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Abstract—Average Annual Daily Traffic is typically 
estimated by applying seasonal factors (SFs) to short-term 
counts. SFs are obtained from continuous count sites and 
assigned to short-term count sites. This assignment 
procedure is usually empirical and subjective. Some 
previous studies have attempted to establish relationships 
between SFs and influential variables to provide an 
objective and data-driven alternative for SF assignment. 
However, in rural areas, SFs are difficult to model due to 
low land use intensity and, sometimes, significant through 
traffic. This paper presents a study of relationships between 
monthly SFs and hourly traffic patterns, land use, and other 
variables, using data from 116 continuous counters in rural 
areas throughout Florida. It is found that hourly traffic 
patterns are related to traffic seasonality and can be used to 
improve the modeling of influential variables that affect SF. 
The influential variables are then used for seasonal factor 
assignment and estimation. The proposed method achieved 
an average error of four percent, with 95 percent of the 
estimated monthly SFs having an error of no more than ten 
percent. 
 
Index Terms—Hourly traffic pattern, Seasonal factors, Land 
use, Spatial analysis, Regression analysis 
 

I. INTRODUCTION 

Average Annual Daily Traffic (AADT) is an important 
traffic measure used in planning, traffic operations, safety 
analysis, pavement design, funding allocation, and other 
transportation applications. Transportation agencies in the 
U.S. and Canada expend significant resources to maintain 
their traffic monitoring systems, which require the 
collection of traffic data such as volume and 
classification counts. The Traffic Monitoring Guide 
(TMG)[1] requires that all agencies have a continuous and 
a short-term traffic counting program for federal 
reporting purposes. The agencies need to ensure that 
enough continuous data are collected to allow the 
calculation of AADT and seasonal adjustment factors. 
The TMG recommends a short-term count data collection 
program that covers an entire system on a six-year cycle, 

or covers a highway performance monitoring system 
(HPMS) sample and universal sections on a three-year 
cycle. Continuous counts are usually recorded by 
automatic traffic recorders. Short-term counts, also 
known as coverage counts, are usually conducted at 
selected sites for a period of 24 to 72 hours. To estimate 
AADT based on short-term counts, seasonal factors (SFs), 
which are obtained from continuous count sites, are 
assigned to a short-term count. The difficulty in this 
process lies in the fact that there is a lack of 
understanding as to what causes the differences in 
seasonal traffic variations, and how to determine if a 
continuous count site and a short-term count site share the 
same seasonal traffic pattern, and thus, the same SFs. 
Consequently, SF assignment procedures rely, to a large 
degree, on an analyst’s experience and judgment, which 
may be prone to bias. This subjective SF assignment is 
likely to lead to inaccurate AADT estimates, which will 
affect the soundness of decisions made based on such 
AADT estimates. 

The Florida Department of Transportation (FDOT) 
collects traffic data from about 300 telemetry traffic 
monitoring sites (TTMSs) located throughout the state. 
These TTMSs are continuous counters and their true 
AADT and SFs are available. There are more than 7,000 
portable traffic monitoring sites (PTMSs), where only a 
short-term (for example, 72-hour) traffic count is 
conducted once or a few times a year. To estimate AADT 
for these PTMSs, the FDOT classifies the 300 TTMSs 
into 178 SF categories. The SF for a specific category is 
obtained by averaging the SFs from the TTMSs in the 
group. A PTMS is assigned a SF based on the 
consideration of roadway function classification, spatial 
proximity between the PTMS and nearby TTMSs, and the 
judgment of the analyst. The FDOT, however, desires a 
more data-driven and objective method that could 
improve the accuracy of the SF estimation for short-term 
count sites.  

In a study conducted by Zhao et al.[2], land use and 
other variables that were considered to be influential to 
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SFs were explored for modeling SFs. It was found that in 
rural areas, SFs were difficult to model due to low land 
use intensity and, sometimes, significant through traffic. 
In this paper, a method for estimating SFs for short-term 
count sites on rural roads in Florida is proposed. This 
method jointly considers hourly traffic patterns, land use, 
and other variables. The TTMSs on rural roads are 
divided into two groups depending on whether their 
hourly traffic patterns exhibit commuting characteristics 
or not. Regression analysis is separately performed for 
the two groups to identify influential variables that may 
affect their SFs. The results indicate that considering 
hourly traffic patterns helps to significantly improve the 
models. 

An assignment method is developed based on the 
influential variables identified in the regression analyses. 
This approach is based on the assumption that if variables 
identified in the regression analysis do contribute to 
seasonal traffic variations, they may be used to directly 
link a short-term count station, or PTMS, to a TTMS if 
the two share similar variable values. This method was 
tested with available TTMSs data. The test results show 
that the errors of estimated SFs for rural roads are, on 
average, four percent. The method developed here for 
rural roads was also applied to urban areas, which 
improves the SF assignment accuracy with a mean 
absolute percentage error of five percent[3]. 

In the remainder of this paper, the classification of 
hourly traffic patterns and regression analysis are 
described. The model results are then discussed and used 
for SF assignment. 

II. LITERATURE REVIEW 

Several past studies estimated AADT using 
independent variables and statistical methods, such as 
ordinary least square (OLS) regression[4,5,6], geographical 
weighted regression[7], and principal component 
analysis[8]. Independent variables used in these studies 
include roadway functional class, number of lanes, land 
use and socio-economic characteristics, etc. These 
methods do not require traffic data collection or SFs. 
However, the accuracy of these prediction methods is not 
high. 

A commonly used approach for AADT estimation is 
to convert short-term counts to AADT either directly or 
indirectly. In direct conversion, regression is used to 
match short-term counters to continuous counters based 
on variations in traffic volume[9,10]. According to 
Robichaud[9], traffic data of at least eight days over three 
seasons are necessary to estimate AADT volumes with an 
accuracy of ±10 percent. Sharma et al.[10] employed an 
artificial neural network (ANN) method to estimate 
AADT from hourly traffic volume of a 48-hour count as 
input. They reported an estimation error of 7.9 percent, 
higher than the traditional factor method. 

The most commonly applied approach in the U.S. is 
indirect conversion, i.e., factor-based method. Using this 
method, short-term traffic volumes (mostly 24- to 72-
hour count) are usually collected once every two or three 
years. A short-term count is converted into AADT by 

assigning an SF to it. Data collection effort is minimal, 
but professional judgment and significant local 
knowledge are required for reasonable SF assignment. 
Sharma et al.[11] indicates that the accuracy is more 
sensitive to the correctness of SF assignment than the 
duration of short-term counts. The Traffic Monitoring 
Guide[1] provides recommendation with regards to 
applying  SFs to short-term counts, however, local 
agencies are responsible for their own procedure. 

Davis et al.[12] introduced the Bayesian assignment 
method for assigning SFs to short-term count sites. This 
method is mainly based on the matching of the monthly 
and day-of-week traffic variation pattern between short-
term count sites and SF groups. The drawback is the need 
for monthly and weekly traffic variation information for 
short-term count sites, which requires significant data 
collection. Tsapakis[13] described a SF assignment 
approach based on statistical similarities in daily average 
traffic (ADT) and hourly traffic volumes between a short-
period count and factor groups, which resulted in a 52 
percent improvement in terms of mean absolute error 
over the method of assigning SFs based roadway function 
class. 

Roadway functional classification (such as rural, urban, 
recreational, interstate, and collector) and locations have 
also been recognized as possible influential factors of 
seasonality[14,15,16]. Sharma[14] and Sharma et al.[15] 
proposed a method to classify rural roads based on trip 
purpose and trip length information collected from past 
origin-destination (OD) surveys by the Ministry of 
Transportation in Alberta, Canada. Based on the daily 
traffic patterns, five predominant road uses were 
identified[14]: commuter, commuter-recreational, 
commuter-recreational-tourist, tourist, and highly 
recreational. Three typical hourly traffic patterns were 
also identified: commuter, partially commuter, and non-
commuter. Cumulative trip length distribution 
information, which was obtained from external station 
surveys, was used to classify roads for serving mainly 
regional, interregional, or long-distance travel. OD 
surveys, however, are expensive to conduct and are often 
economically infeasible, except in cases of corridor or 
intercity travel studies.  

Other factors, such as demographics, socioeconomics, 
and land use types, have also been investigated as 
possibly explanations of seasonal traffic variations[2,3,17,18]. 
These factors, if understood and quantified, may aid in 
the assignment of SFs from one or more TTMSs to a 
PTMS, which may potentially reduce the data collection 
effort required and improve the accuracy of AADT 
estimations. 

Believing that there is a connection between land use 
and seasonal traffic variations, Li et al.[17] employed a 
regression method to model the relationship between SFs 
and land use variables with limited TTMSs data on urban 
roads in South Florida. A number of influential variables 
were identified, including the concentration of seasonal 
households and retired households with high income, 
hotel/motel population, and retail employment. As in 
direct conversion method, the regression model is not 
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powerful enough to estimate SF directly with the 
identified influential factors. Li et al.[19] developed a 
fuzzy decision tree to classify a count site based on the 
value of selected variables that were identified in 
regression analyses. However, to validate the assignment 
results requires the considerable effort of collecting 
additional monthly short-term counts. Due to a lack of 
data, no validation was performed. 

Zhao et al.[7] also modeled the relationship between 
SFs and land use patterns in rural areas in northern 
Florida. Variables such as the functional classification for 
highways, seasonal households, agricultural employment, 
and truck factor were identified as potential explanatory 
variables. However, monthly variation in traffic is more 
significant for rural roads than urban and commuter 
routes[20]. Modeling SFs for rural areas were found to be 
more difficult than for urban areas, likely due to low land 
use intensities, a lack of a dominant land use, and 
significant through traffic. The regression models for 
rural areas had low R-squared values when compared to 
the urban models. 

In the remainder of this paper, an overview of a 
methodology for modeling SFs for rural areas in Florida, 
and assigning SFs obtained from TTMSs to PTMSs, is 
first provided. A detailed description then follows.  

III. OVERVIEW OF METHODOLOGY 

In this study, the methodology consists of three major 
steps: (1) multiple-linear regression analyses to identify 
potentially influential factors that contribute to the 
variations in SFs, and (2) a similarity-based assignment 
method that identifies TTMSs that are likely share the 
same MSFs with a shout count site based on the factors 
identified in the regression analyses, (3) estimation of the 
MSFs for a short count site based on those of the TTMS 
that are determined to be similar in Step (2).  

In the regression analyses, the dependent variables are 
the 12 monthly seasonal factors (MSFs), and the 
dependent variables reflect land use, demographics, 
socioeconomics, economics, roadway, and other variables. 
The purpose is to identify variables that are statistically 
significant to MSFs. These variables are later assumed to 
provide the connection between a TTMS and a short 
count site that share similar MSFs.  

It has been previously mentioned that land use is more 
difficult to model in rural areas than in urban areas due to 
low density, irregular roadway network, and more 
significant through traffic. Sharma[14] and Sharma et al.[15]  
suggested that commuting trips have their distinct traffic 
seasonal variability and hourly variability pattern. 
Commuting traffic typically has a distinct hourly pattern. 
The difference between the patterns of commuting and 
non-commuting traffic may be the result of differences in 
their land use patterns. This means that hourly traffic 
pattern may be used in modeling the SFs by ensuring 
variables included in a regression analysis are relevant to 
more data points. 

In this study, before regression analysis is performed 
to test variables that may be important to SFs, the TTMSs 
in the rural areas of Florida are classified into two groups, 

commuting and non-commuting, based on their hourly 
traffic patterns. A commuting traffic pattern is 
characterized by double peaks (DP) during a day, one in 
the morning and the other in the afternoon, while non-
commuting traffic has a single peak (SP) during the day. 
Regression analysis is separately performed for TTMSs 
in the SP and DP groups to model relationships between 
SFs and land explanatory variables. 

Once regression models were developed, an 
assignment method was developed based on the 
influential variables identified in the regression analyses. 
Assuming these variables reflect the underlying causes 
for the seasonal traffic variations, they may be used to 
directly link one count station to a TTMS based on the 
similarity between their variable values. A similarity 
metric was developed that consisted of the influential 
variables weighted by their partial R-square values. A 
similarity score can be computed for any given count site 
based on the values of the influential factors for this site 
and the similarity metric. This method is tested with the 
TTMS data by comparing the SFs estimated based on the 
similarity scores against the known SFs. Test results 
show that the errors of the estimated SFs for rural roads 
are average four percent. The method developed here for 
rural roads was also applied to urban areas, which 
improves the SF assignment accuracy with a mean 
absolute percentage error of five percent[3]. 

In the following sections, classification of hourly 
traffic patterns, regression analysis, assignment and 
estimation of SFs, and conclusions are presented. 

IV. SEASONAL FACTOR DATA 

The basic data used in this study are the monthly 
seasonal factors (MSFs) from 116 TTMSs in Florida rural 
areas for the year 2000. The definition of rural areas is 
from the 2000 census. The MSFs data were provided by 
the Florida Department of Transportation. Figure 1 plots 
the location, AADT, and functional class of the roads 
where the TTMSs were sited.  

 
Figure 1 Spatial distribution of TTMSs and their function class and AADT 
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All of the 116 TTMSs have complete MSFs, including 
some (7.8 percent) that have been imputed due to missing 
data. A quality control and quality assurance procedure 
was followed to ensure the integrity and consistency of 
the data. All the imputed data have been reviewed and 
approved by the project team.  

V. CLASSIFICATION OF HOURLY TRAFFIC PATTERNS 

To study the hourly traffic patterns of the 116 TTMSs 
in rural Florida, Wednesday was chosen to represent a 
typical weekday. The hourly traffic volumes for all 
Wednesdays were extracted for each TTMS, which were 
then averaged to arrive at average weekday hourly 
volumes. 

To determine if the hourly traffic pattern of a site 
exhibits a single peak (SP) or double peaks (DPs), the 
maximum and minimum of hourly volumes were 
examined. Figures 2(a) and 2(b) illustrate a single-peak 
traffic pattern and a double-peak traffic pattern, 
respectively. For both SP and DP patterns, Max1 is 
defined as the maximum of hourly traffic volumes of Ti in 
the morning from hour 0 (0:00) to hour 10 (10:00), and 
Max2 is the maximum of hourly traffic volumes in the 
afternoon from hour 15 (15:00) to hour 24 (24:00). 
Min_midday is the minimum of hourly volumes between 
the hour 10 (10:00) and hour 15 (15:00). 

 
Figure 2. (a) Single-peak pattern and variables describing peaking characteristics; 

 (b) Double-peak pattern and variables describing peaking characteristics. 

A variable is defined to classify SP and DP pattern as 
follows: 
 

)(
_),min( 21

iTMax
middayMinMaxMaxVariation −

=  (1) 

The variable Variation is guaranteed to be nonnegative 
by the definition of variables. If Variation is 0, then the 
low and high peaks are the same. This indicates that the 
traffic pattern has a single-peak, that is, a non-commuting 
pattern. If Variation is not zero, the traffic pattern may be 
considered to be a double peak (DP) pattern, which is 
characteristic of a commuter pattern. The larger Variation 
is, the more obvious the DP pattern is. However, a pattern 
will still be considered a SP pattern if Variation is not 
significant. The cutoff value of Variation need be defined 
to distinguish the SP and DP pattern. Four different 
criterion values (0.00, 0.05, 0.10, and 0.20) of Variation 
for classifying a TTMS into a SP or DP group are tested 
to investigate which one results in better models. The 
tests were performed on hourly data for Tuesday and 
Thursday that were averaged over the year for the same 
day. The same tests on Wednesday data were also 
conducted and resulted in the same classification groups. 

This suggests that the definition of hourly pattern is not 
sensitive to the day of data collection. 

The purpose of averaging a full-year data is to ensure 
the smoothness of the data and that the data reflect the 
overall traffic pattern on an annual basis. However, short-
term counts from PTMSs usually only cover one to three 
days, such as 72-hour duration. The traffic variation 
during such a short period may not be the same as that 
from the averaged data of an entire year. To verify 
whether SP or DP pattern based on annual average hourly 
traffic is similar to that of a short period count of 48 or 72 
hours, the traffic patterns of all of the TTMSs for selected 
weekdays are examined. It is found that most of the SP or 
DP traffic patterns remain unchanged in different seasons, 
although volume variations are observed. Figure 3(a) 
shows the hourly traffic patterns at site 530050 in the 
months of January, April, July, and October. This site 
exhibits mostly consistent single-peak traffic patterns, 
even though the detailed hourly traffic pattern of each 
month varies. As an example, Figure 3(b) shows the DP 
hourly traffic patterns at site 500054 in the same four 
months, and the patterns are consistent. 

 

 
Figure 3. Hourly traffic pattern for two sample TTMS sites in different seasons 

(a) 530050 on US 231; (b) 500054. 

When the cutoff criterion Variation = 0 is applied to 
annual averaged Wednesday hourly patterns, there are 33 
count sites in the SP group and 83 in the DP group. When 
the cutoff criterion Variation = 0 is applied to short-term 
hourly patterns instead of the annual averaged patterns, 
53% of the one-day hourly traffic patterns of the 33 sites 
in SP group are still classified as belonging to the SP 
group, while 89% of the one-day hourly traffic patterns of 
the 83 sites in the DP group are classified the same. 
Considering the hourly traffic pattern on any given 
weekday may have large variation or be less smooth than 
that averaged over all the same weekday over a year, the 
cutoff criterion Variation = 0.05 is suggested for use to 
classify short-term hourly patterns. Applying this 
criterion to the TTMSs resulted in 74% of the one-day 
hourly traffic patterns in the SP group remaining in the 
same group, and 80% of the one-day hourly traffic 
patterns in the DP group remaining unchanged. 

VI. MULTIPLE LINEAR REGRESSION ANALYSIS 

Multiple linear regression analyses are conducted to 
identify potentially influential variables that contribute to 
the variations in the 12 monthly seasonal factors (MSFs) 
of the TTMSs. The stepwise selection method is applied, 
with the significance level set at 0.05 for a variable 
entering and staying in the model. The t-statistics and 
variance inflation factors (VIFs) are also checked for 
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each of the variables to ensure they are significant and to 
remove multicollinearity in the models.  

Four different criterion values (0.00, 0.05, 0.10, and 
0.20) of Variation for classifying a TTMS into a SP or 
DP group are tested to investigate which one results in 
better models. Applying each of the four criterion values, 
the TTMSs are classified into the SP and DP groups. 
Regression models are then developed. The dependent 
and independent variables are described in the next two 
sections. 

A. Monthly Seasonal Factors as Dependent Variables  
The dependent variables are the 12 MSFs, computed 

based on the weekday data. Because the FDOT traffic 
statistics program is mainly concerned with weekday 
traffic, a decision was made to remove traffic volume 
data from weekends, holidays, and special event days 
when, for example, hurricanes or large sport games 
occurred. The difference between the MSFs with or 
without the weekend data is found to be very small.  

B. Definition of Independent Variables 
Land use, from which travel activities are derived, is 

considered an important factor of both hourly and 
monthly traffic volume variations. Four categories of 
variables are considered in this research: roadway, 
demographics, employment, and geography. 

The roadway variables include truck factor (TF), 
roadway functional class (FR, PA, MA and CO), distance 
to the nearest interchange (Interdist), distance to the 
nearest metropolitan area (D_Urban), maximum ratio of 
population to the distance from a TTMS to a metropolitan 
area (Dist1), the inverse of the sum of ratios of urban 
population to the distance between a TTMS and an urban 
area (Indexdist2), and distance to the nearest beach 
(Beachdist). Variables FR, PA, MA, and CO are binary 
dummy variables. They indicate whether a road is a 
freeway (FR), principal arterial (PA), minor arterial (MA), 
or collector (CO). 

The demographic variables include population density 
(POPD); percentage of seasonal households (SHP); 
percentage of retired households (RETIRE); percentages 
of population of different age groups: below 5 (PPA5), 6 
to 17 (PPA6_17), 5 to 10 (PPA5_10), 11 to 13 
(PPA11_13), 14 to 17 (PPA14_17), 18 to 21 (PPA18_21), 
21 to 64 (PPA22_64), and 65 and up (PPA65UP); and 
density of population of different age groups: below 5 
(PDA5), 6 to 17 (PDA6_17), 18 to 21 (PDA18_21), 21 to 
64 (PDA22_64), and 65 and up (PDA65UP). The census 
data of year 2000 were used to calculate above variables. 

The employment variables include employment 
density (EMPD); percentage of workers of different 
sectors: agriculture (AgriP), fishing and hunting (FishP), 
transportation (TranP), wholesale (WholeP), Retail 
(RetailP), restaurant (ServP), hotel and camp (HotelP), 
education (EduP), amusement and recreation (RecServP), 
and museum (MuseumP). Employment data for the year 
2000 from the InfoUSA database were purchased by 
FDOT. 

The climate changes significantly in Florida, from 
temperate in the North to subtropical in the South. This 

climate difference affects the seasonal activities of both 
the population and economy. For instance, South Florida 
attracts many visitors and welcomes the return of 
seasonal residents in its warm winter months. In contrast, 
summer in North Florida is the season for tourists and for 
outdoor recreations. For this reason, three climate zones 
are defined that divide the state into North, Central, and 
South Florida, and variables SHP, HotlP, RtlP and 
MseumP are defined for each of the climate zones by the 
prefix N, C, or S to indicate whether a TTMS is located in 
North, Central, or South Florida. These variables 
therefore become NSHP, CSHP, SSHP, NHotlP, CHotlP, 
SHotlP, NRtlP, CRtlP, SRtlP, NMseumP, CMseumP, and 
SMseumP, respectively.  

Area-based variables, such as population, seasonal 
households, or employment, are measured using a buffer 
method. The buffer is created around a TTMS. However, 
because roadway spacing in rural areas is irregular, a 
uniform buffer size is inappropriate even for TTMSs on 
roads of the same functional classification. Therefore, a 
variable buffer method is used. Using this method, the 
distance between the road where a TTMS is located and 
the closest road that has the same functional classification 
is first computed using a geographic information system 
(GIS). A fixed percentage is then applied to this distance 
to determine the buffer size. Three percentages are tested 
with regression analysis: 25%, 50%, and 75%. Because 
50% gives the best regression models, it is selected as the 
percentage used to compute the buffer size. For instance, 
if the distance between a TTMS and the next road with 
the same functional classification is eight miles, applying 
the 50% will give a buffer size of four miles. An upper 
limit of the buffer size of five miles is also imposed. The 
buffer area was restricted within rural areas if it 
overlapped with any urban areas.  

C. Development of Multiple Linear Regression Models 
Each of the four criterion values of Variation (0, 0.05, 

0.1, and 0.2) led to two sets of models, one for the SP 
group and one for the DP group. Therefore, a total of 
eight sets of models were developed. Each set included 
12 monthly models. Table 1 lists the adjusted R-squared 
values for the 12 MSF models for the four criterion 
values of Variation. The first column indicates the month. 
The second column provides the R-squared values for 
models that were calibrated with all 116 TTMSs without 
separating them into SP and DP groups. Columns 3 
through 6 list the R-squared values for models 
corresponding to the four criterion values of Variation.  
The top half of table is for SP models and the bottom half 
of table is for DP models. The number of TTMSs used to 
develop the models is also given for each of group of 
models, which is the number of sites classified into the 
corresponding hourly pattern group by the different cutoff 
value of variation as indicated by vari.  
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TABLE 1. 
COMPARISON OF ADJUSTED R-SQUARE FOR DIFFERENT 

MONTHLY SF MODELS. 
 ALL SP Models 

TTMSs 116 33 44 55 73 
Month Vari = 

1.00 
Vari = 
0.00 

Vari = 
0.05 

Vari = 
0.10 

Vari = 
0.20 

JAN 0.484 0.934 0.602 0.489 0.484
FEB 0.657 0.820 0.688 0.647 0.613
MAR 0.589 0.782 0.438 0.490 0.489
APR 0.297 0.635 0.175 0.179 0.180
MAY 0.218 0.489 0.491 0.488 0.420
JUN 0.452 0.621 0.531 0.562 0.447
JUL 0.501 0.900 0.511 0.484 0.465
AUG 0.520 0.641 0.472 0.606 0.571
SEP 0.531 0.812 0.625 0.453 0.549
OCT 0.238 0.370 0.381 0.439 0.469
NOV 0.347 0.764 0.463 0.359 0.465
DEC 0.408 0.607 0.596 0.490 0.471

 DP Models 
TTMSs 83 72 61 43 
Month Vari = 

0.00 
Vari = 
0.05 

Vari = 
0.10 

Vari = 
0.20 

JAN 0.573 0.541 0.587 0.600
FEB 0.606 0.654 0.621 0.593
MAR 0.552 0.514 0.680 0.777
APR 0.230 0.224 0.489 0.629
MAY 0.256 0.254 0.401 0.126
JUN 0.491 0.410 0.436 0.446
JUL 0.646 0.610 0.552 0.577
AUG 0.541 0.526 0.688 0.724
SEP 0.445 0.533 0.537 0.662
OCT 0.241 0.204 0.255 0.463
NOV 0.323 0.387 0.408 0.302
DEC 0.358 0.310 0.365 0.474

 
The model R-squared values suggest that separately 

modeling TTMSs with SP or DP patterns improve the 
explanatory power of the models. Although the 
improvement in model R-squared values for the DP 
models is not significant, the SP models have much 
higher R-squared values than the models without the SP 
and DP classifications. By comparing models based on 
the different criterion values of Variation, the SP models 
with criteria Variation = 0 have overall higher adjusted 
R-square values. This suggests that TTMSs pattern 
recognition may take the cutoff criterion Variation = 0. 

The models for the SP group include about 30 
variables. Among them, roadway variables, such as Dist1, 
Interdist, Indexdist2, and TF have relatively larger partial 
R-squared values. Population related variables, such as 
SSHP, NSHP, PPA18_64, and PPA22_64, also appear in 
the models and contribute noticeable partial R-squared 
values. Most of the employment variables, such as SRtlP, 
NHotlP, ManuP, NMseumP, RcServP, FishP, and EdP, 
enter the models, although some only appear in certain 
months and their partial R-Square values are not as 
significant as those of the roadway and population 
variables. The variables, their partial R-square values, 
and the model month are presented in Table 2. The signs 

of the coefficients of variables for each model month are 
presented in parentheses in the third column. 

 
Table 2.  

Variables in the SP Models (Vari = 0). 
Variable Partial R2 Month 
WholP 0.159 FEB (–) 
WholP 0.060 JAN (–) 
TranP 0.169 MAY (+)
TranP 0.074 JAN (–) 
TranP 0.031 SEP (+) 

TF 0.143 NOV (–)
TF 0.128 AUG (+)
TF 0.077 JUN (+)
TF 0.035 MAR (–)

SSHP 0.477 FEB (–) 
SSHP 0.332 SEP (+) 
SSHP 0.295 OCT (+)
SSHP 0.062 JAN (–) 
SRtlP 0.233 AUG (+)
SRtlP 0.160 JUL (+) 
SRtlP 0.114 OCT (+)
SRtlP 0.083 SEP (+) 
SRtlP 0.078 MAR (–)
SRtlP 0.062 FEB (–) 

SMseumP 0.033 MAR (–)
RestP 0.099 APR (–)

RcServP 0.088 DEC (+)
RcServP 0.042 NOV (–)
PPA65up 0.046 NOV (+)
PPA6_21 0.027 JUL (+) 
PPA5_10 0.089 JUN (–) 
PPA5_10 0.036 SEP (+) 
PPA22_64 0.175 JUN (–) 
PPA22_64 0.078 NOV (+)
PPA22_64 0.072 MAR (+)
PPA18_64 0.148 JAN (+)
PPA18_64 0.140 JUL (–) 
PPA18_64 0.102 FEB (+)
PPA18_64 0.085 AUG (–)
PPA18_64 0.070 DEC (+)
PPA14_17 0.054 JUN (+)
PPA14_17 0.030 JAN (–) 
PPA11_13 0.037 JUL (–) 

NSHP 0.063 MAR (–)
NSHP 0.047 FEB (–) 
NSHP 0.025 JUL (+) 
NRtlP 0.052 APR (+)

NMseumP 0.164 MAR (–)
NHotlP 0.160 DEC (+)
NHotlP 0.081 SEP (+) 
ManuP 0.263 JUL (+) 
ManuP 0.079 MAY (–)
ManuP 0.077 APR (–)
ManuP 0.014 JAN (+)
Interdist 0.162 AUG (+)
Interdist 0.128 APR (–)
Interdist 0.010 MAY (–)
Interdist 0.080 JUL (+) 
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Variable Partial R2 Month 
Indexdist2 0.118 NOV (+)
Indexdist2 0.094 JUL (–) 
Indexdist2 0.041 JAN (+)

FishP 0.089 AUG (+)
FishP 0.057 SEP (+) 
EdP 0.040 NOV (+)
EdP 0.028 JAN (+)
Dist1 0.387 MAR (–)
Dist1 0.345 JAN (+)
Dist1 0.339 DEC (–)
Dist1 0.285 JUN (+)
Dist1 0.274 APR  (–)
Dist1 0.064 MAY (+)
CSHP 0.233 SEP (+) 

CMseumP 0.073 APR (+)
Many variables help explain the seasonal variations of 

traffic. For instance, both SSHP and NSHP are significant, 
which suggests that seasonal households in South and 
North Florida influence traffic patterns in these regions. 
In winter months (such as January, February, or March), 
the coefficients of the SSHP (in January, and February) 
and NSHP variables (in February and March) are 
negative, suggesting that the seasonal residents who come 
down to Florida in the winter help increase traffic 
volumes. During the summer time, the coefficient of 
SSHP (in September and October) and NSHP (in July) 
variables are positive, suggesting that traffic is lighter 
because seasonal residents tend to stay outside of Florida 
in the summer and then return again in the winter. 
Variable SRtlP is more significant compared to CRtlP 
and NRtlP. This suggests that the seasonal pattern of 
traffic in the rural areas in South Florida is more affected 
by retail-related activities. The coefficient of the SRtlP is 
negative in winter months (in February and March) and 
positive in summer months (in July, August, September, 
and October), indicating that there is more shopping-
related traffic in South Florida in the winter. 
Consequently, his may be attributed to the increase in the 
number of seasonal residents and tourists during this time.  

Roadway variables, such as Dist1, Indexdist2, and 
Interdist, show significant correlation with SFs, but each 
has a different season during which they are important. 
For TTMSs closer to an interchange, traffic is lighter in 
April and May than in July and August. For TTMSs 
closer to a large metropolitan area, there is more traffic in 
March and April than in May and June. 

However, inconsistent with conventional beliefs, the 
relationship between seasonal variation and roadway 
function class is not statistically strong based on the 
regression analyses, suggesting the current practice of SF 
assignment based on roadway function class needs to be 
reconsidered to determine its appropriate scope.  

VII. ASSIGNMENT AND ESTIMATION OF SEASONAL 
FACTORS 

A. Methodology for Measuring Similarity between Two 
Count Sites 

Though the model is not power enough to predict SF 
based on the independent variables, the causal relation 
between SF and influential variables implies that MSFs 
are similar if PTMS shares similar characteristics with a 
TTMS. The goal of the assignment here is to identify a 
best matched TTMS or a number of best matched TTMSs 
for any given short-term count site based on their 
similarity scores.  

The similarity score (or dissimilarity score), S, is 
calculated based on a selected set of variables that are 
identified in the regression analyses. To measure the 
similarity, the differences between the values of each of 
the variables for the two count stations are first computed. 
Recall that there are 12 regression equations in each 
model set, and that variables may appear repeatedly in 
different equations and are associated with different 
partial R2 values. Hence, the partial R-squares of a 
variable from the monthly models are summed and used 
as weight to be applied to normalized differences. The 
sum of these weighted differences gives a score that 
measures weighted normalized differences for two count 
stations i and j, expressed as follows: 
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where  
 Sij = similarity score defined for count stations i 

and j (i ≠ j), 
 p  = number of influential variables, 
 Vki = value of the kth variable in the 12-month 

models for count station i, 
 Vkj = value of the kth variable in the 12-month 

models for count station j, 
 SPRk = sum of partial R2 for the kth variable in the 

appeared months, and 
 max(Vk) = maximum value for the variable Vk  among all 

TTMSs. 
  

Using the above definition, a similarity score can be 
computed for any pair of count stations. If multiple 
TTMSs are matched to a given count site, they may be 
ranked based on their similarity scores as the first best 
match with the lowest value of similarity score, second 
best match, and so on. SF may be assigned from a TTMS 
or TTMSs with the smaller value of similarity score. 

B. Application of Similarity Scores to Rural TTMSs 
To determine the effectiveness of the proposed 

similarity score, each of the 116 rural TTMSs was 
assumed to be a short-count site and was matched with 
other TTMSs. The evaluation of errors between an 
assumed short-count and matched TTMSs are conducted 
to arrive at an optimal method with an appropriate 
variable set and suitable TTMSs. The errors between 
matched sites are computed as follows: 
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where 
 eij = measure of difference between the monthly 

seasonal factors of count site i and j being 
compared, 

 MSFmi = monthly seasonal factor for count site i for 
month m, and 

 MSFmj = monthly seasonal factor for count site j for 
month m (may be mean of matched sites). 

 
The complete variable set that has been identified in 

the regression analyses and is used to calculate similarity 
scores for the TTMSs in the SP group are WholP, TranP, 
TF, SSHP, SRtlP, SMseumP, RestP, RcServP, PPA65up, 
PPA6_21, PPA5_10, PPA22_64, PPA18_64, PPA14_17, 
PPA11_13, NSHP, NRtlP, NMseumP, NHotlP, ManuP, 
Interdist, Indexdist2, FishP, EdP, and Dist1. Due to a 
concern that too many influence variables are involved, a 
reduced variables set consisting of nine variables with the 
highest partial R-squared values instead of the original 25 
is tested. This reduced variable set includes TranP, TF, 
SSHP, SRtlP, PPA18_64, ManuP, Interdist, Indexdist2, 
and Dist1. 

For the DP group, the complete variable set includes 
23 variables: TF, SSHP, SRtlP, SHotlP, ServP, Rt_Low, 
Rt_High, RETIRE, RcServP, PPA65up, PPA22_64, 
PPA14_17, PPA11_13, NSHP, MineP, Indexdist2, FR, 
EdP, Dist1, CO, CHotlP, Beachdist, and AgriP. A 
reduced set of variables is also tested, which include eight 
variables with the highest partial R-squared values: TF, 
SSHP, SRtlP, Rt_High, RETIRE, NSHP, FR, Dist1, and 
Beachdist. 

Table 3 shows the average errors between MSFs 
estimated from matching TTMSs and true MSFs for all 
rural TTMSs in the SP and DP groups with both complete 
and reduced influence variable sets. The last row of the 
table gives the errors in the estimated MSFs that have 
been obtained by averaging the MSFs of the first two best 
matched sites. 

 
TABLE 3.  

AVERAGE ERRORS OF THE ASSIGNMENT RESULTS FOR 
RURAL AREA. 

Best 
Match 

SP 
Complete 

Variable Set 

SP  
Reduced 

Variable Set 

DP 
Complete 

Variable Set 

DP 
Reduced 

Variable Set
1st 4.2% 4.1% 4.1% 4.5% 
2nd 4.8% 5.1% 4.1% 4.4% 
3rd 4.9% 5.5% 4.5% 4.1% 
4th 5.6% 4.8% 4.3% 4.4% 
5th 5.2% 5.6% 4.9% 4.7% 

(1st + 
2nd)/2 4.1% 4.2% 3.6% 3.9% 

 
It can be seen from Table 3 that the reduced variables 

set produced assignment results with good accuracy. It is 
recommended to estimate MSFs for a count site by 
averaging the corresponding MSFs of the first two (or 

more) best matches. In addition to reduced errors, using 
two matched sites instead of a single one may also 
increase the reliability, and possibly decrease randomness, 
in the first best match.  

VIII. EVALUATION OF PROPOSED MSF ESTIMATION 
METHOD 

The accuracy of the MSF estimation method is 
evaluated by estimating the 12 MSFs for all of the 116 
TTMSs, i.e., 116 × 12 = 1,392 MSFs and comparing 
them to the actual MSFs of the TTMSs. The absolute 
percentage error between the MSFs of two matched sites 
is used to evaluate the accuracy of the assignment method, 
as follows: 
 

a
mi

e
mi

a
mi

mi MSF
MSFMSFe −

=

where 
 emi = absolute percent difference between the 

actual and estimated monthly seasonal factors 
of count site i for month m, 

 MSFa
mi = actual monthly seasonal factor for count site i 

for month m, and 
 MSFe

mj = estimated monthly seasonal factor for count 
site j for month m. 

 
Table 4 shows the error frequency distribution of the 

estimated MSFs using the full variable set. The mean 
error is 3.7 percent, and the maximum error is 25 percent 
for one month. Over 95 percent of assigned MSFs have 
an error below 10 percent. 
 

TABLE 4.  
ERROR DISTRIBUTION OF ESTIMATED MSFS FOR RURAL 

TTMSS BASED ON THE FULL VARIABLE SET. 

Error 
Range 

Frequency 
of MSFs

Percentage 
of 

Frequency 

Accum. 
Frequency 
of MSFs 

Percentage 
of Accum.
Frequency

[0%, 2%] 501 36.0% 501 36.0% 
(2%, 4%] 380 27.3% 881 63.3% 
(4%, 6%] 255 18.3% 1,136 81.6% 
(6%, 8%] 122 8.8% 1,258 90.4% 

(8%, 10%] 74 5.3% 1,332 95.7% 
(10%, 12%] 28 2.0% 1,360 97.7% 
(12%, 14%] 17 1.2% 1,377 98.9% 
(14%, 16%] 2 0.1% 1,379 99.1% 
(16%, 18%] 8 0.6% 1,387 99.6% 
(18%, 20%] 2 0.1% 1,389 99.8% 
(20%, 25%] 3 0.2% 1,392 100.0%

 
The error frequency distribution of the estimated 

MSFs using the reduced variable set is similar to the 
results obtained using the full variable set. The mean 
absolute error for all estimated MSFs is 4.0 percent, and 
the maximum error is 27 percent. Nearly 95 percent of 
the estimated MSFs have an error below 10 percent. The 
distribution of error frequency is depicted in Figure 4.  
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Please note that errors in MSFs directly translate into 
errors into AADT estimation. Because when ADT is 
converted into AADT, the SF applied is the weekly SF 
interpolated from the two adjacent MSFs, the errors in 
MSF estimates provide an upper bound of errors in the 
corresponding AADT estimates. 

 
Figure 4. Error distribution of estimated MSFs for all rural TTMSs. 

 
The results suggest that the proposed assignment 

method is able to achieve good accuracy, especially 
considering that traffic variation in rural areas is more 
significant than in urban areas and land use is more 
challenging to model.  

IX. CONCLUSIONS 

The literature has indicated that it is challenging to 
identify the relationship between monthly seasonal 
factors (MSFs) and influential variables in Florida rural 
areas. This research has shown that hourly traffic patterns 
are important and can be used to build better rural models 
for seasonal factor (SF) analysis. By classifying TTMSs 
into single-peak (SP) and double-peak (DP) groups, 
regression models that relate MSFs to various roadway 
and influential variables achieve higher adjusted R-
squared values, especially when traffic is less dominated 
by commuting trips. This suggests that there exists an 
intrinsic connection between the hourly traffic pattern, 
the seasonal traffic pattern, and influential variables. 

The regression analysis identified two sets of 
influential variables for TTMS with single- and double-
peak weekday hourly traffic patterns. A similarity score is 
defined based on the influential variables, which is used 
to match two count sites based on their similarity in the 
values of the influential variables. The MSFs of a short-
term count site can then be estimated by averaging the 
MSFs of the two ore more best matched TTMSs. One 
interesting observation is that contrary to conventional 
beliefs, roadway function classification did not turn out to 
be a strong statistical indicator for MSFs. This does not 
mean that function class should be completely 
disregarded. Especially for freeway sections, along which 
there are no major disjoint land uses, SFs on these 
sections may be similar because they reflect the 
seasonality of through traffic that is not affected by local 
economic activities. 

Application of the proposed method can begin by 
classifying a PTMS as a single-peak or double-peak site 
based on hourly traffic volumes from short-term counts. 
Depending on the classification of the PTMS, the reduced 

variable set from the SP or DP regression models can 
then be used to compute the similarity score and match it 
with TTMSs that share similar roadway and land use 
characteristics. The seasonal factors of the best matching 
TTMSs may be selected to estimate the SFs for the 
PTMS. 

The proposed method was tested by estimating MSFs 
for the 116 rural TTMSs and comparing them to the 
known MSFs. Of the 1392 estimated MSFs of the 116 
test sites, 75 percent had an error of 6 percent or less, and 
95 percent had an error within 10 percent. Note that 10 
percent is the threshold considered to be acceptable by 
the FDOT when estimating MSFs. 

The assignment method developed in this study offers 
at least three advantages. First, no additional TTMSs are 
required to validate the assignment results. This makes 
this approach more practical and less expensive when 
compared to, for example, a fuzzy decision tree. Second, 
a count site may be linked to multiple TTMSs. This 
provides the analyst with alternative TTMSs in case there 
is a sufficient basis to reject the best matching TTMS 
based on the selected variables. Third, this method can be 
tested with the same TTMSs that are used in the 
regression analysis. Although this is not to say that there 
is no need for independent testing using an entirely 
different set of data, this method allows the development 
of some understanding of how well the method works. 
Finally, this method has the potential to eliminate the 
need to conduct SF grouping. 

The regression variables used in this study have been 
carefully selected to ensure that they capture rich 
information that may affect SFs while being readily 
available from either census or transportation planning 
data. Although land use and demographics may evolve 
over time, this evolution is usually slower in rural areas 
than urban areas and frequent model updates may not be 
needed. Therefore, model updates at intervals of five to 
ten years may be adequate. The models, however, need to 
be developed for specific regions if applied outside 
Florida. 

Future research will be focused on further analysis of 
the variables identified in the regression models and 
exploring other traffic parameters that may bear on SFs. 
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