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Abstract—Cloud computing is an emerging infrastructure 
paradigm that promises to eliminate the need for companies 
to maintain expensive computing hardware. However, 
performance evaluation for Cloud computing platforms still 
remains an open issue. In this paper, we present an 
integrated performance evaluation middleware, which is 
aiming to provide users an easy-to-use toolkit to evaluate 
their Cloud system’s runtime performance. In addition, the 
proposed system introduces a novel resource working model 
by using queue theory, which provides us a quantitative 
technique to evaluate the dynamic performance of virtual 
resources at runtime. Meanwhile, it supports a real-time 
performance monitoring and profiling service for high-
performance Cloud applications. Massive experiments are 
conducted to investigate the effectiveness of the proposed 
system, and the results indicate that its configurable feature 
is very useful when users are conducting performance 
comparing under different cases. 
 
Index Terms—cloud computing, grid computing, 
performance profiling, virtual machine, workload generator 

I.  INTRODUCTION 

Cloud computing is an emerging infrastructure 
paradigm, which provides large amounts of computing 
and storage resources to high-performance applications 
with increased scalability and high availability, and 
reduced administration and maintenance costs [1]. By 
using virtualization and resource time-sharing, Cloud 
platforms can provide a single set of physical resources to 
many users with diverse requirements. Thus, Cloud 
computing has the potential to provide their owners the 
benefits, at the same time, become an alternative for both 
the industry and the scientific community [2]. 

In typical Cloud systems, virtualized resources are 
interconnected together and are provided to consumers’ 
on-demand. Through well defined interfaces over well 
known Internet protocols, Cloud users are enabled to 
access to resources anytime and anywhere. Also, users 
can deploy their software by creating customized virtual 
machine images and running them on the virtualized 
resources in Cloud platforms. As a result, many vendors 
like Amazon, Google, Dell, IBM, and Microsoft are 
investing billions of dollars to develop their own Cloud-
oriented solutions and systems [3, 4]. The Cloud 
providers are responsible for maintaining the underlying 
computing and data infrastructure; at the same time they 
should try best to reduce the administrative and 

maintenance costs for the users. This is commonly known 
as Infrastructure as a Service (IaaS) [2, 5]. 

Ideally, Clouds should provide services with 
performance equivalent to that of dedicated environments 
with similar characteristics. However, the performance 
characteristics of a Cloud may vary over time as a result 
of changes of dynamic workloads. Therefore, it is of great 
importance to assess the performance of Cloud 
infrastructure in terms of various metrics, such as the 
overhead of co-allocating virtual resources, and the 
performance of applications with different resource 
configurations [2, 6-7]. Unfortunately, few systems and 
techniques are proposed to address this issue at present. 
The challenges of performance evaluation in Clouds are 
mainly concentrated on: (1) Virtualization technique 
decouples the physical resources and the end-users 
requirements, which makes it difficult to evaluating the 
virtualized resource performance when user’s QoS 
requirements are taken into account [3,8]; (2) 
Heterogeneous and distributed resources are dynamically 
composed and decomposed into abstract virtual machines 
(VM), the traditional off-line performance evaluation 
technique is not suitable for such open environments [9]; 
(3) The runtime performance of virtual resources are 
affected by too many factors. As a result, effective 
conclusions on performance evaluation require a flexible 
and configurable mechanism, which can fix some factors 
as well as change others at the same time [1-2, 10]. 

Motivated by these observations, we design and 
implement an integrated performance evaluation 
middleware, namely Performance Monitor and Evaluator 
for Cloud Platforms (PM&E-CP), with aiming to provide 
Cloud users and researchers an easy-to-use toolkit to 
evaluate their Cloud system’s runtime performance, or 
compare the performance difference when different 
resource management policy and task scheduling 
algorithms are taken into account. In the PM&E-CP, a 
novel resource working model is designed by queue 
theory, which provides us a quantitative technique to 
evaluate the dynamic performance of virtual resources at 
runtime. In addition, it supports real-time performance 
monitoring and profiling service for high-performance 
Cloud applications. 

The rest of this paper is organized as follows. Section 
II presents the related work. In section III, we describe 
the framework of PM&E-CP; In Section IV, experiments 
are conducted to investigate the effectiveness of our 
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PM&E-CP. Finally, Section V concludes the paper with a 
brief discussion of future work. 

II.  RELATED WORK 

In typical high-performance platforms, performance 
evaluation is often conducted by a set of standard 
benchmark suites [11,12]. The objective is to measure the 
peak and average service capability of the target systems. 
This is suitable for tight-couple parallel computing 
systems, however, it can not be applied to large-scale 
distributed systems since there are too many factors that 
will affect the performance of these systems, such as 
network traffic, unpredictive workload, un-reliabile 
resources and etc. To overcome these difficulties, 
researchers tends to use synthetic workload to evaluate 
the performance of large-scale distributed systems. 
Therefore, many random workload generators are 
proposed, i.e. Lublin-Feitelson model [13], Cirne-Berman 
model [14] and Tsafrir-Estion model [15]. These 
workload generator is based on real-world logs and 
allows users define their favor features of the generated 
workloads. As the synthetic workload generator can 
produce various type of random workload, researchers 
are enabled to compare the performance of their systems 
when different resource management policies or 
scheduling algorithms are adopted. In this paper, we 
incorporated three most used models to generate synthetic 
workload in an extensible manner. 

In the past years, many studies are taken to evaluate 
the performance of virtualization technology. For 
instance, an early comparative study of the 
DawningCloud is deprived from performance comparison 
in Eucalyptus system [16]. In the study of [17], 
performance comparsion of executing a famous scientific 
workflow (Montage) are presented so as to investigate the 
performance trade-offs between Clouds and Grids. In 
[18], Palankar et al. studied the performance of Amazon 
S3 when large-size files are transferred between EC2 and 
S3. In [19], Menon et al. studied the virtual resource 
performance by using general benchmarks, and their 
results indicated that the overhead caused by 
virtualization can be limited below 5% for computation 
tasks and 15% for networking tasks. All the above studies 
are based on benchmarks approaches, so their 
conclusions are only meaningful for the tested systems. 
On the contrary, our framework is to provide a 
generalized middleware to evaluate the performance of 
virtual resource environments. 

To assess and analyze the performance of Cloud 
platforms, Yigitbasi et al. designed a framework called C-
Meter, which is implemented as an extension of 
GrenchMark [20]. It consists of four components 
including Workload Generator, Job Core, Cloud 
Interaction and Utility Toolkit. By using C-Meter, users 
can assess the overhead of acquiring and releasing the 
virtual computing resources, also they can evaluate the 
performance of different scheduling algorithms under 
different configurations. Unlike C-Meter, our PM&E-CP 
framework applies a general model to describe the 
working status of individual VMs. So, it provides a 

general approach to evaluating the performance of VMs, 
which in turn can be used to profile the execution 
performance of Cloud applications. 

III.  THE FRAMEWORK OF PM&E-CP 

A. The Architecture of PM&E-CP 

 
Fig. 1. The Architecture of PM&E-CP 

The architecture of PM&E-CP is illustrated in Fig. 1, 
which is composed of four key components including 
Web Service Portal, Synthetic Workload Generator, VM 
Scheduler and VM Manager. The brief descriptions of 
these components are presented as following: (1) Web 
Service Portal is responsible for accepting user’s 
benchmark requirements which is described by a set of 
XML files. (2) Synthetic Workload Generator is 
responsible for translating the user’s abstract 
requirements into a set of workloads. The generated 
synthetic workloads are characterized by several factors, 
such as task arriving interval, task execution time, task 
resource requirements, task type and etc. (3) VM 
Scheduler works like conventional meta-scheduler but we 
separate the task mapping and VM broker by two 
subcomponents. It is because that we can easily replace 
the scheduler algorithm or policy when we want to 
evaluate the performance of different scheduling 
algorithm. (4) VM Manager consists of four 
subcomponents, and they are designed for VM resource 
pool management and VM performance analysis. For 
example, the provision of VM is controlled by VM pool 
manager and VM configuration, and the runtime 
performance and capability of individual VM are 
monitored and logged through Performance Monitor and 
Performance Profiling subcomponents. 

Generally speaking, PM&E-CP is designed and 
implemented as a portable and extensible framework for 
generating and submitting both real and synthetic 
workloads so as to analyze the performance of Cloud 
environments. In PM&E-CP, VM management policy 
and task scheduling algorithm can be flexibly plugged in 
at runtime. In this way, researchers and administrators are 
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able to compare the effectiveness and efficiency of 
different policies and algorithms. So, it can be used as a 
test-bed middleware for large-scale Cloud computing 
systems. 

B. The Procedure of using PM&E-CP 
In PM&E-CP, there are six steps when users conduct 

performance evaluation for Cloud-based systems. The 
details of each step are described as following: 

Step 1. Users submit their benchmark files to the 
Service Portal service. These files define all the 
requirements of this performance evaluation, including 
the task type and size, scheduling algorithm, VM 
configuration and etc. All of these requirements have a 
default setting if they are not explicitly specified in the 
files. So, users can ignorant many settings and only focus 
on their most interested parts, i.e. task scheduling 
algorithm. 

Step 2. According to the benchmark files, Synthetic 
Workload Generator component will use proper random 
workload model to produce a set of corresponding 
synthetic workloads. Currently, the PM&E-CP use 
Lublin-Feitelson model [13] as default workload 
generator, which is derived from real workload logs of 
large-scale distributed systems. Other candidates include 
Cirne-Berman model [14] and Tsafrir-Estion model [15]. 
The VM configurations specified by users are applied to 
corresponding subcomponents in VM Manager. 

Step 3. The Task Mapping Service schedules the 
synthetic workloads through pre-defined task algorithms. 
It is noteworthy that VM resource allocation and task 
dispatching are carried by VM Broker components. So 
Task Mapping Service only produces a scheduling 
scheme in this step. 

Step 4. VM Broker is responsible VM allocation and 
task dispatching. In this step, VM Broker maintains 
several queues for each active VM in the virtual resource 
pool with aiming to monitor the availability of VMs. 

Step 5. When VM Broker obtains enough available 
VMs for executing current task, it dispatches the task 
onto one or more VMs for execution. 

Step 6. The subcomponents in VM Manager is always 
monitoring and logging the performance statistics of VM 
instances. When it notices a new VM configuration 
requirement, corresponding action will be taken by 
certain subcomponents. All the performance logs are 
organized and stored in a separated profiling database, 
which can be used for later analyzing. 

C. Design of Online Performance Profiling Service 
In the framework of PM&E-CP, performance monitor 

and profiling service are two novel components, which 
are designed for online performance evaluation for virtual 
resources in Cloud environments. As mentioned above, 
VM Broker maintains task queues of each active VM in 
virtual resource pool. When these VMs are serving for 
arriving tasks, the workload of each VM will dynamically 
changed at runtime. Consequently, the practical serving 
capability will fluctuate dramatically with the changing of 
its workloads.  

In order to realize online performance monitoring and 

profiling service for these virtual resources, we apply the 
classical Stochastic Queue Model [21] to describe the 
working status of each VM. Therefore, each active VM 
can be described by a set of quantitative parameters, such 
as mean length of waiting queue, mean serving time, 
parallel serving capability and etc. By collecting this 
performance information, we can apply queue theory to 
analyze the performance of each VM, and then evaluate 
the execution performance of the whole system. So, the 
flowchart of online performance profiling in PM&E-CP 
is shown in Fig. 2. 

 

 
Fig. 2.  Flowchart of Online Performance Profiling 

 
At first, a set of performance sensors are hooked when 

a VM is in active state. Each sensor is responsible for 
monitoring a single measurement of all the active VMs. 
These measurements are analyzed by performance 
evaluator to figure out the statistic features of a certain 
parameter. Meanwhile, a closed loop controlling is 
designed for parameter revising and refitting. The control 
panel is a set of options to configure the online 
performance profiling, such as error limitation, frequency 
of sampling and etc. Finally, the performance parameters 
are sent to performance model to construct a proper 
queue model that can properly describe the current 
performance status of the active VMs. The queue model 
of an active VM is 6-tuple noted as <A(t), B(t), C(t) D(t), 
U(t), F(t)>, where A(t) is probability density function 
(PDF) of task arriving interval, B(t) is the PDF of serving 
time, C(t) mean length of waiting queue, D(t) is the 
parallel serving capability, U(t) is the real-time rate of 
utility, F(t) is the fault rate at runtime. After obtaining 
such a 6-tuple model, it is stored into the performance 
profiling database with distinguished time stamp. 

IV.  EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present the experimental results on 
the PM&E-CP framework. At present, we mainly concern 
about the effects of VM management policy and 
scheduling algorithm on the performance Cloud systems. 
So, we conduct extensive experiments with different VM 
management policies and scheduling algorithms. 

A.  Performance Comparison with Different VM 
Management Policies 

Generally speaking, VM management policy includes 
the VM provision policy and VM price policy. The VM 
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provision policy is to decide that how many VMs should 
be provided so as to satisfy the user demands. We mainly 
test three policies, which are MTPP (Maximize 
Throughput Provision Policy) [16], MRPP (Minimize 
Response-time Provision Policy) [23], MUPP (Maximize 
Utilization Provision Policy) [16]. So, our first 
experiment is to test the performance with different VM 
provision policies.  

 

 
Fig. 3.  Mean Execution Time with various VM Provision Policies 

 
 

 
Fig. 4.  Rate of Deadline Satisfaction with Various VM Provision 

Policies 
 

In this experiment, we used synthetic workload 
generator to produce four sets of workloads, and the 
number of tasks in each workload are 2000, 5000, 10 000 
and 20000 respectively. Each task is characterized by its 
arrival time, resource demands, estimation of execution 
time and a cost budget. The performance metrics we 
concern are Mean Execution Time and Deadline 
Satisfaction Rate. The experimental results are shown in 
Fig. 3 and Fig. 4. 

From the above results, we notice that size of 
workload is of significant importance when evaluating 
the performance of a VM provision policy. For example, 
the MTPP policy outperforms MRPP and MUPP in term 
of Mean Execution Time when the size of workload is 
less than 10000. However, its performance reduces 
quickly when workload becomes heavy. On the contrary, 
the performance of MUPP policy seems relative stable 
when workload increases from 2000 to 20000. By this 
result, we might draw a conclusion that MUPP is more 
adaptive in presence of dynamical workload.  

Deadline Satisfaction Rate metric is to measure that 
how many tasks can be completed before its deadline 

constraint. This metric is very important for soft real-time 
tasks since high deadline-missing rate might cause results 
in execution failure. By out experimental result, we can 
see that MUPP is most effective to meet the deadline 
constraint and MRPP performs worst. At same time, 
workload size also affects this metric. Simply saying, 
heavy workload will significantly lower down the 
deadline satisfaction rate. In detail, the effects of 
workload size are also different when using different VM 
provision policy. For instance, such negative effects on 
MRPP policy are biggest. 

 

 
Fig. 5. Mean Execution Time with various Price Mechanisms 

 

 
Fig. 6. Resource Utilization Rate with with various Price Mechanisms 

 
The VM price mechanism is to decide that how much 

resource providers should charge when users access their 
resources. Fixed price mechanism is the most frequently 
used one in current Cloud systems. Recently, several 
market-based price mechanisms have been proposed by 
researchers. We implement four price mechanisms in the 
prototype of PM&E-CP, including Fixed Price (FP)[18], 
Capability-based Price (CP)[23], Market-based Price (MP) 
[25], Auction-based Price (AP)[24]. In this experiment, 
each VM price mechanism are examined with MUPP as 
VM provision policy. The results are shown in Fig. 5 and 
Fig. 6. 

As shown in Fig. 5, VM price mechanism also has 
effects on the task execution. FP mechanism is very 
sensitive to the workload size; however other three 
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mechanisms seem insensitive to it. In all the four price 
mechanism, CP performs best, the performance of MP 
and AP are almost the same. So, we might conclude that 
Capability-based price mechanism is effective to improve 
the task execution efficiency. The other metric we 
measured are Resource Utilization Rate. It is well known 
that high price will result in low utilization when 
resources are allocated by economic computing principle. 
Our experimental results confirm this again, since MP 
and AP outperform FP and CP. At present, many real 
world Cloud systems are using FP mechanism because of 
its easy implementation. However, out results indicate FP 
mechanism will results in low resource utilization rate. So, 
these Cloud systems are of great potential to improve 
their resource utilization if applying more flexible price 
mechanisms. 

B. Performance Comparison with Different Scheduling 
Algorithms 

In our PM&E-CP framework, task scheduling 
algorithms are implemented in Task Mapping Service 
component. In order to provide an extensible framework 
for comparing the performance of different algorithms, 
Task Mapping Service exposes an abstract interface, 
namely ITaskScheduling, which can be implemented in 
different approaches. At present, we implement four 
kinds of scheduling algorithms, which are Round-Robin 
Algorithm  (RRA) [26], Capability-based Random 
Algorithm (CRA) [27], Cluster Minimized Algorithm [28] 
(CMA), Task Duplication Algorithm [29] (TDA). All 
these algorithms are widely studied and used in many 
high-performance distributed systems. Since PM&E-CP 
only uses abstract interface for task scheduling, anyone 
can incorporate other algorithms into it. 

In order to test the performance of different scheduling 
algorithms, we need to fix other factors which have 
effects on the final results. So, we conduct the 
experiments four times, each with an identical VM price 
mechanism. Then, we control the provision of VM by 
increasing the number of VM from 50 to 500. The size of 
workload is set as 20 times of the VM number in each 
experiment. In this way, we can clearly comparing the 
performance of different algorithms under different 
conditions. For Task Duplication Algorithm (TDA), we 
set the redundant degree K=2 and K=3. The results of 
these experiments are shown in Fig. 7 ~ Fig. 10. 

 
Fig. 7.  Mean Execution with FP Mechanism 

 

Fig. 8.  Mean Execution with CP Mechanism 
 

 
Fig. 9.  Mean Execution with MP Mechanism 

 

Fig. 10.  Mean Execution with AP Mechanism 
 

From the above results, we can see that the task 
execution time increases with the increasing of VM 
numbers. It is because that our test workload size is 
always 20 times of VM number. An interesting finding is 
that four algorithm seem perform the same when MP 
mechanism is used (as shown in Fig. 9). By examining 
the experimental data in detail, we find that MP 
mechanism is of great effects on the VM allocation. So, it 
plays an dominate role when scheduling tasks onto VMs. 
As to the FP mechanism, the importance of scheduling 
algorithm is significant great than the VM price 
mechanism. As shown in Fig. 7, the performance 
differences of these algorithms are most significant. 
Generally speaking, we notice that TDA outperforms 
other algorithms in term of Mean Execution Time, 
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especially when K=3. It is because that TDA always 
dispatches multiple tasks replica onto different VMs, and 
select the quickest results as the task’s return. Even 
thought, we still can not say that TDA is the best 
algorithm of these four algorithms, since it will result in 
low effective utilization especially with large K value. 
RRA is a very simple scheduling algorithm; however, we 
notice that its performance keeps relatively stable when 
using different VM price mechanisms. Maybe, it is why 
many practical systems use it as the default task 
scheduling algorithm.  

Summary the above experiments, we obtain the 
following conclusions: (1) The performance of Cloud 
systems are effected by many factors, even more, the 
factors might be effected by each other; (2) There is no 
best resource management policy nor best task scheduling 
algorithm. The target system should make its 
management decisions according the features of dynamic 
environment and its design objectives; (3) PM&E-CP is 
an extensible framework, which provides an easy-to-use 
toolkit to test the performance of Cloud systems and the 
effectiveness of different resource management policies 
or scheduling algorithms. 

VI.  CONCLUSION 

In this paper, we present an integrated performance 
evaluation middleware, namely PM&E-CP, which is 
aiming to provide users and researchers an easy-to-use 
toolkit to evaluate their Cloud system’s runtime 
performance, or compare the performance when different 
resource management policy and task scheduling 
algorithms are taken into account. The PM&E-CP is 
consists of four key components including Service Portal, 
Synthetic Workload Generator, VM Scheduler and VM 
Manager. In order to realize online performance 
monitoring and profiling service for these virtual 
resources, we apply the classical queue model to describe 
the working status of each VM. Massive experiments are 
conducted to investigate the effectiveness of the proposed 
system, and the results indicate that its configurable 
feature is very useful when users are conducting 
performance comparing under different conditions. 
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