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Abstract—Many real practical applications are often needed 
to find more than one optimum solution. Existing 
Evolutionary Algorithm (EAs) are originally designed to 
search the unique global value of the objective function. The 
present work proposed an improved niching based scheme 
named spatially neighbors best search technique combine 
with crowding-based differential evolution (SnbDE) for 
multimodal optimization problems. Differential evolution 
(DE) is known for its simple implementation and efficient 
for global optimization. Numerous DE-variants have been 
exploited to resolve diverse optimization problems. The 
proposed method adopts DE with DE/best/1/bin scheme. 
The best individual in the adopted scheme is searched 
around the considered individual to control the balance of 
exploitation and exploration. The results of the empirical 
comparison provide distinct evidence that SnbDE 
outperform the canonical crowding-based differential 
evolution. SnbDE has been shown to be efficient and 
effective in locating and maintaining multiple optima of 
selected benchmark functions for multimodal optimization 
problems.  
 
Index Terms—Differential evolution, Multimodal optimiza-
tion, Niching, Crowding 
 

I. INTRODUCTION 

Most existing evolutionary algorithms (EAs) are 
aiming to find a single global optimum of an optimization 
problem. A large number of works have been done to 
improve the capability of the EAs to effectively and 
efficiently find the global value of the optimization 
problems. Among the commonly used evolutionary 
algorithms, differential evolution (DE) [1] is one of the 
most popular evolutionary algorithm for its simple and 
efficient. As with other EAs, DE is also a population-
based stochastic optimization technique for solving 
continues optimization problems, especially for real-
parameter optimization [2]. And the main purpose, as 
other techniques, is to find the single global value. 
However, in real-world applications, there often exist 
multiple optima (global or local), and it is often requested 
to locate either all or most of these solutions for more 

options. For example, in the field of mechanical design 
we may choose the less fit solutions as our final choice 
due to physical or spatial restrictions that the optimal 
solutions may be hard to fabricate, or for the easiness of 
maintenance, or the reliability and so on. 

Multimodal problems are usually thought as a difficult 
work to solve by canonical EAs because of the existence 
of multiple global or local optima. Numerous techniques 
have been applied to EAs to enable them to find and 
maintain multiple optima among the whole search space. 
These techniques can be classified into two major 
categories [3][4]: (i) iterative methods [5][6], which 
adopting the same optimization algorithm repeatedly to 
acquire multiple optima of a multimodal optimization 
problems; (ii) parallel subpopulation models (explicit or 
implicit), which achieving multiple solutions for a 
multimodal optimization problems by dividing a 
population into several groups, species or niches that 
evolve in parallel, such as Multinational GA [7], Species 
conservation technique [3][8][9], Crowding [10][11][12], 
AFMDE [13], fitness sharing [14], and so on. The 
canonical crowding and fitness sharing are widely used 
techniques but at the risk of losing niches during the 
evolution. 

In this study, a new multimodal optimization method 
employs a spatially near best search strategy using 
crowding-based differential evolution (SnbDE) to find 
multiple optimal solutions simultaneously. The advantage 
of SnbDE is weakening the effect of the parameter named 
crowding factor (CF), which inappropriate setting may 
cause the replacement error. Numerical experiments on a 
set of widely used multimodal benchmark functions show 
that the SnbDE is able to find effective solutions to all 
tested functions. 

The rest of this paper is outlined as follows. The next 
section presents relevant work, including crowding 
scheme used for multimodal optimization problems, and 
a brief review of differential evolution and its commonly 
employed variants. The proposed SnbDE is described in 
detail in section 3. In section 4, the proposed algorithm is 
compared with canonical crowding based DE [12] on 
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commonly used multimodal optimization benchmark 
functions. Finally, section 5 presents the conclusions and 
some future work. 

II. BACKGROUND AND RELATED WORK 

This section presents a brief review of differential 
evolution and its extension to use crowding scheme for 
solving multimodal optimization problems. 

A. Differential Evolution 
Differential evolution (DE) was first proposed by Storn 

and Price [1] in 1995. The DE gained significant 
popularity since its original definition because of its 
simplicity and easiness of implementation and efficiency. 
Like other popular used EAs, DE is a population-based 
algorithm designed to solve optimization problems over 
continues search space. 

Without loss of generality, we refer to the 
maximization problem, both global and local, of an 
objective function ( )f x  throughout this paper, where 
x is a vector of D-dimensional variables in feasible 
solution space, which can be denoted 

as
1
[ , ]

D
i ii

L U
=

Ω = ∏ . At the initialization step, a 

population 0 0 0 0
,1 ,2 ,( , , , ), 1, 2, ,i i i i Dx x x x i NP= =L L , is 

randomly generated from the feasible solution space, 
where NP is the population size. 

Following initialization, the mutation operation is 
conducted with the creation of a mutant vector 

,1 ,2 ,( , , , )t t t t
i i i i Dv x x x= L  for each individual t

ix  in current 
population. The five widely used mutation strategy can be 
described as follows. 
1) DE/rand/1: 

1 2 3·( )t t t t
i r r rv x F x x= + −                    (1) 

2) DE/best/1: 

1 2·( )t t t t
i best r rv x F x x= + −                    (2) 

3) DE/current-to-best/1: 

1 2( ) ( )t t t t t t
i i best i r rv x F x x F x x= + ⋅ − + ⋅ −               (3) 

4) DE/best/2: 

1 2 3 4( ) ( )t t t t t t
i best r r r rv x F x x F x x= + ⋅ − + ⋅ −             (4) 

 
5) DE/rand/2: 

 1 2 3 4 5( ) ( )t t t t t t
i r r r r rv x F x x F x x= + ⋅ − + ⋅ −               (5) 

where t
bestx  denote the fittest individuals of the 

generation t , 1r , 2r , 3r , 4r , 5r are integers randomly 
drawn from the discrete set {1,2, , }NPL  and not equal to 
the index of the considered individual, and 0F >  is the 
mutation factor used to scale differential vectors. 

The crossover operation is applied subsequently on 
each component ( 1,2, , )j j D= L  of the mutant 

individual ,
t
i jv . The process of the crossover is depicted as 

follows: 

,
,

,

, (0,1) or
, otherwise.

t
i j j rndt

i j t
i j

v if rand Cr j j
u

x
⎧ =⎪= ⎨
⎪⎩

„
     (6) 

where (0,1)jrand  is the uniform random variable drawn 
from the interval [0,1], rndj  is a random integer number 
in {1,2,..., }NP  , and [0,1]Cr ∈  is the crossover constant 
namely crossover rate or recombination factor. 

The selection operator is performed at the last step of 
DE to sustain the most promising trial individuals into the 
next generation. The selection operator can be defined as 

1 , ( ) ( )

,  other i

 

w se.

t t t
i i it

i t
i

u if f u f x
x

x
+

⎧ >⎪= ⎨
⎪⎩

             (7) 

The DE algorithm performs repeated applications of 
the above process until a specified number of iterations 
have been reached, or the number of maximum 
evaluations has been exceeded. The pseudo-code of 
canonical differential evolution algorithm is shown in 
Algorithm 1. 
Algorithm 1 The algorithm of canonical Differential 
Evolution (DE/best/1) 
1: 0iter ⇐  
2: Initialize population P  with NP  randomly generated 

individuals. 
3: Evaluate individual , 1,2, ,iP i NP = L . 
4: while (termination criteria are not satisfied) do 
5:     Find the best fit individual bestP  of current 

    population 
6:     for 1i =  to NP  do 

7:         Select 1, 2 {1, 2, , }r r NP∈   L and 
                   1 2r r i≠ ≠  

8:         Copy individual iP  to iS  

9:         (1, )n rand D=  
10:         for 1j =  to D do 
11:             if  (0,1)rand Cr<  or j D=  
12:              1 2[ ] [ ] *( [ ] [ ])i best r rS n P n F P n P n= + −  
13:             end if 
14:             ( 1) modn n D⇐ +  
15:          end for 
16:          Evaluate individual iS  

17:          if ( ) ( )i if S f P<  

18:               i iS P⇐  
19:          end if 
20:          if ( ) ( )i bestf S f P>  

21:                best iP S⇐  
22:           end if 
23:     end for 
24:    1iter iter⇐ +  
25: end while 
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B.  Crowding 
De Jong [15] first presented his conception of 

crowding to deal with multimodal optimization problems. 
Crowding is inspired by the natural phenomenon of the 
competition amongst similar members for limited 
resources. The proposal of crowding technique is aimed 
to preserve the diversity of the population. In order to 
achieve this goal, a subset of the population is randomly 
chosen to be replaced by the most similar individuals of 
the offspring if it is fitter. The determination of similarity 
is judged by the distance metric either in genotypic or 
phenotypic search space. In real-valued coding 
optimization problems, the Euclidean distance between 
two points is most widely used. The number of 
individuals selected to be considered for replacement is 
decided by the parameter named crowding factor (CF). 
For low CF values, a common problem named 
replacement error may emerge which is caused by the 
offspring replaces another individual that may not be 
similar to the offspring [12][16]. 

To reduce the replacement error problem caused by 
canonical crowding with low CF values, a number of 
works have been done to overcome this problem. Such as 
Deterministic crowding proposed by [17], Probabilistic 
crowding [18], or just set CF equal to the number of 
individuals in the population as crowding DE (CDE) [12] 
did. The algorithm of CDE can be depicted as Algorithm 
2. 

 
Algorithm 2 The algorithm of crowding DE 
1: 0t ⇐  
2: Initialize population P  with NP  randomly generate 

individual 
3: Evaluate , 1,2, ,iP i NP = L  
4: while ( not termination condition) do 
5:     Use the conventional DE to generate offspring S  
6:    for all  Individual i  in S do 
7:         Calculate the Euclidean distance values of the

        individual iS  to the individuals in population P . 

8:         Find the nearest individual jP  in population P  

        to individual iS . 

9:         if ( ) ( )i jf S f P>  

10:            Replace individual jP  with individual iS . 

11:        end if 
12:    end for 
13:    1t t⇐ +  
14: end while  
 

 

III. SNBDE 

As previously mentioned, DE, similar to other EAs, 
has shown highly efficient for global optimization 
problems. However, DE is incapable to locate multiple 
global optima or detect other desirable suboptima 
simultaneously. The CDE which extend DE with the 
crowding scheme [12] shows good performance in 

locating peaks and maintaining found peaks throughout 
the run. CDE produce many niches around the found 
optima (global or local). Ideally, all the individuals are 
gathered around the global optima when the algorithm 
terminated. However, since the polytropic size of basin of 
attraction of various multimodal optimization problems, 
some suboptima may be vanished during the process of 
evolution. 

DE, as a population-based stochastic search algorithms, 
should consider two crucial contradictory aspects, 
exploration and exploitation [19], in order to guarantee 
acceptable success on a given task. For multimodal 
problems, the ability of exploration impulse the algorithm 
to explore every area of the feasible search space so as to 
locate the global optima, while the ability of exploitation 
guarantee converging to the nearby optima thus 
maintaining of found optima. The DE variant known as 
DE/best/1 adopt the best fit vector of the current 
population to generate donor vectors. The scheme 
enhances exploitation ability since all the vectors are 
attracted by the single global vector. At the same time, 
this scheme weakens the exploration abilities, and may 
get trapped in some local optima. 

In this study, we propose a new algorithm named 
spatially neighbors best search crowding differential 
evolution (SnbDE). Different from the ring topology of 
neighborhood, which use indices based neighborhood. 
Let's consider a DE population 1 2[ , , , ]NPP X X X= L , 

where each ( 1,2, , )iX i NP = L  is a D-dimensional 
vector in the feasible solution space. The vector indices 
are randomly generated, say as their generating order at 
population initialization step, and are kept constant 
throughout the run. A vector 'iX s  

 (0 ( 1) / 2)r r NP< < −  neighborhoods are 
, , , ,i r i i rX X X− +L L . Note that topological 

neighborhoods may belong to a different peak in the 
fitness landscape because they were chosen randomly (in 
terms of fitness landscape). In order to overcome this 
problem, the SnbDE algorithm using a spatial 
neighborhood based on Euclidean distance around the 
considered individual. 

The SnbDE is based on the CDE but differently in the 
generating of offspring. In SnbDE, we use the /DE/best/1/ 
scheme, where the “best” represent the best fit individual 
around the current optima. The crowding with nearest 
neighbors replacement proposed by Li et al. [11] was 
similar to the crowding scheme with spatially neighbors 
best search strategy proposed in this study. In [11], the 
lowest fitness individual in the selected q -nearest subset 
based on the Euclidean distance will be replaced by the 
offspring if it less fit. In our proposed algorithm, in order 
to enhance the exploitative ability, in the meanwhile, to 
keep the explorative ability of crowding DE, similar 
process as proposed in [11] is adopted. For each 
individual , ( 1, 2, , )ix i NP= L  in population P , the 
individuals in population P  are sorted by ascending 
order based on the Euclidean 
distance ( , ) ( , 1,2, , ;i jd x x i j NP i j  = ≠L ). Thus we get 
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the reordered set denoted as 1 2 1{ , , , }s NPP x x x −=   L . The 

local best individual lbestx  is searched in previously 

( )r r NP�  individuals in sP . Use lbestx  as the best 
individual in /DE/best/1 scheme to generate offspring, 
then the canonical crowding DE is conducted to select 
individuals thus produce the new population. This 
procedure is described as Algorithm 3. 

 
Algorithm 3 The illustration of spatially near best search 
crowding DE 
1: Initialize population P  with NP  random individuals
2: Evaluate individuals in P  
3: 1gen ⇐  
4: while (not termination condition) do 
5:     for 1i =  to NP   
6:         for  1j =  to NP   

7:             Calculate Euclidean distance ( , ),i jd x x i j≠  

8:         end for 
9:         Sort iP 's neighbors set in ascending order,

        1 2 1{ , , , }NPPs x x x −=   L  

10:           Choose the previously r  individuals, 
         1 2{ , , , }rPr x x x=   L  

11:           Find the best individual lbestx Pr∈  

12:           Using lbestx  as the local best individual in

          /DE/best/1 scheme to generate offspring iS  
13:       end for 
14:       Using crowding procedure described in  

      algorithm 2 to generate new population 
15:       1gen gen⇐ +  
16: end while 
 

 

IV. EXPERIMENT RESULTS 

This section presents results obtained by applying 
SnbDE to search multiple optima on a set of multimodal 
problems. Then, the performance of the proposed 
algorithm and standard crowding DE are tested on these 
functions. The effect of different control parameter values 
for SnbDE is also investigated. 

A. Test Functions 
The benchmark functions used in this study are widely 

used for comparing the performance of multimodal 
optimization problems. The number of optima (global or 
local) of the functions is ranging from 2 to 6, 
dimensionality is from 1 to 2, and the high dimensionality 
problem is our future research. These functions are 
described as follows. 

1) Deb's 1st function 
Deb's 1st function is defined as: 

6
1( ) sin (5 )F x xπ=                         (8) 

where 0 1x剟 . Deb's 1st function has 5 equally spaced 
global optima as showed in Fig. 1. All five global values 
are uniformly distributed at 0.1, 0.3, 0.5, 0.7, 0.9x =      
with a value 1.0. 
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0
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0.7

0.8

0.9

1

 
Figure 1.  Deb's 1st function 

2) Deb's decreasing function 
Deb's decreasing function can be described as: 

 
22 ln(2)(( 0.1)/0.9) 6

2 ( ) 2 sin (5 )xF x xπ− −=  (9) 
Deb's decreasing function is similar to Deb's 1st function, 
with the values corresponding to the optima are 1.0, 
0.934, 0.760, 0.540 and 0.334, respectively (see Fig. 2). 

0 0.2 0.4 0.6 0.8 1
0
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Figure 2.  Deb's decreasing function 

3) Branin  RCOS 
2 2

3 2
5.1 5( , ) ( 6)
4

F x y y x x
ππ

= − + − +  

110(1 )cos( ) 10
8

x
π

− +                 (10) 
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100
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Figure 3.  Branin RCOS 

The Branin RCOS function is a two-dimensional 
function with 3 global optima, which optimum value is 
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0.397887 in the region 5 10x− 剟  and 0 15y剟  (see Fig. 
3). 

4) Ursem's F4 

2 2

4
(2 )

( , ) 3sin(0.5 0.5 )
4
x y

F x y xπ π
− +

= +       (11) 

where 2 , 2x y− 剟 . Ursem's F4 is a two-dimensional 
function with one global optimum and four local peaks. 
All the four local optima are distributed on the edge of 
the search space and the global one in the center (see Fig. 
4). 

−2
−1

0
1
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−1
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1
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−0.5

0
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1

1.5

 
Figure 4.  Ursem's F4 

5) Six-Hump Camel Back 

4 2
2 2

5 2
4( 1)( , ) ((4 2.1 ) )

3
x yF x y x x xy

y
−

= − − + + +      (12) 

where 1.9 1.9x− 剟  and 1.1 1.1y− 剟 . The six-hump 
camel back function has six optima (2 global and 4 local, 
see Fig. 5). This function is used by many multimodal 
optimization algorithms to inspect the effectiveness to 
locate all optima. Because among the four local optima, 
two of them are stable, the other two are unstable, and all 
optima are near from each other. The specific 
characteristic makes it hard to identify all the optima by 
most multimodal optimization algorithm.  

B. Performance Measures 
Several performance measures for multimodal 

optimization algorithms have been used in literature. The 
widely used performance measures are described briefly 
as follows: 
 

−2
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1

2
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1

2
−6

−4

−2

0

2

 
Figure 5.  Six-hump camel back 

 Success rate (%): the percentage of successful 
runs in which all optima (global and local) are 
successfully found. 

 Peak ratio: measure the ability of algorithms to 
locate the multiple optima, the sum of the optima 
identified by the technique divided by the sum of 
the actual optima in the search space. In this study, 
an optimum is considered to be detected if it is 
within a Euclidean distance of 0.01 for 1, 2F F  and 
0.05 for 3, 4, 5F F F  from the real optimum. 

 NFEs: The number of fitness function evaluations 
is recorded when the pre-assigned threshold is 
reached. The average and standard deviation of the 
number of fitness evaluations are used in this work. 

C. Results and Analysis 
Table I presents descriptive statistics related to the five 
benchmarks, i.e. the values for the mean of the average 
success rate, the mean and standard deviation of the 
fitness evaluation and the mean peak ratio. The specific 
parameter setting for each of the algorithms are described 
as follows. Population size NP was set to 30 for 1, 2F F , 
and 50 for 3, 4F F  and 100 for 5F . The probability of 
crossover was fixed to 0.9Cr = , and the scaling factor 
was 0.5F = . The parameter r  was set to 2, and an 
investigation of the effect of different r  to the 
performance of SnbDE will be provided. The crowding 
factor for both SnbDE and CDE were set to equal to the 
population size ( CF NP= ). 

TABLE I.   
EXPERIMENTAL RESULTS(AVERAGED OVER 30 RUNS) 

Func. Success   
Rate (%) NFEs Peak 

Ratio 

1F CDE 100 590 ± 163 1.0 
SnbDE 100 410 ± 145 1.0 

2F CDE 100 680 ± 230 1.0 

SnbDE 100 570 ± 215 1.0 

3F CDE 100 7955 ± 560 1.0 

SnbDE 100 5850 ± 515 1.0 

4F CDE 100 1850 ± 125 1.0 

SnbDE 100 1350 ± 115 1.0 

5F CDE 68 8250 ± 1520 0.67 
SnbDE 100 5210 ± 1210 1.0 

 
We compare the results obtained using SnbDE with 

canonical CDE. Each algorithm is tested on each function 
for 30 runs. From the Table I we can see SnbDE is able to 
identify and maintain multiple optima in the search space. 
Our approach is comparatively successful to the 
canonical CDE in all tested functions. Especially for 5F , 
in all 30 runs, SnbDE successfully locate and maintain 
the six optima, while CDE can only find the 4 global 
optima in most runs. 

As Fig. 6 indicates, because of the global selection of 
CDE, some found peaks may be attracted by the higher 
fitter individuals result in the missing of optima. From 
Fig. 6(a), we can see the initial population is uniformly 
distributed among the search space, after the algorithm 
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evolved 150 generation; most individuals gathered 
around the four global optima, the local individuals are 
attracted by the global optima. When the algorithm 
attained its 800 generations, all individuals are gathered 
around the four global optima. This status retained to the 
end of the evolution. With the same distribution of 
population, however, the SnbDE successfully identified 
and maintained all six optima.  
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(a) Initial population 
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(b) iteration 150 
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(c) iteration 300 
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(d) iteration 500 
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(e) iteration 800 

Figure 6.  Individuals distribution of CDE on the 5F  ( with a 
population size of 100), asterisk represents the real optima(global or 

local)  

Fig. 7 shows the distribution of individuals when the 
algorithm achieved the pre-specified threshold with the 
same initialization population. 
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Figure 7.  The distribution of SnbDE on 5F  after 44 iterations 

(with a population size of 100), asterisk represents the real 
optima(global or local) 

Fig. 8 illustrate the effect of population size on peak 
ratio (with 2r =  for SnbDE) when the algorithms 
applied to 5F . From Fig. 8 we can see, with the increasing 
of population size, the peak ratio attained of both 
algorithms is increased. When the population size was set 
too small (e.g. less than or equal to twenty), the peak ratio 
achieved by CDE is higher than that of SnbDE, with the 
increasing of population size, the peak ratio achieved by 
SnbDE growing more rapidly than that of CDE.  
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Figure 8.  The effect of population size on peak ratio of the 5F  

When the population size reached 80, the peak ratio 
come to 1.0 for SnbDE, and about 0.67 for CDE, 
respectively. When the population size reached 100, the 
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peak ratio reached 1.0 for SnbDE, and CDE keep 
constant at about 0.67. In our experiments, we also notice 
that once a new optimum found, the SnbDE can maintain 
it throughout the run, while CDE often lose the found 
local optimum, and in most cases can only maintained 
four optima. 

The effect of r  to the peak ratio of algorithm SnbDE 
on 5F  is depicted as Fig. 9. As can be seen, there was a 
significant effect for r  value on peak ratio. With a lower 
r  (e.g. 2r„ ), the SnbDE can locate and maintain all 
optima. With the increasing of r , the selection of best 
individual became the global selection result in the 
gathering around the global optima. 
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Figure 9.  The effect of $r$ on peak ratio of SnbDE on 

5F  

V. CONCLUSION 

In this paper we present the SnbDE algorithm based on 
the idea of crowding DE with spatially nearest best search 
strategy. The performance of the SnbDE is compared 
against the canonical CDE on several commonly used 
multimodal benchmark functions. All experiments have 
demonstrated that the SnbDE is a competitive candidate 
for multimodal evolutionary algorithm. Further research 
will investigate whether SnbDE is effective in handling 
complex real-world multimodal optimization problems, 
including ones with higher dimensionality. The ability to 
track optima in a dynamic environment will also be an 
interesting topic for future research. 
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