
PM&E-CP: Performance Monitor and Evaluator
for Cloud Platforms

Dongbo Liu, Peng Xiao

College of Computer & Communication, Hunan Institute of Engineering, Xiangtan, 411104, China
Email: liudongbo74@126.com

Abstract—Cloud computing is an emerging infrastructure
paradigm that promises to eliminate the need for companies
to maintain expensive computing hardware. However,
performance evaluation for Cloud computing platforms still
remains an open issue. In this paper, we present an
integrated performance evaluation middleware, which is
aiming to provide users an easy-to-use toolkit to evaluate
their Cloud system’s runtime performance. In addition, the
proposed system introduces a novel resource working model
by using queue theory, which provides us a quantitative
technique to evaluate the dynamic performance of virtual
resources at runtime. Meanwhile, it supports a real-time
performance monitoring and profiling service for high-
performance Cloud applications. Massive experiments are
conducted to investigate the effectiveness of the proposed
system, and the results indicate that its configurable feature
is very useful when users are conducting performance
comparing under different cases.

Index Terms—cloud computing, grid computing,
performance profiling, virtual machine, workload generator

I. INTRODUCTION

Cloud computing is an emerging infrastructure
paradigm, which provides large amounts of computing
and storage resources to high-performance applications
with increased scalability and high availability, and
reduced administration and maintenance costs [1]. By
using virtualization and resource time-sharing, Cloud
platforms can provide a single set of physical resources to
many users with diverse requirements. Thus, Cloud
computing has the potential to provide their owners the
benefits, at the same time, become an alternative for both
the industry and the scientific community [2].

In typical Cloud systems, virtualized resources are
interconnected together and are provided to consumers’
on-demand. Through well defined interfaces over well
known Internet protocols, Cloud users are enabled to
access to resources anytime and anywhere. Also, users
can deploy their software by creating customized virtual
machine images and running them on the virtualized
resources in Cloud platforms. As a result, many vendors
like Amazon, Google, Dell, IBM, and Microsoft are
investing billions of dollars to develop their own Cloud-
oriented solutions and systems [3, 4]. The Cloud
providers are responsible for maintaining the underlying
computing and data infrastructure; at the same time they
should try best to reduce the administrative and

maintenance costs for the users. This is commonly known
as Infrastructure as a Service (IaaS) [2, 5].

Ideally, Clouds should provide services with
performance equivalent to that of dedicated environments
with similar characteristics. However, the performance
characteristics of a Cloud may vary over time as a result
of changes of dynamic workloads. Therefore, it is of great
importance to assess the performance of Cloud
infrastructure in terms of various metrics, such as the
overhead of co-allocating virtual resources, and the
performance of applications with different resource
configurations [2, 6-7]. Unfortunately, few systems and
techniques are proposed to address this issue at present.
The challenges of performance evaluation in Clouds are
mainly concentrated on: (1) Virtualization technique
decouples the physical resources and the end-users
requirements, which makes it difficult to evaluating the
virtualized resource performance when user’s QoS
requirements are taken into account [3,8]; (2)
Heterogeneous and distributed resources are dynamically
composed and decomposed into abstract virtual machines
(VM), the traditional off-line performance evaluation
technique is not suitable for such open environments [9];
(3) The runtime performance of virtual resources are
affected by too many factors. As a result, effective
conclusions on performance evaluation require a flexible
and configurable mechanism, which can fix some factors
as well as change others at the same time [1-2, 10].

Motivated by these observations, we design and
implement an integrated performance evaluation
middleware, namely Performance Monitor and Evaluator
for Cloud Platforms (PM&E-CP), with aiming to provide
Cloud users and researchers an easy-to-use toolkit to
evaluate their Cloud system’s runtime performance, or
compare the performance difference when different
resource management policy and task scheduling
algorithms are taken into account. In the PM&E-CP, a
novel resource working model is designed by queue
theory, which provides us a quantitative technique to
evaluate the dynamic performance of virtual resources at
runtime. In addition, it supports real-time performance
monitoring and profiling service for high-performance
Cloud applications.

The rest of this paper is organized as follows. Section
II presents the related work. In section III, we describe
the framework of PM&E-CP; In Section IV, experiments
are conducted to investigate the effectiveness of our

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 761

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.4.761-767

PM&E-CP. Finally, Section V concludes the paper with a
brief discussion of future work.

II. RELATED WORK

In typical high-performance platforms, performance
evaluation is often conducted by a set of standard
benchmark suites [11,12]. The objective is to measure the
peak and average service capability of the target systems.
This is suitable for tight-couple parallel computing
systems, however, it can not be applied to large-scale
distributed systems since there are too many factors that
will affect the performance of these systems, such as
network traffic, unpredictive workload, un-reliabile
resources and etc. To overcome these difficulties,
researchers tends to use synthetic workload to evaluate
the performance of large-scale distributed systems.
Therefore, many random workload generators are
proposed, i.e. Lublin-Feitelson model [13], Cirne-Berman
model [14] and Tsafrir-Estion model [15]. These
workload generator is based on real-world logs and
allows users define their favor features of the generated
workloads. As the synthetic workload generator can
produce various type of random workload, researchers
are enabled to compare the performance of their systems
when different resource management policies or
scheduling algorithms are adopted. In this paper, we
incorporated three most used models to generate synthetic
workload in an extensible manner.

In the past years, many studies are taken to evaluate
the performance of virtualization technology. For
instance, an early comparative study of the
DawningCloud is deprived from performance comparison
in Eucalyptus system [16]. In the study of [17],
performance comparsion of executing a famous scientific
workflow (Montage) are presented so as to investigate the
performance trade-offs between Clouds and Grids. In
[18], Palankar et al. studied the performance of Amazon
S3 when large-size files are transferred between EC2 and
S3. In [19], Menon et al. studied the virtual resource
performance by using general benchmarks, and their
results indicated that the overhead caused by
virtualization can be limited below 5% for computation
tasks and 15% for networking tasks. All the above studies
are based on benchmarks approaches, so their
conclusions are only meaningful for the tested systems.
On the contrary, our framework is to provide a
generalized middleware to evaluate the performance of
virtual resource environments.

To assess and analyze the performance of Cloud
platforms, Yigitbasi et al. designed a framework called C-
Meter, which is implemented as an extension of
GrenchMark [20]. It consists of four components
including Workload Generator, Job Core, Cloud
Interaction and Utility Toolkit. By using C-Meter, users
can assess the overhead of acquiring and releasing the
virtual computing resources, also they can evaluate the
performance of different scheduling algorithms under
different configurations. Unlike C-Meter, our PM&E-CP
framework applies a general model to describe the
working status of individual VMs. So, it provides a

general approach to evaluating the performance of VMs,
which in turn can be used to profile the execution
performance of Cloud applications.

III. THE FRAMEWORK OF PM&E-CP

A. The Architecture of PM&E-CP

Fig. 1. The Architecture of PM&E-CP

The architecture of PM&E-CP is illustrated in Fig. 1,
which is composed of four key components including
Web Service Portal, Synthetic Workload Generator, VM
Scheduler and VM Manager. The brief descriptions of
these components are presented as following: (1) Web
Service Portal is responsible for accepting user’s
benchmark requirements which is described by a set of
XML files. (2) Synthetic Workload Generator is
responsible for translating the user’s abstract
requirements into a set of workloads. The generated
synthetic workloads are characterized by several factors,
such as task arriving interval, task execution time, task
resource requirements, task type and etc. (3) VM
Scheduler works like conventional meta-scheduler but we
separate the task mapping and VM broker by two
subcomponents. It is because that we can easily replace
the scheduler algorithm or policy when we want to
evaluate the performance of different scheduling
algorithm. (4) VM Manager consists of four
subcomponents, and they are designed for VM resource
pool management and VM performance analysis. For
example, the provision of VM is controlled by VM pool
manager and VM configuration, and the runtime
performance and capability of individual VM are
monitored and logged through Performance Monitor and
Performance Profiling subcomponents.

Generally speaking, PM&E-CP is designed and
implemented as a portable and extensible framework for
generating and submitting both real and synthetic
workloads so as to analyze the performance of Cloud
environments. In PM&E-CP, VM management policy
and task scheduling algorithm can be flexibly plugged in
at runtime. In this way, researchers and administrators are

Web Service Portal

Synthetic Workload
Generator

Task Mapping Service

Performance
Profile Database

Registry Database

VM Broker

VM Configuration

VM Pool Manager

Performance Monitor

Performance Profiling

Virtual Resource
 Pool

762 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

able to compare the effectiveness and efficiency of
different policies and algorithms. So, it can be used as a
test-bed middleware for large-scale Cloud computing
systems.

B. The Procedure of using PM&E-CP
In PM&E-CP, there are six steps when users conduct

performance evaluation for Cloud-based systems. The
details of each step are described as following:

Step 1. Users submit their benchmark files to the
Service Portal service. These files define all the
requirements of this performance evaluation, including
the task type and size, scheduling algorithm, VM
configuration and etc. All of these requirements have a
default setting if they are not explicitly specified in the
files. So, users can ignorant many settings and only focus
on their most interested parts, i.e. task scheduling
algorithm.

Step 2. According to the benchmark files, Synthetic
Workload Generator component will use proper random
workload model to produce a set of corresponding
synthetic workloads. Currently, the PM&E-CP use
Lublin-Feitelson model [13] as default workload
generator, which is derived from real workload logs of
large-scale distributed systems. Other candidates include
Cirne-Berman model [14] and Tsafrir-Estion model [15].
The VM configurations specified by users are applied to
corresponding subcomponents in VM Manager.

Step 3. The Task Mapping Service schedules the
synthetic workloads through pre-defined task algorithms.
It is noteworthy that VM resource allocation and task
dispatching are carried by VM Broker components. So
Task Mapping Service only produces a scheduling
scheme in this step.

Step 4. VM Broker is responsible VM allocation and
task dispatching. In this step, VM Broker maintains
several queues for each active VM in the virtual resource
pool with aiming to monitor the availability of VMs.

Step 5. When VM Broker obtains enough available
VMs for executing current task, it dispatches the task
onto one or more VMs for execution.

Step 6. The subcomponents in VM Manager is always
monitoring and logging the performance statistics of VM
instances. When it notices a new VM configuration
requirement, corresponding action will be taken by
certain subcomponents. All the performance logs are
organized and stored in a separated profiling database,
which can be used for later analyzing.

C. Design of Online Performance Profiling Service
In the framework of PM&E-CP, performance monitor

and profiling service are two novel components, which
are designed for online performance evaluation for virtual
resources in Cloud environments. As mentioned above,
VM Broker maintains task queues of each active VM in
virtual resource pool. When these VMs are serving for
arriving tasks, the workload of each VM will dynamically
changed at runtime. Consequently, the practical serving
capability will fluctuate dramatically with the changing of
its workloads.

In order to realize online performance monitoring and

profiling service for these virtual resources, we apply the
classical Stochastic Queue Model [21] to describe the
working status of each VM. Therefore, each active VM
can be described by a set of quantitative parameters, such
as mean length of waiting queue, mean serving time,
parallel serving capability and etc. By collecting this
performance information, we can apply queue theory to
analyze the performance of each VM, and then evaluate
the execution performance of the whole system. So, the
flowchart of online performance profiling in PM&E-CP
is shown in Fig. 2.

Fig. 2. Flowchart of Online Performance Profiling

At first, a set of performance sensors are hooked when

a VM is in active state. Each sensor is responsible for
monitoring a single measurement of all the active VMs.
These measurements are analyzed by performance
evaluator to figure out the statistic features of a certain
parameter. Meanwhile, a closed loop controlling is
designed for parameter revising and refitting. The control
panel is a set of options to configure the online
performance profiling, such as error limitation, frequency
of sampling and etc. Finally, the performance parameters
are sent to performance model to construct a proper
queue model that can properly describe the current
performance status of the active VMs. The queue model
of an active VM is 6-tuple noted as <A(t), B(t), C(t) D(t),
U(t), F(t)>, where A(t) is probability density function
(PDF) of task arriving interval, B(t) is the PDF of serving
time, C(t) mean length of waiting queue, D(t) is the
parallel serving capability, U(t) is the real-time rate of
utility, F(t) is the fault rate at runtime. After obtaining
such a 6-tuple model, it is stored into the performance
profiling database with distinguished time stamp.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results on
the PM&E-CP framework. At present, we mainly concern
about the effects of VM management policy and
scheduling algorithm on the performance Cloud systems.
So, we conduct extensive experiments with different VM
management policies and scheduling algorithms.

A. Performance Comparison with Different VM
Management Policies

Generally speaking, VM management policy includes
the VM provision policy and VM price policy. The VM

Perf. Model

Perf. Evaluator

Control Panel Para. Reviser

VM Models

Perf. Sensors

Refit Signal

Control Stream
Data Stream

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 763

© 2013 ACADEMY PUBLISHER

provision policy is to decide that how many VMs should
be provided so as to satisfy the user demands. We mainly
test three policies, which are MTPP (Maximize
Throughput Provision Policy) [16], MRPP (Minimize
Response-time Provision Policy) [23], MUPP (Maximize
Utilization Provision Policy) [16]. So, our first
experiment is to test the performance with different VM
provision policies.

Fig. 3. Mean Execution Time with various VM Provision Policies

Fig. 4. Rate of Deadline Satisfaction with Various VM Provision

Policies

In this experiment, we used synthetic workload
generator to produce four sets of workloads, and the
number of tasks in each workload are 2000, 5000, 10 000
and 20000 respectively. Each task is characterized by its
arrival time, resource demands, estimation of execution
time and a cost budget. The performance metrics we
concern are Mean Execution Time and Deadline
Satisfaction Rate. The experimental results are shown in
Fig. 3 and Fig. 4.

From the above results, we notice that size of
workload is of significant importance when evaluating
the performance of a VM provision policy. For example,
the MTPP policy outperforms MRPP and MUPP in term
of Mean Execution Time when the size of workload is
less than 10000. However, its performance reduces
quickly when workload becomes heavy. On the contrary,
the performance of MUPP policy seems relative stable
when workload increases from 2000 to 20000. By this
result, we might draw a conclusion that MUPP is more
adaptive in presence of dynamical workload.

Deadline Satisfaction Rate metric is to measure that
how many tasks can be completed before its deadline

constraint. This metric is very important for soft real-time
tasks since high deadline-missing rate might cause results
in execution failure. By out experimental result, we can
see that MUPP is most effective to meet the deadline
constraint and MRPP performs worst. At same time,
workload size also affects this metric. Simply saying,
heavy workload will significantly lower down the
deadline satisfaction rate. In detail, the effects of
workload size are also different when using different VM
provision policy. For instance, such negative effects on
MRPP policy are biggest.

Fig. 5. Mean Execution Time with various Price Mechanisms

Fig. 6. Resource Utilization Rate with with various Price Mechanisms

The VM price mechanism is to decide that how much

resource providers should charge when users access their
resources. Fixed price mechanism is the most frequently
used one in current Cloud systems. Recently, several
market-based price mechanisms have been proposed by
researchers. We implement four price mechanisms in the
prototype of PM&E-CP, including Fixed Price (FP)[18],
Capability-based Price (CP)[23], Market-based Price (MP)
[25], Auction-based Price (AP)[24]. In this experiment,
each VM price mechanism are examined with MUPP as
VM provision policy. The results are shown in Fig. 5 and
Fig. 6.

As shown in Fig. 5, VM price mechanism also has
effects on the task execution. FP mechanism is very
sensitive to the workload size; however other three

764 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

mechanisms seem insensitive to it. In all the four price
mechanism, CP performs best, the performance of MP
and AP are almost the same. So, we might conclude that
Capability-based price mechanism is effective to improve
the task execution efficiency. The other metric we
measured are Resource Utilization Rate. It is well known
that high price will result in low utilization when
resources are allocated by economic computing principle.
Our experimental results confirm this again, since MP
and AP outperform FP and CP. At present, many real
world Cloud systems are using FP mechanism because of
its easy implementation. However, out results indicate FP
mechanism will results in low resource utilization rate. So,
these Cloud systems are of great potential to improve
their resource utilization if applying more flexible price
mechanisms.

B. Performance Comparison with Different Scheduling
Algorithms

In our PM&E-CP framework, task scheduling
algorithms are implemented in Task Mapping Service
component. In order to provide an extensible framework
for comparing the performance of different algorithms,
Task Mapping Service exposes an abstract interface,
namely ITaskScheduling, which can be implemented in
different approaches. At present, we implement four
kinds of scheduling algorithms, which are Round-Robin
Algorithm (RRA) [26], Capability-based Random
Algorithm (CRA) [27], Cluster Minimized Algorithm [28]
(CMA), Task Duplication Algorithm [29] (TDA). All
these algorithms are widely studied and used in many
high-performance distributed systems. Since PM&E-CP
only uses abstract interface for task scheduling, anyone
can incorporate other algorithms into it.

In order to test the performance of different scheduling
algorithms, we need to fix other factors which have
effects on the final results. So, we conduct the
experiments four times, each with an identical VM price
mechanism. Then, we control the provision of VM by
increasing the number of VM from 50 to 500. The size of
workload is set as 20 times of the VM number in each
experiment. In this way, we can clearly comparing the
performance of different algorithms under different
conditions. For Task Duplication Algorithm (TDA), we
set the redundant degree K=2 and K=3. The results of
these experiments are shown in Fig. 7 ~ Fig. 10.

Fig. 7. Mean Execution with FP Mechanism

Fig. 8. Mean Execution with CP Mechanism

Fig. 9. Mean Execution with MP Mechanism

Fig. 10. Mean Execution with AP Mechanism

From the above results, we can see that the task
execution time increases with the increasing of VM
numbers. It is because that our test workload size is
always 20 times of VM number. An interesting finding is
that four algorithm seem perform the same when MP
mechanism is used (as shown in Fig. 9). By examining
the experimental data in detail, we find that MP
mechanism is of great effects on the VM allocation. So, it
plays an dominate role when scheduling tasks onto VMs.
As to the FP mechanism, the importance of scheduling
algorithm is significant great than the VM price
mechanism. As shown in Fig. 7, the performance
differences of these algorithms are most significant.
Generally speaking, we notice that TDA outperforms
other algorithms in term of Mean Execution Time,

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 765

© 2013 ACADEMY PUBLISHER

especially when K=3. It is because that TDA always
dispatches multiple tasks replica onto different VMs, and
select the quickest results as the task’s return. Even
thought, we still can not say that TDA is the best
algorithm of these four algorithms, since it will result in
low effective utilization especially with large K value.
RRA is a very simple scheduling algorithm; however, we
notice that its performance keeps relatively stable when
using different VM price mechanisms. Maybe, it is why
many practical systems use it as the default task
scheduling algorithm.

Summary the above experiments, we obtain the
following conclusions: (1) The performance of Cloud
systems are effected by many factors, even more, the
factors might be effected by each other; (2) There is no
best resource management policy nor best task scheduling
algorithm. The target system should make its
management decisions according the features of dynamic
environment and its design objectives; (3) PM&E-CP is
an extensible framework, which provides an easy-to-use
toolkit to test the performance of Cloud systems and the
effectiveness of different resource management policies
or scheduling algorithms.

VI. CONCLUSION

In this paper, we present an integrated performance
evaluation middleware, namely PM&E-CP, which is
aiming to provide users and researchers an easy-to-use
toolkit to evaluate their Cloud system’s runtime
performance, or compare the performance when different
resource management policy and task scheduling
algorithms are taken into account. The PM&E-CP is
consists of four key components including Service Portal,
Synthetic Workload Generator, VM Scheduler and VM
Manager. In order to realize online performance
monitoring and profiling service for these virtual
resources, we apply the classical queue model to describe
the working status of each VM. Massive experiments are
conducted to investigate the effectiveness of the proposed
system, and the results indicate that its configurable
feature is very useful when users are conducting
performance comparing under different conditions.

ACKNOWLEDGMENT

This work was supported by a grant from the National
Natural Science Foundation of China (No. 60970038). It
is also a project supported by Scientific Research Fund of
Hunan Provincial Education Department (No. 09c270).
The authors sincerely thank the hard work of reviewers,
and thank Ms. Lee Xi in Chicago University for the
correction of English writing.

REFERENCES

[1] L. Youseff, M. Butrico, and D. DaSilva, “Towards a
Unified Ontology of Cloud Computing,” Proc. Grid
Computing Environments Workshop (GCE ’08), Nov.
2008.

[2] R. Prodan and S. Ostermann, “A Survey and Taxonomy of
Infrastructure as a Service and Web Hosting Cloud

Providers,” Proc. Int’l Conf. Grid Computing, pp. 1-10,
2009.

[3] Amazon, Inc., “Amazon Elastic Compute Cloud (Amazon
EC2),” http://aws.amazon.com/ec2/, Dec. 2008.

[4] GoGrid, “GoGrid Cloud-Server Hosting,”
http://www.gogrid. com, Dec. 2008.

[5] C. Teixeira, R. Azevedo, J.S. Pinto and T. Batista. “User
Provided Cloud Computing”. Proc. of IEEE/ACM Int’l
Conf. on Cluster, Cloud and Grid Computing, pp.727-732,
2010.

[6] A. Iosup, S. Ostermann, M.N. Yigitbasi, et al.
"Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing", IEEE Trans. on
Parallel and Distributed System, vol.22, no.6, pp.931-945,
2011.

[7] N Yigitbasi, A Iosup, D Epema, S Ostermann. “C-Meter:
A Framework for Performance Analysis of Computing
Clouds”. Proc. of IEEE/ACM Int’l Symp.on Cluster
Computing and the Grid, pp.472-477, 2009.

[8] U.F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem,
“Database Systems on Virtual Machines: How Much Do
You Lose?” Proc. IEEE 24th Int’l Conf. Data Eng. (ICDE)
Workshops, pp. 35-41, 2008.

[9] B. Quetier, V. Neri, F. Cappello, “Scalability Comparison
of Four Host Virtualization Tools,” J. Grid Computing,
vol. 5, no. 2, pp. 83-98, 2007.

[10] A.B. Nagarajan, F. Mueller, C. Engelmann, and S.L. Scott,
“Proactive Fault Tolerance for HPC with Xen
Virtualization,” Proc. ACM 21st Ann. Int’l Conf.
Supercomputing (ICS), pp. 23-32, 2007.

[11] A. Kowalski, “Bonnie:File System Benchmarks,”
technical report, Jefferson Lab,
http://cc.jlab.org/docs/scicomp/benchmark/ bonnie. html,
2002.

[12] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C.
Sevcik, and P. Wong, “Theory and Practice in Parallel Job
Scheduling,” Proc. Job Scheduling Strategies for Parallel
Processing (JSSPP), pp. 1-34, 1997.

[13] U. Lublin, D.G. Feitelson, “Workload on Parallel
Supercomputers: Modeling Characteristics of Rigid Jobs,”
J. Parallel and Distributed Computing, vol. 63, no. 11,
pp.1105-1122, 2003.

[14] W. Cirne and F. Berman, “A Comprehensive Model of the
Supercomputer Workload”. 4th Ann. Workshop Workload
Characterization, 2001.

[15] D. Tsafrir, Y. Etsion and D.G. Feitelson, “Modeling User
Runtime Estimates”. 11th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), pp. 1-35, Jun
2005.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, et al., “The
Eucalyptus Open-Source Cloud-Computing System,”
Technical Report 2008-10, uCSD,
http://eucalyptus.cs.ucsb.edu/, 2008.

[17] E. Deelman, G. Singh, M. Livny, J.B. Berriman, and J.
Good, “The Cost of Doing Science on the Cloud: The
Montage Example,” Proc. IEEE/ACM Supercomputing
(SC), pp. 41-50, 2008.

[18] M.R. Palankar, A. Iamnitchi, M. Ripeanu, and S.
Garfinkel, “Amazon S3 for Science Grids: A Viable
Solution?” Proc. DADC ’08: ACM Int’l Workshop Data-
Aware Distributed Computing, pp. 55-64, 2008.

[19] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and
W. Zwaenepoel, “Diagnosing Performance Overheads in
the Xen Virtual Machine Environment,” Proc. ACM First
Int’l Conf. Virtual Execution Environments (VEE), pp.
13-23, 2005.

[20] A Iosup, D Epema. “GrenchMark: A Framework for

766 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

Analyzing, Testing, and Comparing Grids”. Proc. of Int’l
Symp. on Cluster Computing and the Grid, pp.313-320,
2006.

[21] D. Gross, C.M. Harris. Fundamentals of Queuing Theory.
USA: John Wiley and Sons, 1998.

[22] R. Clarke. “User Requirements for Cloud Computing
Architecture”. Proc. of IEEE/ACM Int’l Conf. on Cluster,
Cloud and Grid Computing, pp.625-630, 2010.

[23] R. Jeyarani, R.V. Ram, N. Nagaveni. “Design and
Implementation of an efficient Two-level Scheduler for
Cloud Computing Environment”. Proc. of IEEE/ACM Int’
Conf. on Cluster, Cloud and Grid Computing, pp.585-586,
2010.

[24] W.Y. Lin, G.Y. Lin, H.Y. Wei. “Dynamic Auction
Mechanism for Cloud Resource Allocation”. Proc. of
IEEE/ACM Int’l Conf. on Cluster, Cloud and Grid
Computing, pp.591-592, 2010.

[25] Y.C. Lee, C. Wang, et al. “Profit-driven Service Request
Scheduling in Clouds”. Proc of IEEE/ACM Int’l Conf. on
Cluster, Cloud and Grid Computing, pp.15-24, 2010.

[26] C.L. Dumitrescu, I. Raicu, I. Foster. “The Design, Usage,
and Performance of GRUBER: A Grid Usage Service
Level Agreement based Brokering Infrastructure”. J. of
Grid Computing, vol.5, no.1, pp.99-126, 2007.

[27] V. Berten, J. Goossens, E. Jeannot. “On the Distribution
of Sequential Jobs in Random Brokering for
Heterogeneous Computational Grids”. IEEE Trans. on

Parallel and Distributed Systems, vol.17, no.2, pp.113-124,
2007.

[28] H.H Mohamed, D.H.J Epema. “Experiences with the
KOALA Co-Allocating Scheduler in Multiclusters”. Proc
of Int’l Symp on Cluster Computing and the Grid, pp.784-
791, 2005.

[29] H Casanova. “Benefits and Drawbacks of Redundant
Batch Requests”. J. of Grid Computing, vol.5, no.2, pp.
235-250, 2007..

Dongbo Liu was born in 1974. He received his master degree in
Jianshu University in 2001. Now he works as a associate
professor in Hunan Institute of Engineering, also he is a Ph.D
candidate in Hunan University. His research interests include
distributed intelligence, multi-agent systems, high-performance
application. He is a member of CCF association and IEEE
Computer Society.

Peng Xiao was born in 1979. He received his master degree in
Xiamen Universy in 2004. Now, he works in Hunan Institute of
Engineering and is a Ph.D candidate in Central South University.
His research interests include grid computing, parallel and
distributed systems, network computing, distributed intelligence.
He is a member of IEEE and ACM.

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 767

© 2013 ACADEMY PUBLISHER

