( )] 1E u n′ = . The random process 1)()( −′= nunu  is 

zero-mean, with variance 2
uσ and known autocorrelation 

function . The term  ( ) ( ) ( )v n f n u n= ⋅ represents an 
additive zero-mean signal-dependent noise term, which is 
proportional to the signal to be estimated. Since ( )f n  is 

nonstationary in general, the noise ( )v n  will be 
nonstationary as well. 

In order to better estimate the variance Xσ  of the 
original image, the proposed method uses the region 
segmentation to adaptively decide the shape and size of 
the neighborhood window, and calculates Xσ  through 
intra and inter-layer information. The detailed program is 
as follows:  
(1) Region segmentation. Assume ( , )N i j is a 

neighborhood with ),( jic k
l  as its center, and 0 0

1( , )k
lc i j−  

is the parent-layer coefficient corresponding of ),( jic k
l , 

and ],[ 000 jiN  is a neighborhood taking ),( 00
1 jic k

l+  as 
the center. From the literature[10], it is known that 

( , )N i j  can be decomposed into several small subregions 
],[0 jir ， ],[1 jir ， … ， ],[1 jirQ , where 

Φ=],[],[ jirjir nm I ， （ nm ≠ ） ， or 
],[],[ jiNjirm = ， 0,1, , 1m Q= −L . Only the subregion 

],[0 jir  includes the central coefficient ),( jick
l . 

(2) Calculation of the variance homogeneous 
measurement(VHM ). After the neighborhood ],[ jiN  of 

coefficient ),( jic k
l  is decomposed[11-14], ),( jiVHM m  

of the mth subregion is defined as: 
||),( 2

0
2 σσ −= mm jiVHM  where 1,,1,0 −= Qm L  and 

),(2 jimσ  is the variance of local region ],[ jirm . ),(2 jimσ  
can be approximately computed through the following 
equation:     

2 21( , ) ( ( , ))k
m ii j c m n

M
σ =   

where M is the total number of coefficients in region 
],[ jirm . ),( jiVHM m denotes the degree of consistency 

between ),(2 jimσ  and ),(2
0 jiσ . 

(3) Selection of subregions. According to the 
decomposition method of ),( jiN , decompose parent-

layer region ],[ 000 jiN  into several small subregions 

],[ 000
0 jir ， ],[ 000

1 jir ，…， ],[ 000
1 jirP− , and compute 

),(0 jiVHM m  between each subregion and ],[0 jir . And 

then respectively select H  and 0H  subregions with the 
minimal VHM  from ],[ jirm  and ],[0 jirm . Merge H  
subregions ],[ jir m  of sublayer in original order, and get 
a variance estimation region of the sublayer. Similarily, 

0H  subregions ],[0 jirm of parent layer are merged into a 
variance estimation region in original order. The merged 
two regions are the local adaptive window ],[ jiB  of 
variance estimation[15-20]. 
(4) Determine the value of H and 0H . In order to reduce 
the computational complexity of the experiment, assume 
both ( , )N i j  and ],[ 000 jiN  to be an  99×  square 

region which respectively centers on ),( jic k
l  and 
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),( 00
1 jic k

l+ .  ( , )N i j  and ],[ 000 jiN  are both 
decomposed into 9 subregions of 3 3× . Define the 
regional energy ratio of ],[ jiN  to be: 

∑
=

= 9

1

2

2
0

),(

),(
),(

m
m

E

ji

ji
jiK

σ

σ
. The experimental results show 

that if the value of H  and 0H  are set according to the 
following rules, a good denoising effect can be obtained. 

⎩
⎨
⎧

<
≥

=
5.0,5
5.0,4

E

E

K
K

H ； 10 −= HH            （4） 

 After the above four steps, the proper subregions are 
selected[21-24]. And then they are fused into an adaptive 
window ],[ jiB . The ),( jiXσ  of the ],[ jiB  is computed 
according to formula (3). 

D. Improved Denoising Method based on Curvelet 
Domain BivaShrink Model 

After ),( jiXσ  is obtained, the noise of the image can 
be removed according to formula(2). The steps of SAR 
image denoising are as follows: 

(1) Curvelet transform of the noisy image. 
(2) Determine the local adaptive window ],[ jiB  

according to VHM for the high-frequency curvelet 
coefficients of different scales.  

(3) Compute the variance ),( jiXσ  of the original 
image according to formula (3). The noise variance nσ  is 
obtained through the median estimation, that  

is
6745.0

|)),((| jicMedian
n =σ ,  where 1),( HHjic ∈ .  

(4) Remove noise according to formula (1) for the 
curvelet coefficients of different scales.  

(5) Curvelet inverse transform for the denoised 
coefficients and get the denoised image.  

III.  SIMULATION EXPERIMENT AND ANALYSIS 

This paper uses the following three criteria to 
objectively evaluate the denoising effect of SAR 
image[1,9]：Equivalent number of looks(ENL);  Mean of 
ratio image(MR);  Edge saving index (ESI). In the 
experiment, we respectively use the BivaShrink wavelet 
denoising(BSW), the hard-threshold curvelet 
denoising(HTC) and our denoising method to remove the 
speckle noise of two test images from American sandia 
national laboratory, which are the X-SAR images of 

512512× size. Fig.1 and Fig.2 are respectively the 
denoised results of the two images through the different 
methods. Table1, Table2 and Table3 are the evaluation 
standards of the different methods. Assume the number of 
layers of wavelet decomposition and curvelet 
decomposition to be 4. In order to quantitatively compare 
denoising effect of all methods, we respectively select 
three homogeneous regions from Fig.1(a) and Fig.2(a).  

 

TABLE I.   

ENL OF THE SELECTED REGIONS 

 SAR Image 1 SAR Image 2 
Region 1 Region 2 Region 3 Region 1 Region 2 Region3 

Original Image 2.784 4.226 2.855 9.424 9.155 9.914 
BSW 27.532 60.233 33.162 54.879 42.753 57.461 
HTC 42.758 71.391 98.526 91.433 87.366 109.822 

The Proposed Method 61.250 90.442 107.341 121.462 115.129 141.377 

TABLE II. 

 MR AND ESI OF SAR IMAGE 1 

  
MR

ESI 
Horizontal Vertical

BSW 1.320 0.4268 0.4752
HTC 1.127 0.4987 0.5521

The Proposed Method 1.063 0.5694 0.6237
Ideal 1.000 1.0000 1.0000

TABLE III.   

MR AND ESI OF IMAGE 2 

  
MR

ESI 
Horizontal Vertical

BSW 1.293 0.5447 0.5461
HTC 1.107 0.6157 0.6042

The Proposed Method 1.018 0.6586 0.6558
Ideal 1.000 1.0000 1.0000
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(a)                                                                                                      (b)  

  
(c)                                                                                                     (d)  

Figure 1.  Experimental results of  SAR image 1 (a) original SAR image,  (b) BSW, (c) HTC , (d) The proposed method 
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 (c)                                                                                                  (d)  

Figure 2.   Experimental results of SAR image 2 , (a) Original SAR image,  (b) BSW,  (c) HTC,   (d) The proposed method 

The sizes of the selected regions in Fig.1(a) are 
respectively 25×25,35×35,50×50. Similarly, the sizes in 
Fig.2(a) are respectively 56×90、45×70、25×35.  

The data in Table1 reveals the proposed method can 
suppress the speckle of homogeneous region better than 
the others. Compared with BSW and HTC, the ENL 
value of the proposed method respectively average 
improves about 60.164 and 22.623. Furthermore, Table2 
and Table3 respectively denote the value of MR and ESI. 
The data shows that the proposed method has the optimal 
MR and ESI. Its value of MR respectively is less about 
0.136 and 0.076 than that of the others. Its value of ESI is 
more about 0.1228 than BSW, and more about 0.0567 
than HTC. So the proposed method can’t only remove 
noise but also effectively maintain the edges and texture 
details of image. It can greatly improve the speckle 
suppression effect in contrast with BSW and HTC.   

IV.  SUMMARY 

An improved SAR image speckle suppression 
algorithm based on curvelet transform is proposed 
according to the distribution properties of curvelet 
coefficients. The method realizes denoising through 
optimally estimate the threshold shrinkage factor of 
curvelet coefficients. When calculating ),( jiXσ , it 
firstly computes the variance homogeneous measurement 
and the regional energy ratio, so as to adaptively 
determine the size and shape of neighborhood window. 
And then it uses the intra and inter-layer information to 
optimally estimate the value of ),( jiXσ . The 
experimental results show the proposed method is an 
efficentiv speckle suppression algorithm, which can 
effectively reduce speckle noise, and better maintain edge 
and texture details.  
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