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Abstract—XQuery is a functional language with implicit 
parallelism. It is an important approach to improve the 
efficiency of XML query by taking full advantage of multi-
core environment in the parallel implementation of XQuery 
language. In this paper, we propose an implementation 
method for parallelizing XML query represented by 
XQuery programs automatically. According to the features 
of its functional language, an XQuery program is divided 
into a number of tasks that can be executed in parallel. 
Then, on the basis of the running cost evaluation, three 
kinds of parallelism are applied to different tasks and they 
are data parallelism, task parallelism and pipeline 
parallelism. Under the guidance of a novel scheduling 
strategy, the execution of the XQuery program is 
parallelized automatically. The experiments show that this 
approach improves the efficiency of the execution of 
XQuery programs and the computing resources of multi-
core computer are used efficiently. 
 
Index Terms—XQuery, implicit parallelism, XML, multi-
core, task scheduling, task partitioning 
 

I.  INTRODUCTION 

Extensible Markup Language (XML) has become the 
standard format for data representation and data exchange 
on the Internet because of the features of self-description 
and semi-structured [1]. XQuery is a standard query 
language from the W3C designed to query XML, and it is 
also a functional programming language. A number of 
optimization approaches, such as query algebra, XML 
tree pattern query algorithm and compile technology, 
have been proposed to improve the query performance of 
XQuery. 

Now, people begin to try to utilize the computational 
capacity of multi-core machines to enhance the efficiency 
of XML query [2]. Reference [3] separated the process of 
parsing the XML from the process of reading XML files. 
Each process used a single thread. Reference [4] 
proposed another parallel XML parsing method, in which 
an initial preparing phase was used to determine the 

structure of the XML document, and then a full parallel 
parse was followed by. Reference [5] encoded XML and 
indexed it to improve the query performance. Reference 
[6] researched XPath parallel query solutions on the 
shared XML documents, including data parallelism and 
task parallelism strategies. Reference [7] proposed two 
XML data partitioning strategies to keep workload 
balance for parallel tree pattern query. They refined an 
XML partition at various levels of granularities proposed 
an XML data distribution approach by partitioning XML 
data on the fly at the stream nodes-based granularity 
dynamically. 

XQuery, as a functional language, is fully implicit 
parallel programming language. An XQuery program 
consists of expressions and function calls. The 
expressions with no data dependency could be evaluated 
in parallel, and the parallel query has the identical result 
with serial execution. Over the years, people have been 
mining the parallelism of functional languages and trying 
to find an automatic or semi-automatic method to 
improve the execution efficiency of programs [8-10], 
while few their works involve the data parallelism and 
pipeline parallelism in XML data processing. Most 
parallel query optimizations only consider XML parsing, 
XPath queries and twig query, and there are no reference 
has been found to deal with the application of  variety of 
parallel strategies on the whole query task of XQuery 
programs. 

This paper investigates the automatic parallelization of 
XQuery programs and the main contributions of this 
paper are as follows: 

• The paper firstly proposes an automatic 
parallelization approach of XQuery language 
according to the program structure and query 
characteristics of XML, which provides three 
parallel strategies: data parallelism, task 
parallelism and pipeline parallelism. 

• The representation method of query plan based 
on data dependence relationship and task 
partition strategies based on execution cost model 
are proposed, and we also implement the 
algorithms of query plan and task partitioning. 

• A task scheduling strategy is realized which 
considers the dependency relationship and 
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Figure 1. An example of XQuery program. 

Figure 2. Data flow diagram of Fig.1. 

execution cost of different tasks. Based on the 
task scheduling, a parallel XQuery engine has 
been implemented. 

The paper is organized as follows. Section II 
introduces the automatic parallelism strategies of XQuery 
language. Section III shows the query plan of XQuery 
and task partitioning approach. Section IV presents the 
running cost model. In section V we present the task 
scheduling strategy. The implementation of a parallel 
XQuery engine is introduced in section VI. Evaluation 
and experiment results are discussed in Section VII. 

II.  AUTOMATIC PARALLELIZATION OF XQUERY 

XQuery is a standard XML query language, while it 
doesn’t provide parallel control technology such as multi-
thread and synchronization control. To improve 
efficiency of XQuery in multi-core environment, parallel 
implementation of XQuery is one solution. As a 
functional language, it makes itself possible to mine its 
implicit parallelism.  

Consider the XQuery program in Fig. 1, we could find 
three kind of parallel strategies as follows, which can be 
applied to improve the efficiency of the program. 

• Task parallelism. FLWOR expressions are the 
core expression of XQuery, some of them can be 
executed concurrently. In Fig. 1, the evaluations 
of top two let clauses(line 1, 2) do not rely on 
each other, so they can be viewed as two 
independent tasks and can be executed in parallel.  

• Pipeline parallelism. The data model of XQuery 
is the data sequence, which is the sequence of 
XML nodes in most cases. It is obvious that two 
expressions in an XQuery program may have the 
relationship of producer and consumer. As shown 
in Fig. 1, the book elements generated from the 
let clause at line 1 are dealt as the input of the for 
clauses at line 3. It isn’t necessary to wait until all 
book elements are obtained before the execution 
of the for clause. We may take the pipeline 
approach to make them work in parallel. 

• Data Parallelism. In FLWOR expressions, the 
same operation is applied to every XML nodes of 
their input sequence from the in clause. They can 
be divided into several sub sequences and process 
them in parallel. As shown in Fig. 1, both 
FLWOR expressions in line 2-4 and line 5-8 are 
suitable for this approach. 

To find out every task which can be executed in 
parallel, XQuery programs should be translated as a kind 
of middle representation, which is suitable to express the 
query plan for parallel execution. 

A.  Query Plan of XQuery Program 
We use data flow diagram to represent the query plan 

of XQuery program. A data flow diagram is a directed 
acyclic graph:  

Graph= (V, R) 
V is the set of nodes, and each node is an independent 

query task. R is the set of directed arc between nodes (V 
× V). R indicates the dependence relationship between 
two query tasks, and the arc’s direction points out the 
direction of data flow. A task is a node of data flow 
diagram. 

Task = (expr, type, arcIn, arcOut,  
pipePred, pipeSucc, subGraph) 

where expr is an expression of the query task and type 
indicates that this task whether supports data parallelism 
and pipeline parallelism. arcIn and arcOut are the 
collection of directed arcs, and point out the precursor 
and the successor tasks of the current task, respectively. 
pipePred and pipeSuc indicate precursor and successor 
tasks of the current pipeline task. subGraph shows sub 
diagrams of  the current task.  

According to the above definition, the XQuery 
program of Fig. 1 can be converted into the data flow 
diagram as shown in Fig. 2. Each node in Fig. 2 is an 
independent computing task, and the arcs between tasks 
indicate their data dependence relationship. A task can be 
executed as long as all tasks it depends on have been 
completed. Execution order of tasks may be decided by 
the topological sorting algorithm. In the process of 
generating data flow diagram, we can distinguish which 
kind of parallelism can be performed on the task based on 
a static analysis of its expression. As shown in Fig. 2, it 
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Figure 3. The process of automatic parallelization of XQuery programs.

also presents a query plan for the parallel execution of the 
XQuery program. Some of them may be executed 
concurrently, and some of them must be executed one by 
one. 

B.  Automatic Parallelization Method 
In order to use the above three parallel strategies in the 

implementation of XQuery language, this paper presents 
a novel automatic parallelization method as shown in Fig. 
3. In this approach, XQuery programs are translated into 
FXQL language, which is a simple middle language and 
its core syntax is as follows. 

e  const | id | if e then e else e | id(e*)  
| fun(id*)e | e where id = e 

In FXQL programs, the FLWOR expression of 
XQuery is converted into the calls of simple functions 
such as Join, Foreach and Filter, which are the algebraic 
operators of an XML query algebra. Some logic 
optimizations can be performed based on the XML query 
algebra, which will be introduced in other papers.  Let’s 
take the following XQuery as an example: 

for $book in doc(“bib.xml”)//book  
return $book/title 

After translated , the FXQL program is as follows： 
Flat( 
     Foreach( 

DescentOrSelf( $var,“book” ),  
          fun($book) Child( $book,“title” )  ) 

where  
      $var = doc(“bib.xml”) ) 

where the built-in function doc gets the root element of 
XML file bib.xml. Function DescentOrSelf get all 
descendant elements with book tag.  fun represents an 

anonymous function, and in its body, Child function gets 
all child elements of book nodes labeled by title. Function 
Foreach applies the anonymous function on each book 
node which is the descendant node of the document node 
of XML file “bib.xml”. The node list obtained from the 
Foreach’s application is converted into a node sequence 
by the Flat function.  

And then, by the task partitioning, FXQL programs 
will be split into many tasks. All these tasks form a data 
flow diagram as shown in Fig. 2, where each task is 
marked with different parallel strategies. We select the 
tasks, which is ready to run, into a queue via a topological 
sort algorithm, and then evaluate the execution cost of 
each task. Finally, a group of tasks, chose by task 
scheduling algorithm on the basis of cost of tasks, task 
character and current available resource, are assigned a 
number of threads and executed. And the cost evaluation 
and task scheduling should be done repeatedly whenever 
some tasks are completed. 

III.  TASK PARTITIONING 

Although each expression of XQuery programs is an 
independent task, their execution costs vary considerably. 
In order to get the better parallel efficiency, we shouldn’t 
assign threads to the tasks which execution cost is too 
low.  It is obvious that operations on XML sequence 
nodes, such as filtration, projection, connection and axis 
operations, is time consuming. However, arithmetic and 
relational operations are not time consuming. Our 
principle of task partitioning is as follows. 

• If the expression is a functional call and the 
called function is a primitive function of query 
algebra operator, it will be treated as a task. 

• If the expression is a functional call and the 
called function is a user-defined function and the 
types of its arguments contain an XML node 
sequence, it will be viewed as a task. 

• Each tree pattern query is viewed as an 
independent task. 

FLWOR expression, conditional expression and user-
defined function are the logical control mechanisms of 
XQuery language. As described above, FLWOR 
expression has been converted into the composition of 
number of query primitive function’s calls. Condition 
expression is dealt as a special task, and each branch of it 
is regarded as a subtask. Each user-defined function call 
is treated as an independent task. 

The different parallel strategies may be applied to 
different tasks. Filter, Foreach, Flat and Join functions 
support data parallelism and pipeline parallelism. Tree 
pattern query, which usually starts with getting XML 
sequence nodes and ends with count aggregation 
functions or node construction function, may take 
pipeline parallelism strategy. As shown in Fig. 4, 
XQParti algorithm of task partitioning generates the 
query planning diagrams by analyzing the main 
expression and user-defined function of FXQL programs. 
The input data of XQParti is a FXQL expression e, which 
is a main query expression or the body of user-defined 
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functions. It is assumed that the current task has been 
created in advance. The algorithm will be used to identify 
which part of the expression should be included in the 
current task and the precursory tasks. XQParti’s output 
data is a three triple (r, t, g). Where, r is the 
subexpression of expression e which will be included in 
the current task. t is the list of precursory tasks and g is 
the subgraph of the current task when there is an If 
branch in the expression. 

In the algotithm, newTask function is used to create a 
new task, and newGraph function creates a new data flow 
graph, and ++ means list connection.  The environment 
w is used to store the binding of every local variable with 
its task. The computation of every local variable in an 
FXQL program should be treated as an independent task 
since its result may be shared by several tasks. 

 

 
Figure 4. The core algorithm of task partitioning 

In the analyzing of function call id(e1,…,en), the 
algorithm is applied to its each actual parameter, n triples 
(ri,ti,gi) are returned. The expression will be rewritten into 
id(r1,…,rn) if no task is created for the call. 

If id is the name of a query algebraic operator such as 
Filter and Foreach, a newTask function will be called for 

creating a new task for the call. And a new variable is 
also created for rewriting the call in the current 
expression. All new tasks will be the precursory tasks of 
the current task.  

For the call of user-defined functions, they are 
processed in the same way as query algebraic operator, if 

Algorithm 1. The core algorithm of task partitioning
XQParti：Expr Env (Expr, Task*, Graph*)  

input：  e ∈Expr, w∈Env :Id Task 
output：( r, t, g ) where r∈Expr,  t∈Task*, g∈Graph*  
XQParti[ id ]w   =   ( id, w(Id), null )  
XQParti[ const ]w  =   ( const, null, null )  
XQParti[ id(e1, ..., en) ]w = 

if  id is query algebraic operator  then 
( x, {t}, null ) 

else if  id is an user‐defined function  then 
   if  no sequence in id’s parameters     then 

 ( [ id(r1, ..., rn) ], t1++...++tn, g1++...++gn ) 
  else 

 ( x, {t}, null ) 
else  // other primitive functions 

  ( [ id(r1, ..., rn) ], t1++...++tn, g1++...++gn ) 
where 
    (ri, ti, gi) = XQParti[ ai ]w;  for i = 1,…, n 

x new variable ;   // create a new task 
 t = newTask(x, [id(r1, ..., rn)], t1++...++tn, g1++...++gn ); 

XQParti[ if e1 then e2 else e3]w = 
 ( [ if r1 then r2 else r3 ], t1, g1++q2++q3) ) 
where  

( r2, t2, g2 ) = XQParti[e2]w; 
( r3, t3, g3 ) = XQParti[e3]w; 
q2 = newGraph( r2, t2, g2 );  // create a new sub graph 
q3 = newGraph( r3, t3, g3 );  // create a new sub graph 
( r1, t1, g1 ) = XQParti[e1]w 

XQParti[ e0 where x1 = e1 ]w =  
 if  t1 = g1 = empty list   then 

( [ r0 where x1=e1 ], t0, g0 ) 
 else 

( r0, t0, g0 ) = XQParti[ e0 ]w0     
where 

t = newTask( x1, r1, t1, g1 );  // create a new task 
w0   w ++ ( x1   t ); 

    ( r1, t1, g1 ) = XQParti[ e1 ]w; 
XQParti[ other ]w =   ( other, null, null ) 
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one of its parameter has the type of sequence. Otherwise, 
no task is created. 

In the analyzing of conditional expression, each branch 
generates a new DFG by calling newGraph function. And 
it is also rewritten in terms of the result expressions of 
recursive application of the algorithm to each branch and 
condition expression. 

For where expressions with the definition of local 
variable expression e0 where x1=e1, a new task will be 
created for the local variable, and it is treated as the 
precursory task of current task too.  Then variable is 
bound to the task and expanded to the environment w.  

As shown in Fig. 4, task partitioning is completed in 
one parse on the expression, so the algorithm takes time 
O(n), where n is the size of the expression.  

Since the algorithm is used before the execution of 
FXQL program, it is a kind of static analysis. During the 
analysis, every expression in a FXQL program is 
rewritten into the expression in a task. The current task 
for the main query expression and its precursory tasks 
obtained from the analysis form the query plan for 
parallel execution of the FXQL program in the form of 
data flow diagram. 

IV.  EXECUTION COST MODEL 

In order to reasonably assign the computing resources 
to each task, the amount of data should be taken into 
account. Since XML data come from the Internet, 
XQuery programs have to handle large data size. For the 
parallel execution of XQuery programs, the calculating 
amount of each task is determined by the data size of its 
input data. Therefore, to decide which task should acquire 
computation resources, the execution cost of a task has to 
be evaluated based on the data size of its input at running 
time. 

The paper puts forward a dynamic execution cost 
model for the purpose. In XQuery execution, each task 
will be assigned threads according to the cost evaluated 
by the cost model. In our cost model, cost calculating is 
based on the information of input data sequence of tasks. 
The cost of a task is mainly decided by the length of input 
sequence sqln and the count of its descendant nodes elsz. 
The computation rule of cost is shown in Fig. 5. In the 
algorithm, the values of all expression are sequences of 
XML nodes. Thus, Len[e]w means the sequence length of 
the value of the expression e, and Size(e) is the number of 
descendant nodes of the result sequence.  An environment 
w is used to provide the context information. Every local 
variable is bound to its sequence size and descendant 
number id (sqln, elsz) in the context environment. In the 
initialization of the environment, sqln and elsz of each 
variable should be computed with the value of the 
variable, which come from the execution of the 
corresponding precursory task. 

Based on the first evaluation rule for the cost of an 
expression Cost[e]w, the cost of an expression is the sum 
of the costs of its sub-expressions in most cases, as shown 
in the Fig. 5. For example, the cost of a function call is 
the sum of the costs of every parameters and the cost of 
the body of the function’s definition. 

In the algorithm, body(id) represents the body of the 
definition of the function id, var(id,i) means the i'th 
argument of the function id. 

For the query algebraic operators, the cost of these 
primitive function’s calls is the product of the length of 
the input sequence and the cost of the body of their iterate 
function. The former is computed by the rule Len[e1]w,  
and the latter will be evaluated under the new context 
including the binding of their loop control variable. Since 
the lengths of the member of the input sequence  are 
different, it is assumed to be the square root of Size(e1), 
which is the number of the descendants of the result 
nodes gotten from the source expression e1. 

Duo to the same reason, we also assume the cost 
factors kid, which means the computation strength, and 
hid, which means the number of result nodes, for each 
axis operations and built-in functions, respectively.  

The evaluation rule for result length of an expression 
Len[e] describes how to get the length of the XML node 
sequence which is the value of an expression e. Since the 
value of an expression is a node sequence, Size(e) can be 
computed from the XML tree. 

As shown in Fig. 5, generally, the time complexity of 
both Cost[e]w and Len[e]w is linear with the size of task 
expressions. In the implementation of the algorithm, we 
also consider the recursive function and guarantee the 
termination of the cost computation.  

V.  TASK SCHEDULING  

As discussed in Section III, an XQuery program has 
been divided into many computation tasks. It is easy to 
get a group of tasks that are ready for being executed via 
the topological sort algorithm. Our task scheduling 
method is that we put all tasks that are ready into a ready 
queue and then compute their costs. Finally, some of 
them are moved from the ready queue to a candidate 
queue and assigned number of threads to execute. 
Whenever there is a task is over, ready queue will be 
updated and the above task scheduling process is repeated.  

Our task scheduling algorithm has the following 
features: (1) Assigning threads based on the cost of tasks, 
(2) Pipeline parallelism is superior to other approaches, 
and (3) Allocating more threads for data parallelism tasks. 

As shown in Fig. 6, there are three inputs for the task 
scheduling: seqReady and num. seqReady is a task queue 
of task which includes the tasks in ready condition and 
num is the number of available threads. Variables 
seqCondi, seqReady and num are used as the outputs of 
the algorithm. seqCondi is a task queue containing the 
tasks to which threads have been allocated.  When the 
task scheduling is completed, the allocated threads will 
execute the tasks in the queue seqCondi. And the tasks 
with no thread remain in the queue seqReady. The 
number of the remaining threads is returned by the 
variable num. 

Procedure of the task scheduling algorithm can be 
divided into two phases. In first phase, the task with the 
highest cost in the ready queue seqReady will be selected 
and put into the candidate queue seqCondi. If the task 
supports pipeline parallelism, all tasks in the pipeline will 
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be moved to the candidate queue seqCondi as much as 
possible. The process will be repeated until no task exists 
in the ready queue or all threads have been allocated.  

In second phase, the threads that are occupied by tasks 
with smaller running cost are reallocated to those with 
higher running cost if the latter support data parallelism. 
The task supporting data parallelism should have more 
than one thread. This kind of reallocation must assure that 

each moved task doesn’t support pipeline parallelism and 
its running cost is more than double the average cost of 
the tasks in the candidate queue seqCondi. In this way, 
every thread which has been allocated to the tasks in the 
candidate queue will be used to perform their subtask 
with similar running cost.  

 

 
Figure 5. The core algorithm of cost evaluation model 

Algorithm 2：The main rule of cost evaluation model 
(1) Evaluation rule for the cost of an expression. 

Cost: Exp   CEnv   Number 
where  CEnv=Id (Number, Number) 

Cost[ id ]w  = 1 
Cost[ const ]w  = 1 
Cost[ if e1 then e2 else e3 ]w = 

Cost[e1]w + max( Cost[e2]w+Cost[e3]w) 
Cost[ e0 where id=e1 ]w =  

Cost[e1]w + Cost[e0]w’ 
  where    w’ = w ++ <id (Len[e1]w, Size(e1))> 

Cost[ id(e1, …, en) ]w = 
if  id is a query algebraic operator 

and e2 is an iteration function    then 
Cost[e1]w + Len[e1]w * Cost[body(e2)]w’ 
where   

w’ = w++ <var(e2) (sqr(x), sqr(x))> 
x = Size(e1) 

else if  id is user‐defined function   then 
Cost[body(id)]w’ + Cost[e1]w+…+Cost[en]w 
where 

w’=w ++ <var(id,1) (Len[e1]w,Size(e1))> ++ … 
++ <var(id,n) (Len[en]w,Size(en))> 

else if id is axis operation  then 
Cost[e1]w + kid*Len[e1]w 

else 
kid + Cost[e1]w + … + Cost[en]w 

 (2) Evaluation rule for result length of an expression: 
Len: Exp   CEnv   Number 

Len[ id ]w = 1st(w(id)) 
Len[ const ]w = 1 
Len[ if e1 then e2 else e3]w =  

max(Len[e2]w, Len[e3]w) 
Len[e0 where id = e1]w =  

Len[e0]w’     
where w’ = w + id (Len[e1]w, Size(e1)) 

Len[id(e1,..,en)]w   = 
if  id is a query algebraic operator    then 
  Len[e1]w 
else if  id is axis opertion   then   

Len[e1]w * hid 
else if  id is user‐defined function   then     

Len[body(id)]w’ 
where 

w’= w++<var(id,1) (Len[e1]w),Size(e1))> 
++…++<var(id,n) (Len[en]w,Size(en))> 

else    hid 
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VI. IMPLEMENTATION 

Based on the task scheduling approach, we have 
implemented a parallel XQuery engine in Java. In the 
implementation, we use the Fig. 4 to perform task 
partitioning on the FXQL programs which are translated 
from XQuery program. Before the task partitioning, some 
optimizations are applied to FXQL program by program 
rewritten. The execution process of XQuery program in 
the parallel engine can be described by Fig. 7. The 
running cost model and task scheduling are used in the 
algorithm. 

In the algorithm, the function Translate is used to 
convert an XQuery program into a FXQL program, 
function Optimization rewritten the FXQL program for 
better performance. It also uses the funcition createDFG 
to create a data flow diagram from the tasks which is 
generated by the task partitioning TQParti presented in 

section III. Variable seq means the ready queue and seq’ 
is the candidate queue. 

The core of the algorithm is the while loop. The ready 
task is gotten from the DFG flow by the function 
getReady. Through the task scheduling TSchedul 
presented in section V, the selected tasks are moved to 
the seq’, other tasks remain in seq. Then the tasks in the 
candidate queue seq’ are executed in parallel. Whenever 
any thread end, more tasks are selected from the DFG. 
The thread will be allocated to them in the same way. 
Until no thread is active and no task exists in the ready 
queue, the execution is terminated.  

An execution environment env is used for storing the 
result values of every task by variable binding. The result 
of the query expression is bound to the special variable 
result which is used to return the query result in the last 
statement. 

 
Figure 6. Task scheduling algorithm 

 

VII.  EXPERIMENTS 

We have tested the performance of the implementation 
of the parallel XQuery query engine. All experiments run 
on HP Z600 workstation, which has two Xeon E5504 

CPUs (four cores per CPU) and 4G RAM. Test cases are 
from W3C (http://www.w3.org/TR/2007/NOTE-XQuery-
use-cases-20070323/). 

As shown in Fig. 8, they are performance tests. We 
choose seven XQuery test cases and run them on different 
size XML files with different number of threads. 

Algorithm 3：The Core Algorithm of Task Scheduling  
TSchedul：TSequence    Integer 

 TSequence×TSequence×Integer  
Input：  seqReady : TSeqence //ready queue 

num  :  Integer     //thread number 
Output：seqCondi:  TSeqence //candidate queue  

seqReady: TSeqence  //ready queue 
  num  : Integer     //number of left threads 

Begin 
while  num > 0 and seqReady isn’t empty  do 
task   the highest cost task of seqReady 
allocate a thread to task(num‐‐); 
move task to seqCondi queue; 
if  task supporting pipeline  then 

   len   the length of task pipeline ‐ 1; 
   if  num > len  then 
       allocate len threads for other tasks; 
      move to seqCondi queue; 

num   num – len; 
end of while; 
foreach  task  in  seqCondi 
if  task supporting data parallelization    then 

last   the minimum cost task of seqCondi 
while  last exist  do 

if  last dost not supporting pipline or  its pipline is not in seqCondi  and cost(task)> 2×aveCost(seqCondi)   then 
if  num=0  then    

move last from seqCondi to seqReady 
num++； 

increase a new thread for task(num‐‐)； 
         last  next minimum cost task of seqCondi 

end of while; 
end of foreach; 
End 
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Experiments show that the execution efficiency of 
XQuery programs has been improved to varying degrees 
in most case. The performance of these is much better 
when the number of threads is equal to or more than four. 
Since these test programs have different structures and 
different size, the implicit parallelism in these programs 
vary considerably.  

When the size of XML files increases to 104Mb, the 
serial execution of the some programs (Q4, Q5 and Q6) 
fails with the error of JVM memory overflow. But their 
parallel executions perform their regular function and the 
running speeds is increased as the more thread is used. 

On the other hand, since the overhead of the task 
scheduling and the evaluation of running cost, the 
performances of some test cases with two threads are not 
significantly improved. It should be improved in future 
works. 

As shown in Fig. 9, we also compared the execution 
time under different parallelism strategies. Five kinds of 
parallelism strategies are used in the experiment, 
including serial execution (S), task parallel execution 
(TP), data and task parallel execution (DTP), pipeline and 
task parallel execution (PTP) and task, data and pipeline 
parallel execution (PDTP). Only one or two strategies are 
used for the test programs with different number of 
threads. 

Experiments show that the data parallelism obviously 
increases the performance of XQuery programs. Pipeline 
parallelism is helpful in some case and helpless for others, 
while it is useful to avoid memory overflow as shown in 
Fig. 9(c). Task parallelism brings the performance 
improvement of XQuery programs a little, since no 
complex structure is used in these tests. More complex 
programs should be tested in future works. 

 

 
 

Figure 7. Algorithm of parallel execution of XQuery parogram 
 

VII.  CONCLUSIONS 

In order to improve the performance of XQuery 
programs, this paper presents an automatic parallelization 
method based on its function language features. We 
divide the XQuery program into many computable tasks, 
and develop a new scheduling strategy, which considers 
the running cost of each task and the parallelism strategy 

it can support. Different task may use different parallel 
strategy, including task parallelism, pipeline parallelism 
and data parallelism. Experimental results show that this 
parallel approach may use computing resource of multi-
core environment efficiently, and improve the execution 
efficiency of XQuery programs. As future works, more 
static analysis and dynamic analysis should be taken into 

Algorithm 4:  parallel execution of XQuery program
ParallExcute:  Expr   Num   Value 

Input:  query∈ Expr   // query expression 
  num∈Num  // number of thread 
Output: value∈Value  // instance of XDM 
Variable:  exp∈Exp  // FXQL expression 
  flow∈Graph  // Data Flow Graph 

seq,seq’∈TSequence  // task queue 
env∈Env=Var Value 

Begin 
exp = Translate( query );  // from XQuery to FXQL 
exp = Optimization( exp );  // optimization 
(r, t, g) = XQParti( exp );  // task partitioning 
flow = createDFG(r, t, g);   // generate DFG 
seq = getReady(flow,  nil); 
env = initEnv(flow, “result”); 
while  seq isn’t empty and no thread is active  do 
        (seq’, seq, num) = TSchedul(seq, num); 
        Start threads in each task in seq’; 
        if  any thread end   then 

store its result in env; 
num = num + 1; 
seq = getReady(flow, seq) 

end of while 
value = env(“result”); 
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account for the improvement of the task assignment, task 
scheduling and cost evaluation. 
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Figure 8 (a).  Performance Test Result on 32MB XML 

 
Figure 8 (b).  Performance Test Result on 64MB XML 

 
Figure 8 (c). Performance Test Result on 104MB XML 

 
Figure 9(a).  Execution time on 32MB XML File 
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Figure 9(b).  Execution time on 64MB XML File 
 
 

 
Figure 9(c). Execution time on 104MB XML File 
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