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Abstract—Due to having the explicit evidential reasoning 
(ER) aggregation function, the analytical ER algorithm has 
been extensively applied to decision problems under 
uncertainty. However, there are some different opinions to 
the validity of the analytical ER algorithm. In this paper, a 
new method is proposed for proving the equivalence 
between the recursive and analytical ER algorithms, in such 
a way that is different from and, it is believed, more 
rigorous than that of Wang et al (2006). The new method is 
based directly on Dempster-Shafer’s combination rule and 
mathematics induction principle. It allows to consider 
simultaneously the combination and normalization of 
evidence. In addition, the iterative relationship of the 
normalization factors between two algorithms is derived. 
The paper further demonstrates the validity of the 
analytical ER algorithm theoretically and clarifies the 
relationship between the recursive and analytical ER 
algorithms. 
 
Index Terms—Dempster-Shafer theory; combination and 
normalization of evidence; multiple attribute decision 
analysis; evidential reasoning approach 
 

I.  INTRODUCTION 

The development of methods for dealing with 
uncertainty has received considerable attention in the last 
three decades and several numerical and symbolic 
methods have been proposed for handling uncertain 
information [29]. Due to the power of the D-S theory in 
handling uncertainties [1,5,6,9,32], so far, it has found 
wide applications in many areas such as expert systems 
[5,8], uncertainty reasoning [3,13,15], pattern 
classification [2,4,10,11], multiple attribute decision 
analysis [5,14,19-21,24-31], and regression analysis 
[16,20]. 

In the last decade, an evidential reasoning (ER) 
approach, which is a recursive style in nature, has been 
developed for multiple attribute decision analysis 
(MADA) under uncertainty [14,24,25,27,28]. This 
approach is developed on the basis of decision theory and 
Dempster-Shafer (D-S) theory of evidence [7,17]. 
Extensive research dedicated to the ER approach has 
been conducted in recent years. Firstly, the rule and 
utility-based information transformation techniques were 
proposed within the ER modeling framework [26]. This 
work enables the ER approach to deal with a wide range 
of MADA problems having precise data, random 
numbers and subjective judgments with probabilistic 

uncertainty in a way that is rational, transparent, reliable, 
systematic and consistent. Then, the in-depth research 
into the ER algorithm has been conducted by treating the 
unassigned belief degree in two parts, one caused by the 
incompleteness and the other caused by the fact that each 
attribute plays only one part in the whole assessment 
process because of its relative weight [27]. This work 
leads to a rigorous yet pragmatic ER algorithm that 
satisfies several common sense rules governing any 
approximate reasoning based aggregation procedures. 
The ER approach has thus been equipped with the 
desirable capability of generating the upper and lower 
bounds of the degree of belief for incomplete assessments, 
which are crucial to measure the degree of ignorance. 
Thirdly, the analysis process of the ER approach was 
fully investigated, which reveals the nonlinear features of 
the ER aggregation process [28]. Fourthly, the ER 
approach was further developed to deal with MADA 
problems with both probabilistic and fuzzy uncertainty 
[30]. This work leads to a new fuzzy ER algorithm that 
aggregates multiple attributes using the information 
contained in the fuzzy belief matrix, which can model 
precise data, ignorance and fuzziness under the unified 
framework of a distributed fuzzy belief structure. Fifthly, 
the ER approach was reanalyzed explicitly in terms of D-
S theory and a general scheme of attribute aggregation 
was proposed for the purpose of dealing with MADA 
problems [14]. This work interprets the ER approach 
using the discounting operator and relaxes the constraints 
that the ER approach need to satisfy so that four synthesis 
axioms proposed by Yang and Xu in [27] can hold. Thus, 
this work provides convenience to develop new 
aggregation schemes. Recently, a new analytical ER 
algorithm was developed to deal with environmental 
impact assessment (EIA) problems [19]. In this work, the 
equivalence between the two algorithms was proven 
based on Yen’s combination rule, which normalizes the 
combination of multiple piece of evidence at the end of 
the combination process. Due to having the explicit ER 
aggregation function, the analytical ER algorithm has 
been applied to decision problems extensively, such as 
environmental impact assessment (EIA) [19], 
constructing belief-rule-based systems [31], pipeline leak 
detection [23], bridge condition assessment [21], etc.  

However, recently, Gao and Ni (2007) pointed out that 
Yen’s combination rule was correct only under strict 
conditions but not under general conditions, and the 
analytical ER algorithm was incorrect because it was 
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based on Yen’s combination rule [12]. In a very recent 
reply by Wang [22], he re-examined the numerical 
illustrations provided in [12] and argued that the 
analytical ER algorithm is correct.  

In this paper, we clarify the relationship between the 
recursive and analytical ER algorithms theoretically. 
Additionally, a different method is investigated to prove 
the equivalence between them. In the process of the proof, 
instead of using Yen’s combination rule, we prove the 
equivalence between the recursive and analytical ER 
algorithms based directly on Dempster-Shafer’s 
combination rule and mathematics induction principle, 
where the combination and normalization of evidence are 
considered simultaneously. 

The rest of this paper is organized as follows. In 
Section 2, we present the background of this paper. Next, 
in Section 3, we present the proof of the equivalence 
between the recursive and analytical ER algorithms. 
Finally, we conclude the paper in section 4. 

II. BACKGROUND 

In [19], the recursive ER algorithm is represented as 
follows: 
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where , ( )n I im  denotes the combined probability mass 

generated by aggregating the first i attributes; ( 1)I iK +  
denotes the normalization factor of the recursive ER 
algorithm by the first i+1 attributes; , ( ) , 1n I i n im m +  
measures the relative support to the hypothesis that the 
general attribute should be assessed to the grade nH  by 
both the first i attributes and the (i+1)th attribute; 

, ( ) , 1n I i H im m +  measures the relative support to the 

hypothesis by the first i attributes only; , ( ) , 1H I i n im m +  
measures the relative support to the hypothesis by the 
(i+1)th attribute only. It is assumed in the above 
equations that , (1) ,1( 1, , )n I nm m n N= = … , 

, (1) ,1H I Hm m= , , (1) ,1H I Hm m=  and , (1) ,1H I Hm m=% % . 

The analytical ER algorithm, which was proven to be 
equivalent to the recursive ER algorithm in [19], can be 
represented as follows: 
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where ,n im  is the probability mass assigned to grade nH , 

,H im  is the probability mass assigned to the whole set H, 

which is split into two parts: ,H im  and ,H im% , where 

,H im  is caused by the relative importance of the attribute 

ie  and ,H im%  by the incompleteness of the assessment on 

ie  for la , k  denotes the normalization factor for 

combining L  pieces of evidence in the analytical ER 
algorithm. 

Based on Yen’s combination rule, where the 
normalization in the evidence combination rule of the 
Dempster-Shafer (D-S) theory of evidence can be applied 
at the end of the evidence combination process without 
changing the combination result [32], the equivalence 
between the recursive and analytical ER algorithms has 
been proven by Wang et al in [19]. That is 

               
[ ]
1 2 3

1 2 3

( ) ( )
( ) ( ) ( )

m m m E
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where ⊕  and ⊗  denote Dempster-Shafer’s combination 
rule with normalization and without normalization, 
respectively, N denotes the normalization process, Θ is 
the set of evaluation grades, 1m , 2m and 3m are the three 
basic probability assignment functions on the frame of 
discernment Θ  and 

1( | ) 0m A A∈Θ ≥ , 1( | ) 0m B B∈Θ ≥ , 

1( | ) 0m C C∈Θ ≥ . 
In Wang’s proof process, the normalization was 

applied after all factors were combined. That is, the 
combination and the normalization of evidence were 
separated from each other. However, Gao and Ni pointed 
out that Yen’s combination rule was incorrect through 
two examples and further demonstrated that Yen’s 
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combination rule was correct under strict conditions [12]. 
The proof of the rule in [32] was revisited in [12]. The 
proof by Yen (1990) is examined as follows: 

Suppose three basic probability assignment functions, 

1m , 2m  and 3m  are to be combined. First, the result 

generated by combing 1m  and 2m  using Dempster’s 
rule was calculated by 
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However, in [12], they pointed out that (16) was in 
general not equivalent to (17) because (16) was 
equivalent to 
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and (17) was equivalent to (18) only under the following 
assumptions 
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Based on the above analysis, Gao and Ni drawn two 
conclusions. The first was that Yen’s combination rule 
was incorrect. The second was that the analytical ER 
algorithm was incorrect because it was based on Yen’s 
combination rule. Yet, Wang re-examined the numerical 
illustrations provided in [12] and argued that the 
analytical ER algorithm is correct. The details can be 
found in [22]. 

However, we do not agree with the conclusion that the 
analytical ER algorithm is incorrect. What we can say is 
that to prove the equivalence between the recursive and 
analytical ER algorithms it is not necessary to use Yen’s 
combination rule. We think it is not appropriate to say 

that: “the analytical ER algorithm is not correct because it 
is based on Yen’s combination rule”. This corresponds to 
say that: “the conclusion X is proven by incorrect method 
Y, so the conclusion X is incorrect”. It is possible that the 
conclusion X is in fact correct whilst the method Y may 
be wrong (or not rational). 

In the next section, instead of using Yen’s combination 
rule, we apply Dempster-Shafer’s combination rule and 
mathematics induction principle to prove the equivalence 
between the recursive and analytical ER algorithms, in 
which the combination and normalization of evidence are 
considered simultaneously. 

III. THE PROOF OF THE EQUIVALENCE BETWEEN THE 
RECURSIVE AND ANALYTICAL ER ALGORITHMS 

In the following, for simplicity, we use 
, 1, ,lK l L= …  to denote the normalization factor for 

combining l  pieces of evidence in the analytical ER 
algorithm. Therefore, LK  is equal to k  in (11). 

First of all, let us combine two factors with 
normalization. The combined probability masses 
generated by aggregating the two factors using Dempster-
Shafer’s combination rule are given as follows. 
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where 1lK −  denotes the normalization factor for 

combining 1l −  pieces of evidence in the analytical ER 
algorithm. 

Then the results combining ( 1)I lm −  with the lth 

evidence lm  can be formulated as follows: 
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Note that ( )I lK  is not equal to lK . The 
relationship of the normalization factors between 
them will be summarized in the following. We then 
have 
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Therefore, according to mathematical induction 
principle, the above equations are true for any 

{1,..., }l L∈ . For l=L, we obtain the following 
normalized combined probability assignments generated 
by aggregating the L attributes: 
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According to the definition of the basic probability 
assignment function, we have 

1

1

( ) ( )

( ) ( ) ( ) 1

N
nn

N
nn

m H m H

m H m H m H
=

=

+

= + + =

∑
∑ %

, 

from which we obtain 
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Furthermore, we can obtain the iterative relationship 
between ( )I lK  and lK  as follows: 
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From the above analysis, it is shown that the recursive 
ER algorithm is equivalent to the analytical ER algorithm. 

IV. CONCLUSIONS 

In this paper, the equivalence between the recursive 
and analytical ER algorithms is re-investigated. In this 
investigation, a new method for proving the equivalence 
between the recursive and analytical ER algorithms has 
been proposed. Unlike previous approach described in 
[19], this method does not rely on Yen’s combination rule, 
but on Dempster-Shafer’s combination rule and 
mathematics induction principle, in which the 
combination and normalization of evidence can be 
considered simultaneously. Furthermore, the iterative 
relationship of the normalization factors between two 
algorithms has been derived. Hence, this method further 
consolidates the proof of the equivalence proposed by 
Wang et al in [19] and makes the analytical ER algorithm 
usable for conducting sensitivity analysis and 
optimization for the parameters of the ER algorithm, etc. 
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