
Automatic Parallelization of XQuery Programs

Husheng Liao
Beijing University of Technology, Beijing, China 100124

Email: liaohs@bjut.edu.cn

Weifeng Shan and Hongyu Gao
Beijing University of Technology, Beijing, China 100124

Email: shwf@163.com, hy_gao@bjut.edu.cn

Abstract—XQuery is a functional language with implicit
parallelism. It is an important approach to improve the
efficiency of XML query by taking full advantage of multi-
core environment in the parallel implementation of XQuery
language. In this paper, we propose an implementation
method for parallelizing XML query represented by
XQuery programs automatically. According to the features
of its functional language, an XQuery program is divided
into a number of tasks that can be executed in parallel.
Then, on the basis of the running cost evaluation, three
kinds of parallelism are applied to different tasks and they
are data parallelism, task parallelism and pipeline
parallelism. Under the guidance of a novel scheduling
strategy, the execution of the XQuery program is
parallelized automatically. The experiments show that this
approach improves the efficiency of the execution of
XQuery programs and the computing resources of multi-
core computer are used efficiently.

Index Terms—XQuery, implicit parallelism, XML, multi-
core, task scheduling, task partitioning

I. INTRODUCTION

Extensible Markup Language (XML) has become the
standard format for data representation and data exchange
on the Internet because of the features of self-description
and semi-structured [1]. XQuery is a standard query
language from the W3C designed to query XML, and it is
also a functional programming language. A number of
optimization approaches, such as query algebra, XML
tree pattern query algorithm and compile technology,
have been proposed to improve the query performance of
XQuery.

Now, people begin to try to utilize the computational
capacity of multi-core machines to enhance the efficiency
of XML query [2]. Reference [3] separated the process of
parsing the XML from the process of reading XML files.
Each process used a single thread. Reference [4]
proposed another parallel XML parsing method, in which
an initial preparing phase was used to determine the

structure of the XML document, and then a full parallel
parse was followed by. Reference [5] encoded XML and
indexed it to improve the query performance. Reference
[6] researched XPath parallel query solutions on the
shared XML documents, including data parallelism and
task parallelism strategies. Reference [7] proposed two
XML data partitioning strategies to keep workload
balance for parallel tree pattern query. They refined an
XML partition at various levels of granularities proposed
an XML data distribution approach by partitioning XML
data on the fly at the stream nodes-based granularity
dynamically.

XQuery, as a functional language, is fully implicit
parallel programming language. An XQuery program
consists of expressions and function calls. The
expressions with no data dependency could be evaluated
in parallel, and the parallel query has the identical result
with serial execution. Over the years, people have been
mining the parallelism of functional languages and trying
to find an automatic or semi-automatic method to
improve the execution efficiency of programs [8-10],
while few their works involve the data parallelism and
pipeline parallelism in XML data processing. Most
parallel query optimizations only consider XML parsing,
XPath queries and twig query, and there are no reference
has been found to deal with the application of variety of
parallel strategies on the whole query task of XQuery
programs.

This paper investigates the automatic parallelization of
XQuery programs and the main contributions of this
paper are as follows:

• The paper firstly proposes an automatic
parallelization approach of XQuery language
according to the program structure and query
characteristics of XML, which provides three
parallel strategies: data parallelism, task
parallelism and pipeline parallelism.

• The representation method of query plan based
on data dependence relationship and task
partition strategies based on execution cost model
are proposed, and we also implement the
algorithms of query plan and task partitioning.

• A task scheduling strategy is realized which
considers the dependency relationship and

Manuscript received August 26, 2012; revised XX, 2012; accepted
XX, 2011

Corresponding author: Weifeng Shan.

842 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.4.842-851

Figure 1. An example of XQuery program.

Figure 2. Data flow diagram of Fig.1.

execution cost of different tasks. Based on the
task scheduling, a parallel XQuery engine has
been implemented.

The paper is organized as follows. Section II
introduces the automatic parallelism strategies of XQuery
language. Section III shows the query plan of XQuery
and task partitioning approach. Section IV presents the
running cost model. In section V we present the task
scheduling strategy. The implementation of a parallel
XQuery engine is introduced in section VI. Evaluation
and experiment results are discussed in Section VII.

II. AUTOMATIC PARALLELIZATION OF XQUERY

XQuery is a standard XML query language, while it
doesn’t provide parallel control technology such as multi-
thread and synchronization control. To improve
efficiency of XQuery in multi-core environment, parallel
implementation of XQuery is one solution. As a
functional language, it makes itself possible to mine its
implicit parallelism.

Consider the XQuery program in Fig. 1, we could find
three kind of parallel strategies as follows, which can be
applied to improve the efficiency of the program.

• Task parallelism. FLWOR expressions are the
core expression of XQuery, some of them can be
executed concurrently. In Fig. 1, the evaluations
of top two let clauses(line 1, 2) do not rely on
each other, so they can be viewed as two
independent tasks and can be executed in parallel.

• Pipeline parallelism. The data model of XQuery
is the data sequence, which is the sequence of
XML nodes in most cases. It is obvious that two
expressions in an XQuery program may have the
relationship of producer and consumer. As shown
in Fig. 1, the book elements generated from the
let clause at line 1 are dealt as the input of the for
clauses at line 3. It isn’t necessary to wait until all
book elements are obtained before the execution
of the for clause. We may take the pipeline
approach to make them work in parallel.

• Data Parallelism. In FLWOR expressions, the
same operation is applied to every XML nodes of
their input sequence from the in clause. They can
be divided into several sub sequences and process
them in parallel. As shown in Fig. 1, both
FLWOR expressions in line 2-4 and line 5-8 are
suitable for this approach.

To find out every task which can be executed in
parallel, XQuery programs should be translated as a kind
of middle representation, which is suitable to express the
query plan for parallel execution.

A. Query Plan of XQuery Program
We use data flow diagram to represent the query plan

of XQuery program. A data flow diagram is a directed
acyclic graph:

Graph= (V, R)
V is the set of nodes, and each node is an independent

query task. R is the set of directed arc between nodes (V
× V). R indicates the dependence relationship between
two query tasks, and the arc’s direction points out the
direction of data flow. A task is a node of data flow
diagram.

Task = (expr, type, arcIn, arcOut,
pipePred, pipeSucc, subGraph)

where expr is an expression of the query task and type
indicates that this task whether supports data parallelism
and pipeline parallelism. arcIn and arcOut are the
collection of directed arcs, and point out the precursor
and the successor tasks of the current task, respectively.
pipePred and pipeSuc indicate precursor and successor
tasks of the current pipeline task. subGraph shows sub
diagrams of the current task.

According to the above definition, the XQuery
program of Fig. 1 can be converted into the data flow
diagram as shown in Fig. 2. Each node in Fig. 2 is an
independent computing task, and the arcs between tasks
indicate their data dependence relationship. A task can be
executed as long as all tasks it depends on have been
completed. Execution order of tasks may be decided by
the topological sorting algorithm. In the process of
generating data flow diagram, we can distinguish which
kind of parallelism can be performed on the task based on
a static analysis of its expression. As shown in Fig. 2, it

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 843

© 2013 ACADEMY PUBLISHER

FXQL
Translator

Task
partitioning

Computing
ready tasks

Evaluate cost
of task

Task
scheduling

Assign
threads

Execution

End

Finished ?

Yes

XQuery Program

FXQL Program

Begin

Data flow diagram

Ready Queue

Ready Queue

Candidate Queue

Task

No

Evaluation result

XML
Data

Figure 3. The process of automatic parallelization of XQuery programs.

also presents a query plan for the parallel execution of the
XQuery program. Some of them may be executed
concurrently, and some of them must be executed one by
one.

B. Automatic Parallelization Method
In order to use the above three parallel strategies in the

implementation of XQuery language, this paper presents
a novel automatic parallelization method as shown in Fig.
3. In this approach, XQuery programs are translated into
FXQL language, which is a simple middle language and
its core syntax is as follows.

e const | id | if e then e else e | id(e*)
| fun(id*)e | e where id = e

In FXQL programs, the FLWOR expression of
XQuery is converted into the calls of simple functions
such as Join, Foreach and Filter, which are the algebraic
operators of an XML query algebra. Some logic
optimizations can be performed based on the XML query
algebra, which will be introduced in other papers. Let’s
take the following XQuery as an example:

for $book in doc(“bib.xml”)//book
return $book/title

After translated , the FXQL program is as follows：
Flat(
 Foreach(

DescentOrSelf($var,“book”),
 fun($book) Child($book,“title”))

where
 $var = doc(“bib.xml”))

where the built-in function doc gets the root element of
XML file bib.xml. Function DescentOrSelf get all
descendant elements with book tag. fun represents an

anonymous function, and in its body, Child function gets
all child elements of book nodes labeled by title. Function
Foreach applies the anonymous function on each book
node which is the descendant node of the document node
of XML file “bib.xml”. The node list obtained from the
Foreach’s application is converted into a node sequence
by the Flat function.

And then, by the task partitioning, FXQL programs
will be split into many tasks. All these tasks form a data
flow diagram as shown in Fig. 2, where each task is
marked with different parallel strategies. We select the
tasks, which is ready to run, into a queue via a topological
sort algorithm, and then evaluate the execution cost of
each task. Finally, a group of tasks, chose by task
scheduling algorithm on the basis of cost of tasks, task
character and current available resource, are assigned a
number of threads and executed. And the cost evaluation
and task scheduling should be done repeatedly whenever
some tasks are completed.

III. TASK PARTITIONING

Although each expression of XQuery programs is an
independent task, their execution costs vary considerably.
In order to get the better parallel efficiency, we shouldn’t
assign threads to the tasks which execution cost is too
low. It is obvious that operations on XML sequence
nodes, such as filtration, projection, connection and axis
operations, is time consuming. However, arithmetic and
relational operations are not time consuming. Our
principle of task partitioning is as follows.

• If the expression is a functional call and the
called function is a primitive function of query
algebra operator, it will be treated as a task.

• If the expression is a functional call and the
called function is a user-defined function and the
types of its arguments contain an XML node
sequence, it will be viewed as a task.

• Each tree pattern query is viewed as an
independent task.

FLWOR expression, conditional expression and user-
defined function are the logical control mechanisms of
XQuery language. As described above, FLWOR
expression has been converted into the composition of
number of query primitive function’s calls. Condition
expression is dealt as a special task, and each branch of it
is regarded as a subtask. Each user-defined function call
is treated as an independent task.

The different parallel strategies may be applied to
different tasks. Filter, Foreach, Flat and Join functions
support data parallelism and pipeline parallelism. Tree
pattern query, which usually starts with getting XML
sequence nodes and ends with count aggregation
functions or node construction function, may take
pipeline parallelism strategy. As shown in Fig. 4,
XQParti algorithm of task partitioning generates the
query planning diagrams by analyzing the main
expression and user-defined function of FXQL programs.
The input data of XQParti is a FXQL expression e, which
is a main query expression or the body of user-defined

844 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

functions. It is assumed that the current task has been
created in advance. The algorithm will be used to identify
which part of the expression should be included in the
current task and the precursory tasks. XQParti’s output
data is a three triple (r, t, g). Where, r is the
subexpression of expression e which will be included in
the current task. t is the list of precursory tasks and g is
the subgraph of the current task when there is an If
branch in the expression.

In the algotithm, newTask function is used to create a
new task, and newGraph function creates a new data flow
graph, and ++ means list connection. The environment
w is used to store the binding of every local variable with
its task. The computation of every local variable in an
FXQL program should be treated as an independent task
since its result may be shared by several tasks.

Figure 4. The core algorithm of task partitioning

In the analyzing of function call id(e1,…,en), the
algorithm is applied to its each actual parameter, n triples
(ri,ti,gi) are returned. The expression will be rewritten into
id(r1,…,rn) if no task is created for the call.

If id is the name of a query algebraic operator such as
Filter and Foreach, a newTask function will be called for

creating a new task for the call. And a new variable is
also created for rewriting the call in the current
expression. All new tasks will be the precursory tasks of
the current task.

For the call of user-defined functions, they are
processed in the same way as query algebraic operator, if

Algorithm 1. The core algorithm of task partitioning
XQParti：Expr Env (Expr, Task*, Graph*)

input： e ∈Expr, w∈Env :Id Task
output：(r, t, g) where r∈Expr, t∈Task*, g∈Graph*
XQParti[id]w = (id, w(Id), null)
XQParti[const]w = (const, null, null)
XQParti[id(e1, ..., en)]w =

if id is query algebraic operator then
(x, {t}, null)

else if id is an user‐defined function then
 if no sequence in id’s parameters then

 ([id(r1, ..., rn)], t1++...++tn, g1++...++gn)
 else

 (x, {t}, null)
else // other primitive functions

 ([id(r1, ..., rn)], t1++...++tn, g1++...++gn)
where
 (ri, ti, gi) = XQParti[ai]w; for i = 1,…, n

x new variable ; // create a new task
 t = newTask(x, [id(r1, ..., rn)], t1++...++tn, g1++...++gn);

XQParti[if e1 then e2 else e3]w =
 ([if r1 then r2 else r3], t1, g1++q2++q3))
where

(r2, t2, g2) = XQParti[e2]w;
(r3, t3, g3) = XQParti[e3]w;
q2 = newGraph(r2, t2, g2); // create a new sub graph
q3 = newGraph(r3, t3, g3); // create a new sub graph
(r1, t1, g1) = XQParti[e1]w

XQParti[e0 where x1 = e1]w =
 if t1 = g1 = empty list then

([r0 where x1=e1], t0, g0)
 else

(r0, t0, g0) = XQParti[e0]w0
where

t = newTask(x1, r1, t1, g1); // create a new task
w0 w ++ (x1 t);

 (r1, t1, g1) = XQParti[e1]w;
XQParti[other]w = (other, null, null)

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 845

© 2013 ACADEMY PUBLISHER

one of its parameter has the type of sequence. Otherwise,
no task is created.

In the analyzing of conditional expression, each branch
generates a new DFG by calling newGraph function. And
it is also rewritten in terms of the result expressions of
recursive application of the algorithm to each branch and
condition expression.

For where expressions with the definition of local
variable expression e0 where x1=e1, a new task will be
created for the local variable, and it is treated as the
precursory task of current task too. Then variable is
bound to the task and expanded to the environment w.

As shown in Fig. 4, task partitioning is completed in
one parse on the expression, so the algorithm takes time
O(n), where n is the size of the expression.

Since the algorithm is used before the execution of
FXQL program, it is a kind of static analysis. During the
analysis, every expression in a FXQL program is
rewritten into the expression in a task. The current task
for the main query expression and its precursory tasks
obtained from the analysis form the query plan for
parallel execution of the FXQL program in the form of
data flow diagram.

IV. EXECUTION COST MODEL

In order to reasonably assign the computing resources
to each task, the amount of data should be taken into
account. Since XML data come from the Internet,
XQuery programs have to handle large data size. For the
parallel execution of XQuery programs, the calculating
amount of each task is determined by the data size of its
input data. Therefore, to decide which task should acquire
computation resources, the execution cost of a task has to
be evaluated based on the data size of its input at running
time.

The paper puts forward a dynamic execution cost
model for the purpose. In XQuery execution, each task
will be assigned threads according to the cost evaluated
by the cost model. In our cost model, cost calculating is
based on the information of input data sequence of tasks.
The cost of a task is mainly decided by the length of input
sequence sqln and the count of its descendant nodes elsz.
The computation rule of cost is shown in Fig. 5. In the
algorithm, the values of all expression are sequences of
XML nodes. Thus, Len[e]w means the sequence length of
the value of the expression e, and Size(e) is the number of
descendant nodes of the result sequence. An environment
w is used to provide the context information. Every local
variable is bound to its sequence size and descendant
number id (sqln, elsz) in the context environment. In the
initialization of the environment, sqln and elsz of each
variable should be computed with the value of the
variable, which come from the execution of the
corresponding precursory task.

Based on the first evaluation rule for the cost of an
expression Cost[e]w, the cost of an expression is the sum
of the costs of its sub-expressions in most cases, as shown
in the Fig. 5. For example, the cost of a function call is
the sum of the costs of every parameters and the cost of
the body of the function’s definition.

In the algorithm, body(id) represents the body of the
definition of the function id, var(id,i) means the i'th
argument of the function id.

For the query algebraic operators, the cost of these
primitive function’s calls is the product of the length of
the input sequence and the cost of the body of their iterate
function. The former is computed by the rule Len[e1]w,
and the latter will be evaluated under the new context
including the binding of their loop control variable. Since
the lengths of the member of the input sequence are
different, it is assumed to be the square root of Size(e1),
which is the number of the descendants of the result
nodes gotten from the source expression e1.

Duo to the same reason, we also assume the cost
factors kid, which means the computation strength, and
hid, which means the number of result nodes, for each
axis operations and built-in functions, respectively.

The evaluation rule for result length of an expression
Len[e] describes how to get the length of the XML node
sequence which is the value of an expression e. Since the
value of an expression is a node sequence, Size(e) can be
computed from the XML tree.

As shown in Fig. 5, generally, the time complexity of
both Cost[e]w and Len[e]w is linear with the size of task
expressions. In the implementation of the algorithm, we
also consider the recursive function and guarantee the
termination of the cost computation.

V. TASK SCHEDULING

As discussed in Section III, an XQuery program has
been divided into many computation tasks. It is easy to
get a group of tasks that are ready for being executed via
the topological sort algorithm. Our task scheduling
method is that we put all tasks that are ready into a ready
queue and then compute their costs. Finally, some of
them are moved from the ready queue to a candidate
queue and assigned number of threads to execute.
Whenever there is a task is over, ready queue will be
updated and the above task scheduling process is repeated.

Our task scheduling algorithm has the following
features: (1) Assigning threads based on the cost of tasks,
(2) Pipeline parallelism is superior to other approaches,
and (3) Allocating more threads for data parallelism tasks.

As shown in Fig. 6, there are three inputs for the task
scheduling: seqReady and num. seqReady is a task queue
of task which includes the tasks in ready condition and
num is the number of available threads. Variables
seqCondi, seqReady and num are used as the outputs of
the algorithm. seqCondi is a task queue containing the
tasks to which threads have been allocated. When the
task scheduling is completed, the allocated threads will
execute the tasks in the queue seqCondi. And the tasks
with no thread remain in the queue seqReady. The
number of the remaining threads is returned by the
variable num.

Procedure of the task scheduling algorithm can be
divided into two phases. In first phase, the task with the
highest cost in the ready queue seqReady will be selected
and put into the candidate queue seqCondi. If the task
supports pipeline parallelism, all tasks in the pipeline will

846 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

be moved to the candidate queue seqCondi as much as
possible. The process will be repeated until no task exists
in the ready queue or all threads have been allocated.

In second phase, the threads that are occupied by tasks
with smaller running cost are reallocated to those with
higher running cost if the latter support data parallelism.
The task supporting data parallelism should have more
than one thread. This kind of reallocation must assure that

each moved task doesn’t support pipeline parallelism and
its running cost is more than double the average cost of
the tasks in the candidate queue seqCondi. In this way,
every thread which has been allocated to the tasks in the
candidate queue will be used to perform their subtask
with similar running cost.

Figure 5. The core algorithm of cost evaluation model

Algorithm 2：The main rule of cost evaluation model
(1) Evaluation rule for the cost of an expression.

Cost: Exp CEnv Number
where CEnv=Id (Number, Number)

Cost[id]w = 1
Cost[const]w = 1
Cost[if e1 then e2 else e3]w =

Cost[e1]w + max(Cost[e2]w+Cost[e3]w)
Cost[e0 where id=e1]w =

Cost[e1]w + Cost[e0]w’
 where w’ = w ++ <id (Len[e1]w, Size(e1))>

Cost[id(e1, …, en)]w =
if id is a query algebraic operator

and e2 is an iteration function then
Cost[e1]w + Len[e1]w * Cost[body(e2)]w’
where

w’ = w++ <var(e2) (sqr(x), sqr(x))>
x = Size(e1)

else if id is user‐defined function then
Cost[body(id)]w’ + Cost[e1]w+…+Cost[en]w
where

w’=w ++ <var(id,1) (Len[e1]w,Size(e1))> ++ …
++ <var(id,n) (Len[en]w,Size(en))>

else if id is axis operation then
Cost[e1]w + kid*Len[e1]w

else
kid + Cost[e1]w + … + Cost[en]w

 (2) Evaluation rule for result length of an expression:
Len: Exp CEnv Number

Len[id]w = 1st(w(id))
Len[const]w = 1
Len[if e1 then e2 else e3]w =

max(Len[e2]w, Len[e3]w)
Len[e0 where id = e1]w =

Len[e0]w’
where w’ = w + id (Len[e1]w, Size(e1))

Len[id(e1,..,en)]w =
if id is a query algebraic operator then
 Len[e1]w
else if id is axis opertion then

Len[e1]w * hid
else if id is user‐defined function then

Len[body(id)]w’
where

w’= w++<var(id,1) (Len[e1]w),Size(e1))>
++…++<var(id,n) (Len[en]w,Size(en))>

else hid

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 847

© 2013 ACADEMY PUBLISHER

VI. IMPLEMENTATION

Based on the task scheduling approach, we have
implemented a parallel XQuery engine in Java. In the
implementation, we use the Fig. 4 to perform task
partitioning on the FXQL programs which are translated
from XQuery program. Before the task partitioning, some
optimizations are applied to FXQL program by program
rewritten. The execution process of XQuery program in
the parallel engine can be described by Fig. 7. The
running cost model and task scheduling are used in the
algorithm.

In the algorithm, the function Translate is used to
convert an XQuery program into a FXQL program,
function Optimization rewritten the FXQL program for
better performance. It also uses the funcition createDFG
to create a data flow diagram from the tasks which is
generated by the task partitioning TQParti presented in

section III. Variable seq means the ready queue and seq’
is the candidate queue.

The core of the algorithm is the while loop. The ready
task is gotten from the DFG flow by the function
getReady. Through the task scheduling TSchedul
presented in section V, the selected tasks are moved to
the seq’, other tasks remain in seq. Then the tasks in the
candidate queue seq’ are executed in parallel. Whenever
any thread end, more tasks are selected from the DFG.
The thread will be allocated to them in the same way.
Until no thread is active and no task exists in the ready
queue, the execution is terminated.

An execution environment env is used for storing the
result values of every task by variable binding. The result
of the query expression is bound to the special variable
result which is used to return the query result in the last
statement.

Figure 6. Task scheduling algorithm

VII. EXPERIMENTS

We have tested the performance of the implementation
of the parallel XQuery query engine. All experiments run
on HP Z600 workstation, which has two Xeon E5504

CPUs (four cores per CPU) and 4G RAM. Test cases are
from W3C (http://www.w3.org/TR/2007/NOTE-XQuery-
use-cases-20070323/).

As shown in Fig. 8, they are performance tests. We
choose seven XQuery test cases and run them on different
size XML files with different number of threads.

Algorithm 3：The Core Algorithm of Task Scheduling
TSchedul：TSequence Integer

 TSequence×TSequence×Integer
Input： seqReady : TSeqence //ready queue

num : Integer //thread number
Output：seqCondi: TSeqence //candidate queue

seqReady: TSeqence //ready queue
 num : Integer //number of left threads

Begin
while num > 0 and seqReady isn’t empty do
task the highest cost task of seqReady
allocate a thread to task(num‐‐);
move task to seqCondi queue;
if task supporting pipeline then

 len the length of task pipeline ‐ 1;
 if num > len then
 allocate len threads for other tasks;
 move to seqCondi queue;

num num – len;
end of while;
foreach task in seqCondi
if task supporting data parallelization then

last the minimum cost task of seqCondi
while last exist do

if last dost not supporting pipline or its pipline is not in seqCondi and cost(task)> 2×aveCost(seqCondi) then
if num=0 then

move last from seqCondi to seqReady
num++；

increase a new thread for task(num‐‐)；
 last next minimum cost task of seqCondi

end of while;
end of foreach;
End

848 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

Experiments show that the execution efficiency of
XQuery programs has been improved to varying degrees
in most case. The performance of these is much better
when the number of threads is equal to or more than four.
Since these test programs have different structures and
different size, the implicit parallelism in these programs
vary considerably.

When the size of XML files increases to 104Mb, the
serial execution of the some programs (Q4, Q5 and Q6)
fails with the error of JVM memory overflow. But their
parallel executions perform their regular function and the
running speeds is increased as the more thread is used.

On the other hand, since the overhead of the task
scheduling and the evaluation of running cost, the
performances of some test cases with two threads are not
significantly improved. It should be improved in future
works.

As shown in Fig. 9, we also compared the execution
time under different parallelism strategies. Five kinds of
parallelism strategies are used in the experiment,
including serial execution (S), task parallel execution
(TP), data and task parallel execution (DTP), pipeline and
task parallel execution (PTP) and task, data and pipeline
parallel execution (PDTP). Only one or two strategies are
used for the test programs with different number of
threads.

Experiments show that the data parallelism obviously
increases the performance of XQuery programs. Pipeline
parallelism is helpful in some case and helpless for others,
while it is useful to avoid memory overflow as shown in
Fig. 9(c). Task parallelism brings the performance
improvement of XQuery programs a little, since no
complex structure is used in these tests. More complex
programs should be tested in future works.

Figure 7. Algorithm of parallel execution of XQuery parogram

VII. CONCLUSIONS

In order to improve the performance of XQuery
programs, this paper presents an automatic parallelization
method based on its function language features. We
divide the XQuery program into many computable tasks,
and develop a new scheduling strategy, which considers
the running cost of each task and the parallelism strategy

it can support. Different task may use different parallel
strategy, including task parallelism, pipeline parallelism
and data parallelism. Experimental results show that this
parallel approach may use computing resource of multi-
core environment efficiently, and improve the execution
efficiency of XQuery programs. As future works, more
static analysis and dynamic analysis should be taken into

Algorithm 4: parallel execution of XQuery program
ParallExcute: Expr Num Value

Input: query∈ Expr // query expression
 num∈Num // number of thread
Output: value∈Value // instance of XDM
Variable: exp∈Exp // FXQL expression
 flow∈Graph // Data Flow Graph

seq,seq’∈TSequence // task queue
env∈Env=Var Value

Begin
exp = Translate(query); // from XQuery to FXQL
exp = Optimization(exp); // optimization
(r, t, g) = XQParti(exp); // task partitioning
flow = createDFG(r, t, g); // generate DFG
seq = getReady(flow, nil);
env = initEnv(flow, “result”);
while seq isn’t empty and no thread is active do
 (seq’, seq, num) = TSchedul(seq, num);
 Start threads in each task in seq’;
 if any thread end then

store its result in env;
num = num + 1;
seq = getReady(flow, seq)

end of while
value = env(“result”);

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 849

© 2013 ACADEMY PUBLISHER

account for the improvement of the task assignment, task
scheduling and cost evaluation.

ACKNOWLEDGMENT

This work was supported by a grant from Beijing
Natural Science Foundation (4122011).

REFERENCES
[1] Viet Hung Nguyen and Tran Khanh Dang . “A Novel

Solution to Query Assurance Verification for Dynamic
Outsourced XML Databases”. Journal of Software. 2008,
vol. 34 (4), pp. 9-16.

[2] Ying Liu, Fuxiang Gao and Shiyuan Wang. “Parallel
Implementation of Xvid Decoder on Multi-Core”. Journal
of Computers. 2012, vol. 7(7), pp. 1639-1646.

[3] H. Michael and G. Madhusudhan. “Approaching a
Parallelized XML Parser Optimized for Multi-Core
Processors,” 16th Int. Symp. High Performance Distributed
Computing., New York, 2007, pp. 12-25.

[4] W. Lu, K. Chiu and Y. Pan. “A parallel approach to XML
parsing,” Proc. of the 7th IEEE/ACM Int. Conf. on Grid
Computing, 2006, pp. 223-230.

[5] K. Lu, Y. Zhu and W. Sun. “Parallel processing XML
documents,” Proc. Int. Database Engineering and
Applications, 2002, pp. 96-105.

[6] B. Rajesh and L. Lipyeow. “Parallelization of XPath
queries using multi-core processors: Challenges and
experiences,” 12th Int. Conf. on Extending Database
Technology: Advances in Database Technology, 2009,
pp.180-191.

[7] M. Imam, A. Toshiyuki and K. Hiroyuki. “XML data
partitioning strategies to improve parallelism in parallel
holistic twig joins,” 3rd Int. Conf. on Ubiquitous
Information Management and Communication, 2009,
pp.471-480.

[8] H. W. Loidl, F. Rubio, N. Scaife, K. Hammond, S.
Horiguchi, U. Klusik, and et al. “Comparing parallel
functionallanguages: Programming and performance,”
Higher order and symbol computation, 2003, vol. 16(3),
pp.203–251.

[9] T. Harris and S. Singh. “Feedback directed implicit
parallelism,” Proceedings of the 12th ACM SIGPLAN Int.
Conf. on Functional programming, 2007, pp. 251-264.

[10] S. Marlow, Si. Peyton Jones and S. Singh. “Runtime
support for multicore Haskell,” ACM SIGPLAN Notices,
2009, vo. 44(9), pp. 65-78.

Figure 8 (a). Performance Test Result on 32MB XML

Figure 8 (b). Performance Test Result on 64MB XML

Figure 8 (c). Performance Test Result on 104MB XML

Figure 9(a). Execution time on 32MB XML File

850 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

Figure 9(b). Execution time on 64MB XML File

Figure 9(c). Execution time on 104MB XML File

Husheng Liao received his M.S degree from TsingHua
University in 1981. He is currently a professor of Beijing
University of Technology. His main research interests include
complier, program languages and XML.

Weifeng Shan is a PhD student at the Beijing University of
Technology with research interests in XML and parallel
computing. He has received his Master’s degree in Software
Engineering from the YunNan University, China.

HongYu Gao was born in Beijing, China in 1968, and received
his Bachelors and Master degree in computer science from
Beijing University of Technology, China in 1992 and 1998
respectively. He is an Associate Professor in College of
Computer Science, Beijing University of Technology.

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 851

© 2013 ACADEMY PUBLISHER

