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Abstract—Feature selection is viewed as an important 
preprocessing step for pattern recognition, machine 
learning and data mining. Considering a consistency 
measure introduced in rough sets, the problem of feature 
selection aims to retain the discriminatory power of original 
features. Many heuristic feature selection algorithms have 
been proposed, however, these methods are computationally 
time-consuming. This paper introduces granular space, 
positive granular space and negative granular space based 
on granular computing in simplified decision systems, and 
then new feature significance measure is proposed. 
Meanwhile, their important propositions and properties are 
derived. Furthermore, by virtue of radix sorting and Hash 
techniques, the object granules as basic processing elements 
are employed to investigate feature selection, and then a 
heuristic algorithm with low computational complexity is 
explored. Numerical simulation experiments show that the 
proposed approach is indeed efficient, and therefore of 
practical value to many real-world problems. 
 
Index Terms—granular computing, rough set theory, 
feature selection, granular space, positive granular space, 
negative granular space 
 

I.  INTRODUCTION 

As the capability of acquiring and storing information 
increases, feature selection can be viewed as one of the 
most fundamental problems in the fields of pattern 
recognition, machine learning and data mining [1]. 
Generally speaking, the information is usually gathered 
for multiple learning and mining tasks. Thus, the main 
aim of feature selection is to determine a minimal feature 
subset from a problem domain while retaining a suitably 
high accuracy in representing the original features [2]. 
Hence, it is useful to select parts of features to the 
learning algorithm in practical applications. Moreover, 
learning with a subset of features, rather than the whole 
features, will reduce the cost of acquiring and storing 
features, speed up learning and recognition [3, 4]. 

From the philosophical and theoretical points of views, 
it has been argued that information granulation is 
essential to human problem solving, and then has very 
significant impact on the design and implementation of 
intelligent system [5, 6]. Granular computing is thus a 
basic issue in knowledge representation and data mining. 
The root of granular computing comes from the concept 
of information granularity presented by Zadeh in the 
context of fuzzy set theory [7]. Granulation involves 
partitioning of an object into granules, with a granule 
being a clump of elements drawn together by 
indistinguishability, equivalence, similarity, proximity or 
functionality. An information granule formalizes the 
concept of finite precision representation of objects in 
real-life situations, and reducts represent the core of an 
information system (both in terms of objects and features) 
in a granular universe. It may be noted that cases also 
represent the informative and irreducible part of a 
problem. Hence, rough set theory is a natural choice for 
case selection in domains which are data rich, contain 
uncertainties, and allow tolerance for imprecision [8]. 
Thus, one can gain a better understanding of granular 
computing within the rough set framework [9]. The 
process of constructing information granules is called 
information granulation. It granulates a universe of 
discourse into a family of disjoint or overlapping granules. 
Then, different views can be linked together, and a 
hierarchy of granulations can be established. Hence, one 
of the main directions of granular computing is to deal 
with the construction, interpretation, and representation 
of granules. 

In recent years, there are theoretical and practical 
reasons for the study of granular computing. Granular 
computing is regarded as a collective term referring to 
theories, methodologies, techniques, and tools for the 
analysis of information granules encountered in problem 
solving [10-12]. It explores the composition of parts, their 
interrelationships, and connections to the whole, and it 
focuses on problem solving, based on the commonsense 
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concepts of granule, granulated view, granularity, and 
hierarchy. Rough set models enable us to precisely define 
and analyze many notions of granular computing. For 
example, Yao [13] showed that the notion of levels 
played a fundamental role in many branches of sciences, 
a survey on many different interpretations and uses 
suggested that the concept of integrative levels of 
granularity might serve as a basis of granular computing, 
and the triarchic theory of granular computing was 
centered on granular structures. Zhang and Zhang [14] 
developed a quotient space theory of problem solving 
based on hierarchical description and representation of a 
problem. Liu et al. [15] also proposed some available 
models and methods of granular computing. Lin and 
Louie [16] presented a fast association rule algorithm 
based on granular computing. But in their work, 
generating different levels of association rules were not 
considered. Furthermore, how to store bit maps was not 
very clear. Chen et al. [17] presented a novel model 
called the information granulation-based data mining 
approach, which imitated the human ability to process 
information and acquired knowledge from information 
granules rather than from numerical data. To get a true 
hybrid framework or take operational decisions from data, 
Apolloni and Bassis [18] extended the algorithmic 
inference approach to the granular computing paradigm. 
Wu et al. [19] employed discernibility matrices and 
Boolean functions to determine granular consistent sets 
and granular reducts in contexts, proposed an approach to 
knowledge reduction in consistent formal decision 
contexts. Qiu et al. [20] discussed the information 
granules and application of granular computing in mining 
association rules from a relational database table or an 
information table.  

Up to now, many types of feature selection in rough set 
theory have been proposed in the analysis of information 
systems and decision systems, each of them aimed at 
some basic requirements. Various approaches have also 
been developed to perform feature selection and obtain 
optimal true, certain, and possible decision rules in 
decision systems. For example, a distribution reduct is a 
subset of the feature set that preserved the degree to 
which every object belonged to each decision class [21]. 
A maximum distribution reduct preserves all maximum 
decision rules, but the degree of confidence in each 
uncertain decision rule may not be equal to the original 
one [22]. Wu et al. [23] proposed the concepts of β lower 
distribution reduct and β upper distribution reduct. They 
preserved all decision classes at some level of 
classification and eliminated the drawback of β-reduct, 
which might change decision results of some objects. 
Lately, Hu et al. [24] proposed methods based on positive 
regions, the δ neighborhood rough set model and the k-
nearest-neighbor rough set model. Both are effective, and 
have the advantage of being able to deal with mixed 
features. However, their time complexities are no less 
than O(|A|2|U|2), where |A| and |U| respectively denote the 
number of condition features and objects. These methods 
are still inefficient, and thus unsuitable for the reduction 
of voluminous data. Wang et al. [25] introduced two 

novel heuristic reduction algorithms with the time 
complexity O(|A||U|2) + O(|U|3) and O(|A|2|U|) + O(|A||U|3) 
respectively. Based on the mutual information, Miao and 
Hu [26] constructed a heuristic algorithm costing the time 
complexity O(|A||U|2) + O(|U|3). Hence, the disadvantage 
of these methods is much space-time cost. Based on the 
indiscernibility relation and positive region, Liu et al. [27] 
proposed a complete reduction algorithm with time 
complexity O(|A|2|U|log|U|) and space complexity O(|A| 
|U|). Xu et al. [28] designed a new and relatively 
reasonable reduction algorithm, whose worst time 
complexity was cut down to Max(O(|A||U|), O(|A|2|U/A|)). 
At present, the best idea of many algorithms for 
computing U/A is based on radix sorting, and its 
complexity is cut down to O(|A||U|). Liu et al. [29] 
presented a hash-based algorithm to calculate positive 
region, and its time complexity decreased to O(|U|). Then 
based on the characteristics of inconsistency, a new 
feature measure was introduced, and a reduction 
algorithm with twice-hash was presented, whose time 
complexity was O(|A|2|U/A|). Therefore, proposing an 
efficient and effective approach to feature selection for 
both consistent and inconsistent decision systems is very 
desirable. In this paper, we aim at creating such a solution 
to solve this problem. 

The remainder of this paper is structured as follows. In 
Section II, we recall the basic concepts and results related 
to decision systems, and design a simplified decision 
system. In Section III, some concepts and operations of 
information granule are investigated, and some new 
concepts, such as granular space, positive granular space, 
negative granular space and feature significance measure, 
are proposed. Then some important properties and 
propositions are provided. Furthermore, by using radix 
sorting and Hash techniques, the object granules as basic 
processing elements are employed to investigate feature 
selection, and then a granular space-based heuristic 
feature selection algorithm with low computational 
complexity is designed. In Section IV, some numerical 
experiments from an example given and UCI datasets 
indicate that the proposed algorithm is efficient and of 
practical value in engineering. Finally, the conclusions 
and future work are described in Section V. 

II.  PRELIMINARIES 

In this section, we briefly review some notions and 
results related to information systems and decision 
systems. Detailed description of concepts can be found 
in [4, 9, 10]. 

A triple (U, A, F) is called an information system (IS), 
where U = {x1, x2, ..., xn} is a non-empty finite set of 
objects, called the universe of discourse; A = {a1, a2, ..., 
am} is a non-empty finite set of features; F = {fa | ∀ a∈A} 
is a set of functions between U and A, where fa: U → Va, 
for any a∈A, is called an information function, and the 
set Va is called the value domain of the feature a. 

For each subset of features B⊆A, the non-empty set 
determines an indiscernibility relation on U as follows: 
RB = {(xi, xj)∈U × U | fa(xi) = fa(xj),∀ a∈B}. RB is an 
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equivalence relation on U, and it forms a partition of U, 
denoted by U/RB = {[xi]B | xi∈U}, where [xi]B = {xj∈U | 
(xi, xj)∈RB} = {xj | fa(xi) = fa(xj),∀ a∈B} is called an 
equivalence class of xi with respect to B. 

The quintuple (U, A, F, D, G) is called a decision 
system (DS), where (U, A, F) is an information system; A 
is a condition feature set; D is a decision feature set with 
AID = Ø; G = {gd | ∀ d∈D}, where gd: U → Vd, for any 
d∈D; and Vd is the domain of the decision feature d. So, 
in the DS, it should be noted that RD = {(xi, xj)∈U × U | 
gd(xi) = gd(xj), ∀ d∈D}. Thus, it also determines a 
partition U/RD = {[x]D | x∈U} on U. 

Now we define a partial order on all partition sets of U. 
Let U/P and U/Q be two partitions of a finite set U, and 
then we define the partition U/P is finer than the partition 
U/Q (or the partition U/Q is coarser than the partition 
U/P), denoted by Pp Q (or Qf P), between partitions by 
Pp Q ⇔ ∀ Pi∈U/P, ∃ Qj∈U/Q → Pi ⊆ Qj. If Pp Q 
and Pf Q, then we say that P = Q. If Pp Q and P ≠ Q, 
then we say that P is strictly finer than Q (or Q is strictly 
coarser than P) and write PpQ (or Qf P). 

Proposition 1. Let DS = (U, A, F, D, G) be a decision 
system. For any P, Q⊆AUD, if Q⊆P, then Pp Q. 

Proof. The proof is similar to Proposition 1 in [10]. 
Let DS = (U, A, F, D, G) be a decision system, and 

B⊆A. For any xi, xj∈U, xi and xj conflict with each other 
from B to D if and only if fa(xi) = fa(xj) for any a∈B, and 
then gd(xi) ≠ gd(xj) for any d∈D. An instance x∈U is a 
consistent instance in the DS if and only if there does not 
exist an instance y∈U, which conflicts with x from B to 
D. Hence, we have the conclusion that the DS is 
consistent if and only if each instance x∈U is a 
consistent instance. 

Proposition 2. Let DS = (U, A, F, D, G) be a decision 
system. If there exists RA⊆RD, then the DS is consistent. 
Otherwise, it is inconsistent. 

Proof. It is straightforward. 
Let X⊆U, then the P-lower approximation and the P-

upper approximation of set X can be denoted by PX =  

{ | [ ] }Px U x X∈ ⊆  and { |[ ] }PPX x U x X φ= ∈ ≠I . If P, 
Q ⊆ A are two equivalence relations on U, then the 
positive and negative regions can be denoted by 

/
( )

Q
P

X U R
POS Q PX

∈
= U  and 

/
( )

Q
P

X U R
NEG Q U PX

∈
= − U .  

Thus, in a decision system DS = (U, A, F, D, G), the 
positive region of the partition U/RD with respect to P, 
denoted by POSP(D), is the set of all objects of U that can 
be certainly classified to blocks of the partition U/RD by 
means of P. For any P⊆A, to make p∈P, and p in P is 
unnecessary for D if POSP(D) = POSP-{p}(D). Otherwise p 
is necessary. Then P is independent relative to D if every 
element in P is necessary for D. 

Proposition 3. Let DS = (U, A, F, D, G) be a decision 
system, and POSA(D) = {x∈U | x is consistent instance}. 
If the DS is consistent, we have POSA(D) = U. 

Proof. It is straightforward. 

Proposition 4. Let DS = (U, A, F, D, G) be a decision 
system with P⊆A. We then have POSP(D)⊆POSA(D). 

Proof. It is straightforward. 
Definition 1. Let DS = (U, A, F, D, G) be a decision 

system, and 1 2/ ( ) {[ ] , [ ] , ...,[ ] }A D A D n A DU A D U U U′ ′ ′= U U UU , 
where U = {U1, U2, …, Um}, n ≤ m, and U′i∈U, then U′ 
= {U′1,U′2 ,…,U′n}, F′: U′ × (AUD) → V′ is called a new 
information function. Then it is said that the 6-tuple (U′, 
A, F′, D, G, V′) is a simplified decision system (SDS). 

It follows from Definition 1 that if the DS is consistent, 
then U′ is a simplified consistent objects set. Otherwise, 
U′ includes a simplified inconsistent objects set. Thus, by 
virtue of this technology of simplicity, lots of redundancy 
information is deleted, and then the space complexity of 
decision systems is decreased. Therefore, a simplified 
decision system introduced is necessary. 

As we know, much attention has been paid to 
reduction in inconsistent decision systems. For example, 
possible rules and possible reducts have been proposed as 
a means to deal with inconsistence in inconsistent 
decision system [22]. However, Xu [28] proposed the 
recursive calculating method that ignored the inconsistent 
objects in inconsistent decision systems.  

Definition 2. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, then the positive region of 
the partition U′/RD with respect to A, i.e., POSA(D) = 

1 2
[ ] [ ] ... [ ]

ti A i A i AU U U′ ′ ′U U U , where 
si

U ′ ∈U′, | [ ] / | 1
si AU D′ = , 

s = 1, 2, …, t. Thus, there exists 
1 2

{ , , ..., }
tPOS i i iU U U U′ ′ ′ ′= , 

and we have NEG POSU U U′ ′ ′= − .  
Thus, form Definitions 1 and 2, it is easy to obtain the 

following proposition. 
Proposition 5. Let SDS = (U′, A, F′, D, G, V′) be a 

simplified decision system. Then ( )POS AU POS D′ ⊆  holds. 

III.  GRANULAR SPACE-BASED FEATURE SELECTION 
APPROACH 

A.  Information Granule Operations and Granule Space  
In this subsection, we investigate some corresponding 

concepts, operations and properties of information 
granule and granular space.  

It is known that the connections between logic 
connectives and set-theoretic operations have been stated 
in [17, 18, 23]. Under those formulations, we can discuss 
granules in terms of intensions in a logic setting and in 
terms of extension in a set-theoretic setting. Thus, a 
definable granule is represented by a pair Gr = (φ, m(φ)).  

Definition 3. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system. An information granule is 
defined as the tuple Gr = (φ, m(φ)), where φ refers to the 
intension of information granule, and m(φ) represents the 
extension of information granule.  

Let SDS = (U′, A, F′, D, G, V′) be a simplified decision 
system with B = {a1, a2, …, ak} ⊆ A. Suppose that 

,1 ,2 ,
{ , , ..., }

i i i i ka a a aV V V V=  is the domain of feature ai, and 

each 
,i jaV  may be viewed as a concept. Then, there must 
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exist φ = {I1, I2, …, Ik} such that Ii∈
iaV is a set of feature 

values corresponding to B. Then, the intension of an 
information granule can be denoted by φ = {I1, I2, …, Ik}, 
and the extension can be denoted by m(φ) = {u∈U′ | f(u, 
a1) = I1∧ f(u, a2) = I2∧…∧ f(u, ak) = Ik, ai∈B, i {1, ∈
2, …, k}}. Here, m(φ) describes the internal structure of 
the information granule. The collection of the extensions 
of all granules is denoted by GK, thus, we define that the 
map U′ → GK is to construct the granulation of the SDS, 
and the map gs: Gr → U′ is to construct the objects set. 
Hence, there must exist gs(Gr) = m(φ). 

Definition 4. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and Gr = (φ, m(φ)) be an 
information granule. Then its size can be defined as the 
cardinality of the extension of the Gr, namely, |m(φ)|. 
Intuitively, the size may be interpreted as the degree of 
abstraction or concreteness. 

Definition 5. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and Gr = (φ, m(φ)) be an 
information granule. If 

,
{ }

i jaVϕ = , where 
, ,1

{ ,
i j i ia a aV V V∈ =  

,2 ,
,..., }

i i ka aV V is a categorical value, and 
iaV  is the domain 

of feature ai∈A U D, then Gr is called an elementary 
information granule of feature ai, or an elementary 
granule for short. Namely, m(φ) = {u∈U′ | f(u, ai) =

,i jaV , 

ai∈AUD}.  
Definition 6. Let SDS = (U′, A, F′, D, G, V′) be a 

simplified decision system, and I = {I1, I2, …, Ik} be a k-
itemset, where 

ii aI V∈  (i = 1, 2, …, k) is a feature value 
of feature ai, and B = {a1, a2, …, ak}⊆A. Then, inform-
ation granule Gr = (I, m(I)) is called a k-itemset granule, 
where m(I) = {u∈U′ | f(u, a1) = I1∧ f(u, a2) = I2∧…∧ f(u, 
ak) = Ik, ai∈B, i {1, 2, …, ∈ k}}.  

It should be ensured that a 1-itemset granule is an 
elementary granule satisfying the given conditions, and 
then we can obtain the following properties. 

Property 1. If I = {I1, I2, …, Ik} is a k-itemset, then m(I) 
= m({I1})Im({I2})I…Im({Ik}). 

Property 2. If I⊆V′, J⊆V′, and I⊆ J, then m(J)⊆  
m(I).  

Definition 7. Given a k1-itemset granule (I, m(I)) and a 
k2-itemset granule (J, m(J)), if I⊆ J⊆ V′, then m(J)⊆  
m(I), i.e., the intension of (J, m(J)) is more concrete than 
that of (I, m(I)), denoted by m(I)p m(J). Then, all these 
granules lead to a hierarchical structure by using the p  
order, called a multi-dimensional granular hierarchy. 

Hence, through the discussions above, we can use m(φ) 
to denote the all object sets which satisfy the formula φ in 
rough logic. In the case of formulation granule, Gr = (φ, 
m(φ)) is also the compound granules, thus, a set 
composed of all elementary granules, which are separated 
from a simplified decision system, is regarded as a 
granular space, simply denoted by GrS. Meanwhile, there 
also exists a map between the granules in GrS and U′, 
denoted by gs: GrS → U′, such that gs(Gr) = m(φ) for any 
Gr∈GrS. In other words, there must exist Gr∈GrS such 
that u∈gs(Gr) for any u∈U′. 

Definition 8. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space. 
The objects set, separated from the positive region 
POSA(D) in the SDS, is regarded as a positive granular 
space, denoted by GrSP. The objects set, separated from 
the negative region NEGA(D) in the SDS, is regarded as a 
negative granular space, denoted by GrSN. 

Definition 9. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space, 
P⊆A. For any Gri∈GrSP, if there exist Grj∈GrSP and 
Gri ≠ Grj such that the intension of Gri and Grj has the 
equal sets of feature values, but they have different sets of 
decision values, then the granule Gri is called the conflict 
granule of GrSP with respect to P. On the other hand, 
there exist Grj∈GrSN and Gri ≠ Grj such that the 
intension of Gri and Grj has the equal sets of feature 
values, then the granule Gri is called the conflict granule 
(contradictory granule) of GrSP with respect to P. 
Otherwise, Gri is called the non-conflict granule of GrSP 
with respect to P. 

B.  Feature Significance Measure 
Proposition 6. Let SDS = (U′, A, F′, D, G, V′) be a 

simplified decision system, and GrS be its granular space. 
Suppose that GrSPU ′  = U {gs(Gr) | Gr∈GrSP}, GrSNU′  = 

U {gs(Gr) | Gr∈GrSN}, then there must exist GrSPU ′ =  

POSU ′  and GrSN NEGU U′ ′= . 
Proof. It can be achieved by Definitions 2 and 8. 
Definition 10. Let SDS = (U′, A, F′, D, G, V′) be a 

simplified decision system, and GrS be its granular space. 
Suppose that GrSPU ′ = gs(GrS) or GrSNU ′  = Ø, then the SDS 
is consistent. Otherwise it is inconsistent. 

Proposition 7. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space. 
Then, the SDS is consistent if and only if for any 
Gr∈GrS, there must exist x∈gs(Gr) ∧ y∈gs(Gr) ⇒  
fD(x) = fD(y) for any x, y∈U′. 

Proof. It can be achieved by Proposition 6 and 
Definition 10. 

Through the analyses of reduction algorithms in [27, 
28, 30], based on positive region from the algebraic point 
of view, we know that feature dependency-based 
approaches select the next feature to add into or remove 
from the reduction through considering the changes of 
positive regions, and finally only one reduct is found. 
Meanwhile, the key points of these approaches focus on 
that how to design high efficiency measures of computing 
the positive region, and how to acquire the minimum 
reducts based on positive region. In the following, we 
analyze the process of reduction in a decision system. In a 
decision system DS = (U, A, F, D, G), P⊆A, and U/P = 
{P1, P2, …, Pn}, if Pi⊆POSP(D) for any Pi∈U/P, one 
has that U = U – Pi, and POSA(D) = POSA(D) – Pi. Thus, 
it helps to reduce the quantity of computation, time 
complexity and space complexity of search. In this case, 
if Pi⊄POSP(D), we then use U/(PU  {a}) = U {X/{a} | 
X∈U/P} to form a new partition of U again, and if Pi 
⊆U – POSC(D), then Pi is deleted from U, because it 
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contributes nothing to computing the positive region of 
the DS. Therefore, we have the conclusion that the 
methods above only consider the information, which can 
distinguish one class from the remaining classes, and then 
omit that of distinguishing one class from another class. 
To address this problem, we investigate some definitions 
and methods to judge a granular space-based reduct in a 
simplified decision system.  

Let DS = (U, A, F, D, G) be a decision system with 
any P⊆A. Then, a positive region-based reduct of the 
DS is presented in [28] as follows: if POSP(D) = 
POSA(D) and P is independent relative to D, then P is a 
reduct of the DS. 

Definition 11. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space. 
For any P⊆A, then the positive region of the partition 
U′/RD with respect to P in GrS is defined as 

' ( ) { | ( ) / }P P GrSPPOS D X X gs GrS R X U ′= ∈ ∧ ⊆U .   (1) 
From the definition of positive region-based reduct 

and Definition 11, it is easy to obtain the following 
proposition. 

Proposition 8. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space. 
For any P⊆A, if there does not exist any conflict granule 
with respect to P in GrSP, then P is a relative reduct of A 
with respect to D. 

Proposition 9. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GrS be its granular space. 
For any P ⊆ A, and p∈A – P, we obtain a granular 
partition of U′ for any Gr∈GrS, denoted by 

{ } { }( ) / { / | ( ) / }P p p Pgs Gr R X R X gs Gr R= ∈U U .     (2) 
Proof. It can be achieved under Property 2 in [27].  
Definition 12. Let SDS = (U′, A, F′, D, G, V′) be a 

simplified decision system, and GrS be its granular space. 
For any P⊆ A, and p∈A – P, the feature significance 
measure of p in P is defined as 

{ }| |
( )

| |
P p P

P

U U
SIG p

U
′ ′−

=
′

U ,                      (3) 

where 
( )/ ( )/

{ } { }
P GrSP P GrSN

P
X gs GrS R X U X gs GrS R X U

U X X
′ ′∈ ∧ ⊆ ∈ ∧ ⊆

′ = UU U . 

Noticing that if P = A, then we have that SIGP (Ø) = 0. 
From Definition 12, it can be seen that if the feature 

significance measure is used as a heuristic function, then 
the reduction is a kind of algebraic reduct from the 
granule concept, and the granular space GrS must be 
constructed. Thus, to reduce the quantity of computation 
and space complexity of search, the granular space GrS is 
separated into GrSP and GrSN. From the algebraic point 
of view in [30], this idea can compensate for these current 
disadvantages of the classical reduction algorithms, based 
on positive region and information entropy. This shows 
that feature selection has already been studied from the 
algebra viewpoint and information viewpoint of rough set 
theory, respectively. However, the concepts of feature 
selection, based on these two different viewpoints, are not 
equivalent to each other. In [30], the relationship between 
these conceptions from the two viewpoints was rather an 
inclusion than an equivalence, due to the fact that the 

rough set theory discussed from the information point of 
view restricted features and decision systems more 
specifically than it did when considered from the algebra 
point of view. Hence, the identity of the two viewpoints 
will hold in consistent decision systems only. That is, the 
algebra viewpoint and information viewpoint are 
equivalent in a consistent decision system, while different 
in an inconsistent one. Thus it is concluded that the 
algebraic point of view proposed based on granular 
computing can not only include more information than 
that based on positive region, but also compensate for the 
limitations of the algebra viewpoint and information 
viewpoint. The results are significant for the design and 
development of methods for feature selection.  

In what follows, to reduce space complexity of search, 
and construct an efficient reduction algorithm, we further 
derive some important properties of feature significance 
measure in simplified decision systems. 

Proposition 10. Let SDS = (U′, A, F′, D, G, V′) be a 
simplified decision system, and GS be its granular space, 
P ⊆ A. Then, the simplified expression of the feature 
significance measure of p∈A – P in P is as follows 
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It can be observed that since ( ) / GrSPX gs S P X U X′∈ ∧ ⊄ ∧  

GrSNU′⊄  in the above formula, there must exist X∉U′p 
such that X∈(U′ – U′p)/P. Hence, the theorem holds. 

Obviously, it shows from Proposition 10 that through a 
series of formulary transform, and then it finally only 
need compute some partitions and sets. So, we can make 
full use of some efficient measures to compute partitions 
and sets for the feature significance measure. Therefore, 
this computation of SIGP(p) is more direct and efficient, 
and it can reduce the quantity of computation, time 
complexity, and space complexity of search.  

It is well known that a reduct can be found by deleting 
current redundant features from the condition feature set. 
However, the reduct obtained depends on the order that 
the features are considered. Hence, in a simplified 
decision system SDS = (U′, A, F′, D, G, V′), it is 
important to construct an appropriate input sequence for 
the features in A. We can use the concept of feature 
significance measure to solve this problem. That is, we 
obtain the input sequence by sorting the features in 
descending order by the feature significance measure. 
Thus, the feature significance measure, SIGP(p) of p∈A – 

P in P, is usually defined in terms of dependency degree. 
Meanwhile, SIGP(p) is called a heuristic function from 
the algebraic point of view in the SDS, and then we 
assume that P = Ø, adding features bottom-up on P. Thus, 
if a new corresponding granule Gr = (φ, m(φ)) separated 
from the SDS, is a non-conflict granule with respect to A, 
and contained by GrSP, or a conflict granule with respect 
to A, is contained by GrSN. Then, we have SIGP(p) ≠ 0. 
That is to say, when we continually add any feature p to P 
given, if the radix conflict granule of GrSP with respect 
to P U {p} is not changed, then SIGP(p) ≠ 0. Hence, 
SIGP(p) describes a decrease in the dependency degree of 
P. Thus, Proposition 10 and the properties above provide 
an effective way to determine whether or not a feature 
should be contained in a granular space-based reduct. 

C.  Feature Selection Algorithm 
It is known that introducing heuristic search is to solve 

the problem of NP-hard, and is also greatly effective and 
feasible in acquiring the minimal or optimal reducts. 
However, the shortcoming of classical methods is its high 
space-time cost and incompleteness. In order to improve 
computational efficiency, the complicated problem of 
selecting feature subset can be decomposed into several 
relatively independent sub-problems. In the following, we 
derive sub-algorithm for feature selection, and then 
present a complete and efficient algorithm for calculating 
reducts in a simplified decision system. What’s more, to 
improve efficiency, we must employ some effective 
measures for computing partitions, positive region, and 
separating the decision system to acquire its granular 
space. Then, based on twice-hash in [29], the time 
complexity of computing partitions, positive region and 
negative region object sets based on Hash has been 
decreased to O(|U|). Thus, we can make full use of the 
feasible measures above, and construct the processes of 
acquiring positive and negative granular spaces of 
decision systems, which consists of the following steps. 

Algorithm 1  
Input: A decision system DS = (U, A, F, D, G), where 

A = {a1, a2, …, an}, and D={d}  
Output: GrSP, GrSN. 
(1) Calculate the partition U/(AUD) to obtain U′, i.e., 

SDS = (U′, A, F′, D, G, V′) 
(2) Initialize GrSP = Ø, GrSN = Ø, m = |U′/A|, and n = 

|A| 
(3) For i = 1 to m begin 

(3.1) Calculate the partition [U′i]A/D, where [U′i]A 
∈U′/A 

(3.2) k = |[U′i]A/D| 
(3.3) For j = 1 to |[U′i]A| begin 

(3.3.1) Fetch xj ∈[U′i]A∈U′/A 
(3.3.2) Calculate its corresponding granule 

Gr = (φ, m(φ)), where φ = {I1, I2, …, 
In} 

(3.3.3) m(φ) = {u∈U′ | f(u, a1) = I1∧ f(u, a2) 
= I2∧…∧ f(u, an) = In, at∈A, t ≤ n 

(3.3.4) If k = 1 then GrSP = GrSPU {Gr}, 
i.e., Gr is called the non-conflict 
granule with respect to A 
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            else GrSN = GrSNU {Gr}, i.e., Gr is 
called the conflict granule of with 
respect to A 

 (4) Return GrSP, GrSN 
Evidently, the time complexity of Algorithm 1 is 

determined by step (3). When |A| is the maximum value 
for the circle times, the time complexity of Algorithm 1 is 
approximate to O(|U′/A||U′|), while that of step (1) is 
O(|U|). Hence, in the DS, the time complexity of 
Algorithm 1 is obviously no more than O(|U| + |U′/A||U′|). 

Using Algorithm 1, we construct the processes of 
granular space-based feature selection algorithm (also 
called GSFSA), which consists of the following steps: 
firstly, detaching objects from granular space step by step; 
then obtaining the minimum relative reducts through 
adding features bottom-up in terms of dependency degree 
of feature significance measure; finally, checking the 
completeness of reducts through gradually deleting 
feature from the end to the beginning. Obviously, we 
construct the input sequence by sorting the features in 
order of descending the feature significance measure. The 
relative reduct can be found by repeatedly adding the 
head node with the maximum SIGP(p) as follows. 

Algorithm 2 GSFSA 
Input: SDS = (U′, A, F′, D, G, V′) 
Output: Set P of selected features 
(1) Calculate GrSP and GrSN with Algorithm 1 
(2) Initialize P = Ø, GP = Ø, and GN = Ø 
(3) Calculate U′P, (U′ – U′P)/P, (U′ – U′P)/(PU {p}) 

with p∈A – P 
(4) Calculate 

/{ }( )/

{ }
GSP P

P
Y X a Y UX U U P

G Y
′′ ′ ∈ ∧ ⊆∈ −

= UU , and GN =  
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GSP NY X a Y UX U U P

Y
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(5) Calculate | |( )
| |
P N

P
G GSIG p

U
=

′
U  for any p∈A – P 

(6) Select a feature a with the maximum of SIGP(p) 
(7) If this feature is not only   

then select that with the maximum of |U′/(PU {p})|  
else select the front  

(8) P = PU {p} 
(9) U′ = U′ – GP – GN, i.e., U′ = U′ – U′P, to reduce the 

search space 
(10) If U′ ≠ Ø then turn to (3) 
(11) s = |P| 
(12) For i = 1 to s begin 

(12.1) Fetch pi∈P from the end to the beginning 
of P 

(12.2) If 
{ }| ( ) | | ( ) |

iA P pPOS D POS D−= , i.e., SIGP(p) 
= 0, then P = P – {pi} 

 (13) Return P 
By using this algorithm GSFSA, the time complexity 

of feature selection from a decision system is 
polynomial. At step (1), the time complexity is O(|U| + 
|U′/A||U′|), and that of step (3) through step (5) is O(|A – 
P||U′ – U′P|). In fact, the most time-consuming task is 
determined by step (3) through step (10), thus, the time 
complexity is approximate to O(|A||U′|) + O((|A| – 1)|U′ – 

1PU ′ |) + O((|A| – 2)|U′ – 
2PU ′ |) + … + O(|A – Pk||U′ –

kPU ′ |), 
where Pk is a reduct of the SDS. Furthermore, the aim of 
step (12) is to ensure the completeness of GSFSA, 
therefore, its time complexity is approximate to O(|A||U′|). 
Obviously, the total time complexity of GSFSA is O(|U| 
+ |U′/A||U′|) + O(|A – P||U′ – U′P|) + O(|A||U′|) + O((|A| – 
1)|U′ – 

1PU ′ |) + O((|A| – 2)|U′ – 
2PU ′ |) + …+ O(|A – Pk||U′ 

– 
kPU ′ |) + O(|A||U′|). Therefore, when |A| is the maximum 

value for the circle times, the time complexity of GSFSA 
is approximate to O(|A||U′|) + O((|A| – 1)|U′|) + O((|A| – 
2)|U′|) + … + O(|U′|) = O(|A|2|U′|), that is, O(|A|2|U/A|), 
and its worst space complexity is O(|A||U|). Thus, this 
means that the algorithm for feature selection requires 
less computation and memory. 

IV.  APPLICATIONS AND EXPERIMENTAL RESULTS 

In this section, we shall demonstrate the performances 
of our feature selection algorithm given in Subsection C 
above, and the objective is to evaluate the algorithm in 
terms of number of selected features and running time on 
selected features. These experiments are performed on a 
personal computer with Windows XP, Intel(R) Core(TM) 
Quad CPU 3.1 GHz, and 4 GB memory. Here, we first 
introduce an example of decision system to illustrate the 
basic method proposed.  

Example 1. We adopt the decision system (U, A, F, D, 
G) shown in Table I from [28], where U ={x1, x2, ..., x15}, 
A = {a, b, c, d}. 

TABLE I. 
A DECISION INFORMATION SYSTEM 

U a b c d D 
x1 1 1 1 1 0 
x2 2 2 2 1 1 
x3 1 1 1 1 0 
x4 2 3 2 3 0 
x5 2 2 2 1 1 
x6 3 1 2 1 0 
x7 1 2 3 2 2 
x8 2 3 1 2 3 
x9 3 1 2 1 1 
x10 1 2 3 2 2 
x11 3 1 2 1 1 
x12 2 3 1 2 3 
x13 4 3 4 2 1 
x14 1 2 3 2 3 
x15 4 3 4 2 2 

TABLE II. 
A SIMPLIFIED DECISION INFORMATION SYSTEM 

U′ a b c d D 
x1 1 1 1 1 0 
x2 2 2 2 1 1 
x4 2 3 2 3 0 
x6 3 1 2 1 0 
x7 1 2 3 2 2 
x8 2 3 1 2 3 
x9 3 1 2 1 1 
x13 4 3 4 2 1 
x14 1 2 3 2 3 
x15 4 3 4 2 2 
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Then, we obtain the simplified decision system showed 
in Table II. Using the feature significance measure 
proposed, we can compute the significance and 
conditional significance of single feature and select the 
features with maximal significance and conditional 
significance one by one, then we have the minimum 
relative reduct {a, d}. 

Next is the second part of our experiments. We 
compared the performance of GSFSA with two 
algorithms on one discrete UCI dataset Mushroom (UCI 
datasets can be downloaded at http://www.ics.uci.edu). In 
the current experiment, GSFSA is compared with 
Algorithm 4 in [27] and ReduceBasedSig( ) Algorithm in 
[28]. The experimental results are summarized in Fig. 1, 
in which the judged instances with the decrease of 
selected feature subsets on Mushroom are given. From 
Fig. 1, we can see that the performances of GSFSA and 
ReduceBasedSig( ) Algorithm are very close though 
GSFSA performs a little better than Algorithm 4 in [27].  

In what follows, we choose three data sets from the 
UCI datasets, outlined in Table III, which are used to do 
the final experiment. Meanwhile, we select the MIBARK 
Algorithm [26], the ReduceBasedSig( ) Algorithm [28], 
and Algorithm with twice-hash [29] in comparison with 
the proposed GSFSA in this article, shortly denoted by 
Alg_a, Alg_b, Alg_c, and Alg_d, respectively. Their 
reduction results and running times are compared, thus, 

we run all four algorithms with ten times for the 
corresponding experimental data, however, for the 
precision of analysis, we delete the beginning and the end 
of experimental results, and take the average of the rest of 
eight experimental data. What’s more, in Table III, m and 
t respectively denote the number of reducts and running 
times, expressed in millisecond. Then, it can be seen from 
Table III that the better performances of the proposed 
approach can be established and applied to both 
consistent and inconsistent decision systems.  
 

V.  CONCLUSIONS AND FUTURE WORK 

As an effective approach to feature selection, rough set 
has been one of the most advanced areas popularizing 
granular computing, and it has received extensive 
application in various fields [31-34]. Although a few 
algorithms for dealing with decision systems have been 
proposed, the inclusion of irrelevant, redundant and noisy 
features can result in poor predictive performance and 
increase computation cost, so that their complexities are 
always no less than O(|A|2|U|2). Thus, they are unsuitable 
for large data sets, greatly limiting potential applications. 
Hence, we investigated the components of information 
granule, granular space, positive granular space and 
negative granular space in decision systems. Then an 
efficient algorithm for feature selection, costing the worst 
time complexity O(|A|2|U/A|), was proposed in a decision 
system. Finally, numerical experiments from the UCI 
datasets illustrated that the proposed algorithm was 
indeed effective and efficient. The experiment results 
were consistent with our theoretical analysis. In sum, the 
proposed approach to feature selection based on granular 
space is feasible, and outperforms other approaches 
available to feature selection in decision systems, 

especially large scale data sets. In the future work, more 
experimentation and further investigation into this 
technique may be required, and then we will extend the 
granular computing method to some more kinds of 
information systems, such as ordered information systems, 
incomplete decision systems [35, 36] and so on. 
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TABLE III. 
REDUCTS AND RUNNING TIMES OF FEATURE SELECTION 

Data sets Samples Features Data type Alg_a Alg_b Alg_c Alg_d 
m t m t m t m t 

Voting-records 435 16 consistent 10 500 8 400 8 180 8 180 
Zoo 101 17 inconsistent 11 350 10 120 10 80 10 80 

Mushroom 8124 22 consistent 5 8700 4 6400 4 2450 4 2400 
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Figure 1. Selected features versus judged instances 
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