Equivalence between Recursive and Analytical Evidential Reasoning Algorithms

Xinning Wang
School of Naval Architecture, Ocean and Civil Engineering, Shanghai JiaoTong University, Shanghai, China
Navy Submarine Academy, Qingdao, Shandong, China
Email: wxn_qd@163.com

Abstract—Due to having the explicit evidential reasoning (ER) aggregation function, the analytical ER algorithm has been extensively applied to decision problems under uncertainty. However, there are some different opinions to the validity of the analytical ER algorithm. In this paper, a new method is proposed for proving the equivalence between the recursive and analytical ER algorithms, in such a way that is different from and, it is believed, more rigorous than that of Wang et al (2006). The new method is based directly on Dempster-Shafer’s combination rule and mathematics induction principle. It allows to consider simultaneously the combination and normalization of evidence. In addition, the iterative relationship of the normalization factors between two algorithms is derived. The paper further demonstrates the validity of the analytical ER algorithm theoretically and clarifies the relationship between the recursive and analytical ER algorithms.

Index Terms—Dempster-Shafer theory; combination and normalization of evidence; multiple attribute decision analysis; evidential reasoning approach

I. INTRODUCTION

The development of methods for dealing with uncertainty has received considerable attention in the last three decades and several numerical and symbolic methods have been proposed for handling uncertain information [29]. Due to the power of the D-S theory in handling uncertainties [1,5,6,9,32], so far, it has found wide applications in many areas such as expert systems [5,8], uncertainty reasoning [3,13,15], pattern classification [2,4,10,11], multiple attribute decision analysis [5,14,19-21,24-31], and regression analysis [16,20].

In the last decade, an evidential reasoning (ER) approach, which is a recursive style in nature, has been developed for multiple attribute decision analysis (MADA) under uncertainty [14,24,25,27,28]. This approach is developed on the basis of decision theory and Dempster-Shafer (D-S) theory of evidence [7,17]. Extensive research dedicated to the ER approach has been conducted in recent years. Firstly, the rule and utility-based information transformation techniques were proposed within the ER modeling framework [26]. This work enables the ER approach to deal with a wide range of MADA problems having precise data, random numbers and subjective judgments with probabilistic uncertainty in a way that is rational, transparent, reliable, systematic and consistent. Then, the in-depth research into the ER algorithm has been conducted by treating the unassigned belief degree in two parts, one caused by the incompleteness and the other caused by the fact that each attribute plays only one part in the whole assessment process because of its relative weight [27]. This work leads to a rigorous yet pragmatic ER algorithm that satisfies several common sense rules governing any approximate reasoning based aggregation procedures. The ER approach has thus been equipped with the desirable capability of generating the upper and lower bounds of the degree of belief for incomplete assessments, which are crucial to measure the degree of ignorance. Thirdly, the analysis process of the ER approach was fully investigated, which reveals the nonlinear features of the ER aggregation process [28]. Fourthly, the ER approach was further developed to deal with MADA problems with both probabilistic and fuzzy uncertainty [30]. This work leads to a new fuzzy ER algorithm that aggregates multiple attributes using the information contained in the fuzzy belief matrix, which can model precise data, ignorance and fuzziness under the unified framework of a distributed fuzzy belief structure. Fifthly, the ER approach was reanalyzed explicitly in terms of D-S theory and a general scheme of attribute aggregation was proposed for the purpose of dealing with MADA problems [14]. This work interprets the ER approach using the discounting operator and relaxes the constraints that the ER approach need to satisfy so that four synthesis axioms proposed by Yang and Xu in [27] can hold. Thus, this work provides convenience to develop new aggregation schemes. Recently, a new analytical ER algorithm was developed to deal with environmental impact assessment (EIA) problems [19]. In this work, the equivalence between the two algorithms was proven based on Yen’s combination rule, which normalizes the combination of multiple piece of evidence at the end of the combination process. Due to having the explicit ER aggregation function, the analytical ER algorithm has been applied to decision problems extensively, such as environmental impact assessment (EIA) [19], constructing belief-rule-based systems [31], pipeline leak detection [23], bridge condition assessment [21], etc.

However, recently, Gao and Ni (2007) pointed out that Yen’s combination rule was correct only under strict conditions but not under general conditions, and the analytical ER algorithm was incorrect because it was...
based on Yen’s combination rule [12]. In a very recent reply by Wang [22], he re-examined the numerical illustrations provided in [12] and argued that the analytical ER algorithm is correct.

In this paper, we clarify the relationship between the recursive and analytical ER algorithms theoretically. Additionally, a different method is investigated to prove the equivalence between them. In the process of the proof, instead of using Yen’s combination rule, we prove the equivalence between the recursive and analytical ER algorithms based directly on Dempster-Shafer’s combination rule and mathematics induction principle, where the combination and normalization of evidence are considered simultaneously.

The rest of this paper is organized as follows. In Section 2, we present the background of this paper. Next, in Section 3, we present the proof of the equivalence between the recursive and analytical ER algorithms. Finally, we conclude the paper in section 4.

II. BACKGROUND

In [19], the recursive ER algorithm is represented as follows:

$$\{H_n\} : m_{n,i(i+1)} = K_{i(i+1)}(m_{n,i(i)}, m_{n,i+1}) + m_{n,i(i)}m_{H,i+1} + m_{H,i(i)}m_{n,i+1},$$

$$m_{H,i+1} = \bar{m}_{H,i} + \bar{m}_{H,i+1}, i = 1, \ldots, L.$$ \hfill (2)

$$\{H\} : \bar{m}_{H} = K_{i(i+1)}(\bar{m}_{H,i} + \bar{m}_{H,i+1}) + \bar{m}_{H,i}m_{H,i+1},$$

$$\{H\} : \beta_H = \frac{m_{H,(L)}}{1 - \bar{m}_{H,(L)}},$$

where $$m_{n,i(i)}$$ denotes the combined probability mass generated by aggregating the first $$i$$ attributes; $$K_{i(i+1)}$$ denotes the normalization factor of the recursive ER algorithm by the first $$i+1$$ attributes; $$m_{n,i(i)}m_{n,i+1}$$ measures the relative support to the hypothesis that the general attribute should be assessed to the grade $$H_n$$ by both the first $$i$$ attributes and the $$(i+1)$$th attribute; $$m_{n,i(i)}m_{H,i+1}$$ measures the relative support to the hypothesis by the first $$i$$ attributes only; $$m_{H,i(i)}m_{n,i+1}$$ measures the relative support to the hypothesis by the $$(i+1)$$th attribute only. It is assumed in the above equations that $$m_{n,i(i)} = m_n(n = 1, \ldots, N),$$

$$m_{H,i(i)} = m_{H,i}, \bar{m}_{H,i(i)} = \bar{m}_{H,i},$$ and $$\bar{m}_{H,i(i)} = \bar{m}_{H,i}.$$

The analytical ER algorithm, which was proven to be equivalent to the recursive ER algorithm in [19], can be represented as follows:

$$\{H_n\} : m_n = k[\prod_{i=1}^{L}(m_{n,i} + \bar{m}_{H,i} + \bar{m}_{H,i})]$$

$$- \prod_{i=1}^{L}(\bar{m}_{H,i} + \bar{m}_{H,i})], \hfill (8)$$

$$\{H\} : \bar{m}_{H} = k[\prod_{i=1}^{L}(\bar{m}_{H,i} + \bar{m}_{H,i}) - \prod_{i=1}^{L}\bar{m}_{H,i}], n = 1, \ldots, N.$$ \hfill (9)

$$k = [\sum_{n=1}^{N}\prod_{i=1}^{L}(m_{n,i} + \bar{m}_{H,i} + \bar{m}_{H,i})]^{-1}, \hfill (10)$$

$$\{H_n\} : \beta_n = \frac{m_n}{1 - \bar{m}},$$

$$\{H\} : \beta_H = \frac{\bar{m}_{H}}{1 - \bar{m}_{H}}.$$ \hfill (13)

where $$m_{n,i}$$ is the probability mass assigned to grade $$H_n$$, $$m_{H,i}$$ is the probability mass assigned to the whole set $$H$$, which is split into two parts: $$\bar{m}_{H,i}$$ and $$\bar{m}_{H,i}$$, where $$\bar{m}_{H,i}$$ is caused by the relative importance of the attribute $$e_i$$ and $$\bar{m}_{H,i}$$ by the incompleteness of the assessment on $$e_i$$ for $$a_i$$, $$k$$ denotes the normalization factor for combining $$L$$ pieces of evidence in the analytical ER algorithm.

Based on Yen’s combination rule, where the normalization in the evidence combination rule of the Dempster-Shafer (D-S) theory of evidence can be applied at the end of the evidence combination process without changing the combination result [32], the equivalence between the recursive and analytical ER algorithms has been proven by Wang et al in [19]. That is

$$\bar{m}(m_1 \otimes m_2) \otimes m_3(E) =$$

$$N[(m_1 \otimes m_2) \otimes m_3(E)](E \in \Theta), \hfill (14)$$

where $$\otimes$$ and $$\otimes$$ denote Dempster-Shafer’s combination rule with normalization and without normalization, respectively, $$N$$ denotes the normalization process, $$\Theta$$ is the set of evaluation grades, $$m_1, m_2$$ and $$m_3$$ are the three basic probability assignment functions on the frame of discernment $$\Theta$$ and $$m_1(A | A \in \Theta) \geq 0$$, $$m_1(B | B \in \Theta) \geq 0$$, $$m_1(C | C \in \Theta) \geq 0$$.

In Wang’s proof process, the normalization was applied after all factors were combined. That is, the combination and the normalization of evidence were separated from each other. However, Gao and Ni pointed out that Yen’s combination rule was incorrect through two examples and further demonstrated that Yen’s
combination rule was correct under strict conditions [12].
The proof of the rule in [32] was revisited in [12]. The proof by Yen (1990) is examined as follows:

Suppose three basic probability assignment functions, \(m_1 \), \(m_2 \), and \(m_3 \) are to be combined. First, the result generated by combing \(m_1 \) and \(m_2 \) using Dempster’s rule was calculated by

\[
m_1 \oplus m_2 (C) = \frac{m_{12}'(C)}{1 - K_{12}},
\]

where \(m_{12}'(C) = \sum_{A \cap B = C} m_1(A) m_2(B) \) and \(K_{12} = \sum_{A \cap B = \emptyset} m_1(A) m_2(B) \). Therefore, Yen had

\[
(m_1 \oplus m_2) \oplus m_1(E) = \frac{1}{1 - K_{12}} \sum_{C \cap D = E} m_{12}'(C) m_3(D)
\]

(16)

Substituting \(m_{12}'(C) \) with \(\sum_{A \cap B = C} m_1(A) m_2(B) \), he obtained

\[
(m_1 \oplus m_2) \oplus m_1(E) = \frac{1}{1 - K_{12}} \sum_{A \cap B \cap D = E} m_1(A) m_2(B) m_3(D)
\]

(17)

However, in [12], they pointed out that (16) was incorrect because it was based on Yen’s combination rule. Yet, Wang re-examined the numerical illustrations provided in [12] and argued that the analytical ER algorithm is correct. The details can be found in [22].

However, we do not agree with the conclusion that the analytical ER algorithm is correct. What we can say is that to prove the equivalence between the recursive and analytical ER algorithms it is not necessary to use Yen’s combination rule. We think it is not appropriate to say that: “the analytical ER algorithm is not correct because it is based on Yen’s combination rule”. This corresponds to say that: “the conclusion \(X \) is in fact correct whilst the method \(Y \) may be wrong (or not rational).

In the next section, instead of using Yen’s combination rule, we apply Dempster-Shafer’s combination rule and mathematics induction principle to prove the equivalence between the recursive and analytical ER algorithms, in which the combination and normalization of evidence are considered simultaneously.

III. THE PROOF OF THE EQUIVALENCE BETWEEN THE RECURSIVE AND ANALYTICAL ER ALGORITHMS

In the following, for simplicity, we use \(K_l, l = 1, \ldots, L \) to denote the normalization factor for combining \(l \) pieces of evidence in the analytical ER algorithm. Therefore, \(K_L \) is equal to \(k \) in (11).

First of all, let us combine two factors with normalization. The combined probability masses generated by aggregating the two factors using Dempster-Shafer’s combination rule are given as follows.

\[
K_{l(2)} = \left[1 - \sum_{n=1}^{N} \sum_{i=1,i\neq n}^{N} m_{n,i}(1-m_{n,2})\right]^{-1}
\]

\[= \left[1 - \sum_{n=1}^{N} \left(\sum_{i=1,i\neq n}^{N} m_{n,i} m_{n,2} - m_{n,1} m_{n,2} \right) \right]^{-1}
\]

\[= \left[1 - \sum_{n=1}^{N} \left[m_{n,1} \left(\sum_{i=1,i\neq n}^{N} m_{n,2} - m_{n,2} \right) \right] \right]^{-1}
\]

\[= \left[1 - \sum_{n=1}^{N} m_{n,1} \left(1 - m_{n,2} - m_{n,2} \right) \right]^{-1}
\]

\[= \left[m_{H,1} (1 - \sum_{n=1}^{N} m_{n,2}) + \sum_{n=1}^{N} \prod_{i=1,i\neq n}^{N} \left(m_{n,i} + m_{H,2} \right) - \sum_{n=1}^{N} \prod_{i=1}^{N} \left(m_{n,i} + m_{H,2} - m_{n,2} \right) \right]^{-1}
\]

\[= \left[m_{H,1} m_{H,2} + \sum_{n=1}^{N} \prod_{i=1,i\neq n}^{N} \left(m_{n,i} + m_{H,2} \right) - \sum_{n=1}^{N} \prod_{i=1}^{N} \left(m_{n,i} + m_{H,2} \right) \right]^{-1}
\]

\[= \left[m_{H,1} m_{H,2} + \sum_{n=1}^{N} \prod_{i=1,i\neq n}^{N} \left(m_{n,i} + m_{H,2} \right) - \sum_{n=1}^{N} \prod_{i=1}^{N} \left(m_{n,i} + m_{H,2} \right) \right]^{-1}
\]

\[= K_2.
\]

Then we have
\[m_{n,l}(2) = K_{l}(2) \left(m_{n,1}m_{n,2} + m_{n,3}m_{h,1} + m_{h,2}m_{n,2} \right) \]
\[= K_{l}(2) \left[m_{n,1}(m_{n,2} + m_{h,1} + m_{h,2}) + m_{h,3}m_{n,2} \right] \]
\[= K_{l}(2) \left[m_{n,1}(m_{n,2} + m_{h,1}) + m_{h,3}m_{h,2} \right] \]
\[= K_{l}(2) \left[(m_{n,1} + m_{h,1})(m_{n,2} + m_{h,2}) - m_{h,3}m_{h,2} \right] \]
\[= K_{l}(2) \left[\prod_{i=1}^{2} (m_{n,1} + m_{h,1}) - \prod_{i=1}^{2} m_{h,1} \right] \]
\[= K_{l}(2) \left[\prod_{i=1}^{2} (m_{n,1} + \tilde{m}_{h,1}) \right] \]
\[- \prod_{i=1}^{2} (\tilde{m}_{h,1} + \tilde{m}_{h,1}) \]
\[
\tilde{m}_{h,l}(2) = K_{l}(2) \left[\tilde{m}_{h,1}(\tilde{m}_{h,1} + \tilde{m}_{h,2}) + \tilde{m}_{h,2}(\tilde{m}_{h,2}) \right] \]
\[= K_{l}(2) \left[\tilde{m}_{h,1} \tilde{m}_{h,2} + \tilde{m}_{h,2} \tilde{m}_{h,2} \right] \]
\[= K_{l}(2) \left[(\tilde{m}_{h,2} + \tilde{m}_{h,2})(\tilde{m}_{h,2} + \tilde{m}_{h,2}) - \tilde{m}_{h,1}\tilde{m}_{h,2} \right] \]
\[= K_{l}(2) \left[\prod_{i=1}^{2} (\tilde{m}_{h,2} + \tilde{m}_{h,2}) - \prod_{i=1}^{2} \tilde{m}_{h,2} \right] \]
\[= K_{l}(2) \left[\prod_{i=1}^{2} (\tilde{m}_{h,2} + \tilde{m}_{h,2}) \right] \]
\[- \prod_{i=1}^{2} (\tilde{m}_{h,2} + \tilde{m}_{h,2}) \]
\[
\tilde{m}_{h,l}(2) = K_{l}(2) \tilde{m}_{h,2} = K_{l} \prod_{i=1}^{2} \tilde{m}_{h,2} \]

Suppose the following equations are true while combining the first \((l-1)\) evidence using Dempster-Shafer's combination rule, \(3 \leq l \leq L\),
\[m_{n,l}(1) = K_{l-1} \left[\prod_{i=1}^{l-1} (m_{n,i} + \tilde{m}_{h,i}) - \tilde{m}_{h,1} \right] \]
\[m_{h,l}(1) = K_{l-1} \left[\prod_{i=1}^{l-1} (\tilde{m}_{h,i} + \tilde{m}_{h,i}) - \tilde{m}_{h,1} \right] \]
\[\tilde{m}_{h,l}(1) = K_{l-1} \prod_{i=1}^{l-1} \tilde{m}_{h,i} \]
where \(K_{l-1}\) denotes the normalization factor for combining \(l-1\) pieces of evidence in the analytical ER algorithm.

Then the results combining \(m_{l}(1)\) with the \(l\)th evidence \(m_{j}\) can be formulated as follows:

\[K_{l}(l) = \left[\prod_{n=1}^{N} \sum_{i=1}^{l} m_{n,i}(l-i) \right]^{-1} \]
\[= \left[\prod_{n=1}^{N} \left(\sum_{i=1}^{l} m_{n,i}(l-i) m_{n,i} \right) \right]^{-1} \]
\[= \left[\prod_{n=1}^{N} \left(\sum_{i=1}^{l} m_{n,i}(l-i) (1 - m_{n,i}) \right) \right]^{-1} \]
\[= \left[\prod_{n=1}^{N} \left(\sum_{i=1}^{l} m_{n,i}(l-i) + m_{h,i} m_{n,i}(l-i) \right) \right]^{-1} \]
\[= \left[\prod_{n=1}^{N} \left(\sum_{i=1}^{l} m_{n,i}(l-i) m_{n,i} \right) \right]^{-1} \]
\[= \left(\frac{K_{l-1}}{K_{l}} \right)^{l} = \frac{K_{l}}{K_{l-1}} \]

Note that \(K_{l}(l)\) is not equal to \(K_{l}\). The relationship of the normalization factors between them will be summarized in the following. We then have
\[m_{n,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{n,i} + m_{h,i} m_{n,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i} + m_{h,i} m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[m_{h,l}(l) = K_{l}(l) \left[\prod_{i=1}^{l} m_{h,i}(l-i) + m_{h,i}(l-i) m_{h,i} \right] \]
\[\tilde{m}_{H,j(l)} = K_{l}(l) (\tilde{m}_{H,j(l-1)} + \tilde{m}_{H,j(l-1)}) + \tilde{m}_{H,j(l-1)} \]
\[= K_{l}(l) \left[\tilde{m}_{H,j(l)} \left(\tilde{m}_{H,j(l-1)} + \tilde{m}_{H,j(l-1)} \right) + \tilde{m}_{H,j(l-1)} \right] \]
\[= K_{l}(l) \left[\tilde{m}_{H,j(l)} \left(\tilde{m}_{H,j(l-1)} + \tilde{m}_{H,j(l-1)} \right) - \tilde{m}_{H,j(l-1)} \tilde{m}_{H,j(l-1)} \right] \]
\[= K_{l}(l) \left[\tilde{m}_{H,j(l-1)} \right] \]
\[= K_{l}(l) \left[\prod_{i=1}^{l} \tilde{m}_{H,j} - \prod_{i=1}^{l} \tilde{m}_{H,j} \right]. \]

Therefore, according to mathematical induction principle, the above equations are true for any \(l \in \{1, \ldots, L \} \). For \(l=L \), we obtain the following normalized combined probability assignments generated by aggregating the \(L \) attributes:
\[m_{n,j(l)} = K_{L} \left[\prod_{i=1}^{L} (m_{n,j} + \tilde{m}_{H,j} + \tilde{m}_{H,j}) - \prod_{i=1}^{L} (\tilde{m}_{H,j} + \tilde{m}_{H,j}) \right], n = 1, \ldots, N, \]
\[\tilde{m}_{H,j(l)} = K_{L} \left[\prod_{i=1}^{L} (\tilde{m}_{H,j} + \tilde{m}_{H,j}) - \prod_{i=1}^{L} (\tilde{m}_{H,j} + \tilde{m}_{H,j}) \right]. \]

According to the definition of the basic probability assignment function, we have
\[\sum_{n=1}^{N} m(H_n) + m(H) = \sum_{n=1}^{N} m(H_n) + \tilde{m}(H) + \tilde{m}(H) = 1, \]
from which we obtain
\[K_{l}(l) = \left[\sum_{n=1}^{N} \prod_{i=1}^{L} (m_{n,j} + \tilde{m}_{H,j} + \tilde{m}_{H,j}) - (N-1) \prod_{i=1}^{L} (\tilde{m}_{H,j} + \tilde{m}_{H,j}) \right]^{-1}. \]

Furthermore, we can obtain the iterative relationship between \(K_{l}(l) \) and \(K_{l} \) as follows:

\[K_{l}(l) = \begin{cases} K_{l} & l = 2 \\ \frac{K_{l}}{K_{l-1}} & 2 < l \leq L \end{cases} \]

From the above analysis, it is shown that the recursive ER algorithm is equivalent to the analytical ER algorithm.

IV. CONCLUSIONS

In this paper, the equivalence between the recursive and analytical ER algorithms is re-investigated. In this investigation, a new method for proving the equivalence between the recursive and analytical ER algorithms has been proposed. Unlike previous approach described in [19], this method does not rely on Yen’s combination rule, but on Dempster-Shafer’s combination rule and mathematics induction principle, in which the combination and normalization of evidence can be considered simultaneously. Furthermore, the iterative relationship of the normalization factors between two algorithms has been derived. Hence, this method further consolidates the proof of the equivalence proposed by Wang et al in [19] and makes the analytical ER algorithm usable for conducting sensitivity analysis and optimization for the parameters of the ER algorithm, etc.

REFERENCES

Wang Xinning is a Ph.D candidate in the School of Naval Architecture, Ocean and Civil Engineering. His research interest covers intelligent algorithm, reliability and data fusion.
Call for Papers and Special Issues

Aims and Scope.

Journal of Software (JSW, ISSN 1796-217X) is a scholarly peer-reviewed international scientific journal focusing on theories, methods, and applications in software. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on software.

We are interested in well-defined theoretical results and empirical studies that have potential impact on the construction, analysis, or management of software. The scope of this Journal ranges from the mechanisms through the development of principles to the application of those principles to specific environments. JSW invites original, previously unpublished, research and tutorial papers, plus case studies and short research notes, on both applied and theoretical aspects of software. Topics of interest include, but are not restricted to:

- Software Requirements Engineering, Architectures and Design, Development and Maintenance, Project Management,
- Software Testing, Diagnosis, and Validation, Software Analysis, Assessment, and Evaluation, Theory and Formal Methods
- Design and Analysis of Algorithms, Human-Computer Interaction, Software Processes and Workflows
- Reverse Engineering and Software Maintenance, Aspect-Orientation and Feature Interaction, Object-Oriented Technology
- Component-Based Software Engineering, Computer-Supported Cooperative Work, Agent-Based Software Systems, Middleware Techniques
- AI and Knowledge Based Software Engineering, Empirical Software Engineering and Metrics
- Software Security, Safety and Reliability, Distribution and Parallelism, Databases
- Software Economics, Policy and Ethics, Tools and Development Environments, Programming Languages and Software Engineering
- Mobile and Ubiquitous Computing, Embedded and Real-time Software, Database, Data Mining, and Data Warehousing
- Internet and Information Systems Development, Web-Based Tools, Systems, and Environments, State-Of-The-Art Survey

Special Issue Guidelines

Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal. Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:

- Proposed title for the Special Issue
- Description of the topic area to be focused upon and justification
- Review process for the selection and rejection of papers.
- Name, contact, position, affiliation, and biography of the Guest Editor(s)
- List of potential reviewers
- Potential authors to the issue
- Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:

- Preparing the “Call for Papers” to be included on the Journal’s Web site.
- Distribution of the Call for Papers broadly to various mailing lists and sites.
- Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be informed the Instructions for Authors.
- Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact information.
- Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop

A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:

- Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
- Sending us a formal “Letter of Intent” for the Special Issue.
- Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.
- Information about the Journal and Academy Publisher can be included in the Call for Papers.
- Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the evaluation from the Session Chairs and the feedback from the Conference attendees.
- Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
- Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact information.
- Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jsw/.
Synchronized Petri Net: A Formal Specification Model for Multi Agent Systems
Sofia Kouah, Djamel Eddine Saïdouni, and Jean Michel Ilié

Automated Breakpoint Generation for Debugging
Cheng Zhang, Juyuan Yang, Dacong Yan, Shengqian Yang, and Yuting Chen

DDoS Attack against Proxy in PRE and PRS
Jindan Zhang, Xu An Wang, Xiaoyuan Yang

Extract Product Features in Chinese Web for Opinion Mining
Lizhen Liu, Zhixin Lv, and Hanshi Wang

The Realization of Students Ranking Assessment Management Information System
Zhiqiang Yao and Abhijit Sen

A Heterogeneous-aware Cooperative MIMO Transmission Scheme in WSN
Tingrui Pei, Da Xie, Zhetao Li, Dengbiao Tu, and Youngjune Choi

Efficient Model-based Fuzz Testing Using Higher-order Attribute Grammars
Fan Pan, Ying Hou, Zheng Hong, Lifia Wu, and Haiguang Lai

Research on Auxiliary Design System for Rural Power Grids Based on 3D GIS
Yongfu Li, Dongming Li, and Yipeng Xie

LPT Optimization Algorithm in the Nuclear Environment Image Monitoring
Xiang Li and Jian Li

Particle Filter Improved by Genetic Algorithm and Particle Swarm Optimization Algorithm
Ming Li, Bo Pang, Yongfeng He, and Fuzhong Nian

Parameter Optimization and Application of Support Vector Machine Based on Parallel Artificial Fish Swarm Algorithm
Jing Bai, Lihong Yang, and Xueying Zhang

Experimental Study and Numerical Modeling of Surface/Subsurface Flow at field scale
Lei Zhu, Dedong Liu, and Chengli Zhu

Hybrid MPI-OpenMP Parallelization of Image Reconstruction
Jinliang Wan and Yanhui Liu

Design of Collection and Semantic Annotation System for Web Images
Ruojuan Xue, Wenpeng Lu, and Jinyong Cheng

All-round Evaluation Method for Multi-media Teaching
Yuanwei Du, Chen Han, Hongjuan Yang, and Wanchun Duan

The Study on Rotating Machinery Early Fault Diagnosis based on Principal Component Analysis and Fuzzy C-means Algorithm
Qiang Zhao

An Improved Short-Term Power Load Combined Forecasting With ARMA-GRACH-ANN- SVM Based on FHNN Similar-Day Clustering
Dongxiao Niu and Yanan Wei

Enhancing Kernel Maximum Margin Projection for Face Recognition
Ziqiang Wang and Xia Sun

Fusion of Two Typical Quantitative Steganalysis Based on SVR
Chunfang Yang, Fenlin Liu, Xiangyang Luo, and Ying Zeng